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Abstract— Binary Search is fundamental to the study and analysis
of Discrete Computational Structures. This is an efficient search
strategy due to it’s logarithmic time complexity. It is used to identify
the position of a key in a sorted list. Often, database applications
require searching for two to more different key elements at the same
execution. This is particularly true if the database includes structural
layering, which is based on a particular index or a field. In this paper,
a hybrid algorithm to perform binary search with2 to m different
keys (m is an integer greater than or equal to2) in a sorted list
structure is proposed. Anm-key version of the proposed algorithm
requires considering (2m + 1) individual cases. Correctness proof of
the algorithm is established using induction on the size of the list,
n. Time complexity of the proposed algorithm is a function of2
independent variables,m andn, which is,O(mlog(n)) in the worst,
and also in the average cases. The best case complexity is linear
on the number of the keys, which isO(m). Performance of the2
and the3-key versions is compared with the classical single key
version. Possible key index combinations with the multi-key search
strategies are explored for database applications. An extension of the
algorithm known as the Multi-key Binary Insertion Search is also
proposed. Applications of the proposed algorithms are considered
together with a model employee database management program with
improved efficiency.

Keywords— Multiple Keys, Multi-key Binary Search, Recursive
Algorithm, Hybrid Algorithm, Database Applications, Logarithmic
Time Complexity.

I. I NTRODUCTION

Binary search (BS) is a popular and a useful technique for
practical applications due to its logarithmic time complexity.
As the time complexity is logarithmic, the algorithm exhibits
significant improvements in computation time with a very
large size of the list. But the only limitation is that it needs
to be applied to an ordered list. If the list is not organized
and needs frequent processing, one of the sorting algorithms
may conveniently be applied to organize the list, and the
binary search technique can be applied to the sorted list. The
limitation with the BS technique is that it can only be used to
search for one element in a given list.

State-of-the-art research in this arena is to apply the clas-
sical binary search technique (BST) in solving computational
problems. In [1], the author has identified a major flaw in
the classical BST for larger sizes of the lists, and suggested
certain improvements on the classical version in standard
programming languages, such asC, C ++, andJava. Again,
the work on semi-sum in [4] is particularly notable. In [6],
the authors have explored a technique that uses rapid searching
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using a variant of the BS. Sometimes for electronic word
dictionary, or telephone list processing applications, we need
an efficient technique to search for two to more different keys
with a single execution of a given algorithm. In this paper, a
modified binary search algorithm in searching form different
keys at the same execution in a list of elements is proposed.
Here,m is an integer andm ≥ 2. The proposed algorithm is
hybrid and can be extended to perform search with multiple
keys at the same execution pass. The algorithm may be used
to search for the positions ofm different keys in a sorted array
containingn individual elements, wheren > m. If the list is
organized in theascending orderwith the smaller key located
at the jth position and the larger key at theith position, then
i > j, and the total number of elements within this particular
subrange is, (i − j − 1). This information can be used for
the statistical analysison an electronic word dictionary or an
electronic telephone directory as well. In this paper, arecursive
versionof the algorithm is considered.

Performance analysis for new algorithms is crucial for
computer implementations. There are two separate criteria for
judging the performance of a new algorithm. These are the
time and the memory space requirements for the computer-
based implementation of the proposed algorithm. Time com-
plexity of an algorithm is the measure of the amount of
computer time that it needs to run to completion [5]. There are
two separate techniques for judging the timing requirements
of a proposed algorithm. These are Performance Analysis
and Performance Measurement. Performance Analysis uses
thestandard mathematical techniquesfor justifying the perfor-
mance of a proposed algorithm in big oh, Cap theta, and small
o notation. Performance Measurement involves conducting
practical experiments.

Space Complexity of an algorithm is the amount of memory
space that it needs for running to completion [5]. This analysis
is important due to a number of reasons. If the proposed
algorithms are implemented on a multiuser computer system,
then it is necessary to specify the amount of memory required
to execute the algorithms to completion. For any computer
system, it would be useful to know in advance whether or
not sufficientcomputational memoryis available to run the
algorithms. The analysis pertaining to the space complexity
may conveniently be applied in estimating the largest problem
size that a program can solve. This provides us with an upper
bound on the size of the problem that may be considered with
the available resources.

The focus in this paper is entirely different compared to
other contemporary BS research issues. In this paper, a recur-
sive multi-key binary search (MKBS) algorithm in searching
for m different keys in a list ofn different list elements is
proposed, and the related database application is explored. The
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proposed algorithm occasionally explores through the classical
binary search during it’s computation.

In section 2, the terminology and notations used in the
paper are briefly discussed. Section3 explores the MKBS
algorithm and shows the related analysis. The algorithm is
illustrated using a numerical example. Implementation issues
are also considered. Section4 deals with the performance
and the related issues. It analyzes the time complexity, and
considers the issues relating to the performance measurement.
It also compares the multi-key versions with the classical
single key approach. Section5 concerns an extended version
of the proposed algorithm for multi-key insertions inside a
sorted list. The extended algorithm is also clarified using
a numerical example. In Section6, the applications of the
proposed algorithms are considered on an employee database
system model. Section7 explores future research avenues.

II. T ERMINOLOGY AND NOTATIONS

Following notations are used all throughout this paper.
left: Left-most index in a list of elements.
right: Right-most index in a list.
middle: Index of the middle element in a list.
arr: Name of the array holding the list elements.
small key: Holds the smallest of the keys.
large key: Contains the largest of the keys.
small pos: Positional index of the smallest key.
large pos: Largest key position.
m: Total number of keys.
n: Total number of list elements.
Time Complexity:It is the amount of computer time that a
program requires to run to completion.
Space Complexity:It is the amount of memory space that a
program requires to run to completion.

Performance evaluation of an algorithm considers perfor-
mance analysis and performance measurement. Performance
analysis uses theoretical and analytical tools and techniques.
Performance measurement is the practical testing results us-
ing the proposed algorithm. In this paper, both performance
analysis and measurement are considered.

III. M ULTI -KEY BINARY SEARCH (MKBS) ALGORITHM

In the classical BST, there is a flaw. For finding out the middle
index position, the average between the left and the right is
computed using,middle = (left + right)/2, truncated down
to the nearest integer. Apparently, this assertion might appear
correct, but it fails for large values of the integer variables,left
and right. Specifically, it fails if the sum ofleft and right
is greater than the maximum positive integer value, (231 - 1).
The sum overflows to a negative value, and the value stays
negative when it is divided by two.

This bug can manifest itself for arrays whose length in
elements is230 or greater. In [1], the author refers to this
error in the first classical BST, which was published in1946.
Following is an alternative to fix this bug.

int middle = left + ((right− left) / 2) (1)

MKBS algorithms are implemented recursively asBinary-
Search2key, BinarySearch 3key, BinarySearch 4key, . . .
free-functions. Multikey search algorithms create a com-
putational hierarchy founded upon the classical single-key
search. Therefore, the corrected version of the recursive BST
is outlined first.

Algorithm binary search
Purpose: This algorithm performs1-key recursive binary
search.
while right ≥ left do

middle = left + (right− left)/2
if arr[middle] = key elementthen

return middle
else if arr[middle] > key elementthen

return binary search (arr, left, middle-1, key element)
{recursive call to binarysearch}

else
return binary search (arr, middle+1, right,
key element)

end if
end while
return −1

The 2-key BS algorithm makes use of the classical1-key
version.

Algorithm BinarySearch 2key
Purpose: This algorithm performs2-key binary search.
The supplied parameters are: array arr[], position of the first
element: left,
position of the last element: right, smaller key, and larger
key.
2-key search finds out smallpos, largepos for the smaller
and the larger keys.

Require: small key < largekey
Ensure: left > right or keys found

while left ≤ right do
middle = left + (right− left)/2
if arr[middle] < small key then

BinarySearch2key (arr, (middle+1), right, smallkey,
largekey, smallpos, largepos) {Recursively call Bi-
narySearch2key}

else if arr[middle] = small key then
small pos⇐ middle
largepos ⇐ BinarySearch(arr, middle+1, right,
largekey)
return

else if arr[middle] > small key and arr[middle] <
largekey then

small pos ⇐ BinarySearch(arr, left, middle-1,
small key)
largepos ⇐ BinarySearch(arr, middle+1, right,
largekey)
return

else if arr[middle] = largekey then
largepos⇐ middle
small pos ⇐ binary search(arr, left, middle-
1,smallkey);
return
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else if arr[middle] > largekey then
BinarySearch2key (arr, left, middle-1, small key,
largekey, smallpos, largepos)

end if
end while
small pos⇐ -1
largepos⇐ -1
return

A. Numerical Example

Consider the following list with12 integer elements.
-112, -88, -55, -12, -5, 15, 32, 67, 79, 98, 117, 133.
• The two given keys are:small key = -12, and large key
= 67.
• At first, left = 0, andright = 11. As left ≤ right, therefore
middle = int (0 + ((11− 0)/2)) = 5. Now, arr[5] = 15.
• As arr[5] = 15 > −12, andarr[5] = 15 < 67. Therefore,
small pos =binary search(arr[], 0, 4,−12), and largepos =
binary search(arr[] , 6, 11, 67). After two classical binary
searches at this stage,−12 is found at index3 with counting
beginning at index0. Similarly, 67 is identified at index7.
The smaller key position is,(3 + 1) = 4, and the larger key
position is,(7 + 1) = 8. Total number of elements in between
these2 keys is, (7− 3− 1) = 3.

B. Analytical Results

Following result holds true for anm-key BS.
Lemma 1:An m-key binary search algorithm may make

recursive calls starting from its (m-1) key version up to
the single key version of the classical binary search in its
computational hierarchy.
Proof: In anm-key BS, if the first key (similar also for the last
key) becomes equal to the middle element of the current list,
the algorithm makes a recursive call to the (m−1) key version
that searches the2nd through themth key in the subrange
(middle+1) throughend. If themth key is equal to the middle
element, it makes a recursive call to the (m− 1)-key version
within the subrange starting fromleft to (middle−1). For the
(m−1)-key version, if the1st key =middle or the (m−1)th
key is equal to the middle element, it makes recursive call to
the (m − 2)-key version. Proceeding in this way, thek-key
binary search makes recursive calls to the (k − 1)-key binary
search. In the minimum, a2-key version may make a call
to the classic1-key version. Hence, following computational
hierarchy is produced.

m-key version makes call to the(m−1)-key version,(m−
1)-key version calls the(m−2)-key version,. . ., 2-key version
may make call to the1-key version. With the best possible
recursion, them-key version may even make a call to the1-
key version. It is the best, since a key has been identified at
the middle of the current list, which is making a call to the
next lower version. In the next lower version, another key is
identified at the middle, and recursively calling the following
lower version, and so on. ut

Following proof uses Strong Induction [7] to prove that the
recursive MKBS works correctly.

Theorem 2:MKBS algorithm works correctly with mul-
tiple key values for every ordered, nonempty list of sizen,
n ≥ 1.
Proof: Let P (n) be the proposition: ”MKBS algorithm works
correctly with multiple key values for every ordered, nonempty
list of sizen, n ≥ 1”.
Basis step:To avoid too much complexity, only the2-key
search version is considered. In the basis step, the proposition
P (1) is shown to be true. Withn=1, left = 0, andright = 0.
Thenmiddle = int((0 + ((0− 0)/2)) = 0, andleft = right.
• If arr[0] < small key, the algorithm calls itself recursively
with left=(middle+1)=1, andright = 0. Sinceleft > right,
therefore,small pos = −1, and large pos = −1.
• If arr[0] is equal tosmall key, thensmall pos = middle
= 0, and large pos = binary search
(arr[], middle + 1, right, large key). In this case,
left=(middle + 1)=1, and right = 0. Since right < left,
therefore,small pos = 0, and large pos = −1.
• If arr[0] > small key, and arr[0] < large key,
then, small pos = binary search(arr[], left, middle −
1, small key). Therefore,left = 0, andright = (middle−1)
= −1, therefore,left > right. Hence, small pos = −1.
Again, large pos = binary search(arr[], middle + 1, right,
large key), andleft = 1, andright = 0. Sinceright < left,
therefore,large pos = −1.
• If (arr[0] == large key), then large pos =middle = 0,
and small pos = binary search(arr[], 0, −1, small key).
As right < left, therefore,small pos = −1.
• If arr[0] > large key, then recursively call Binary-
Search2key with left = 0, andright = (0− 1) = −1. Since
right < left, therefore,small pos = −1, and large pos =
−1. Hence,P (1) holds true.
Induction step: In the inductive step, it is established that
[P (1)

∧
P (2)

∧
P (3)

∧
. . .

∧
P (k)] −→ P (k +1) is true for

every positive integerk. Assume thatP (i) holds true for every
i ≤ k, wherek ≥ 1; this implies that the algorithm terminates
correctly for any list of size,i ≤ k. It is required to show that
P (k + 1) is true. Consider an ordered listL of size (k + 1).
In C + + and Java, positional index starts at0. Therefore,
right = k ≥ 0 and left = 0 (as k ≥ 1). Thus, middle =
int((0 + ((k − 0)/2)) = int(k/2).
•If arr[middle] < small key, then BinarySearch2key is
called recursively withleft = int(k/2) + 1. Since left =
int(k/2)+1, andright = k represents a sublist of the original
list, L, therefore, according to the induction hypothesis, this
algorithm works.
• If arr[0] is equal tosmall key, thensmall pos = middle =
int(k/2), andlarge pos = binary search(arr[], middle + 1,
right, large key). In this case,left = int(k/2)+1, andright
= k represents a sublist ofL. Using induction hypothesis, the
algorithm works.
• If arr[int(k/2)] > small key, and arr[int(k/2)]
< large key, then, small pos = binary search
(arr[], 0, int(k/2) − 1, small key). In this case, the
sublist is shorter than half ofL, and the classical BST
perfectly computes small pos. Again, large pos =
binary search(arr[], int(k/2) + 1, k, large key), and
the sublist is shorter thanL. Using induction hypothesis, the
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algorithm computeslarge pos.
• If (arr[int(k/2)] == large key), then
large pos =middle = int(k/2), and small pos =
binary search(arr[], 0, int(k/2)− 1, small key). Therefore,
the algorithm correctly computessmall pos.
• If arr[int(k/2)] > large key, then the2-key binary search
recursively calls itself withleft = 0, andright = (int(k/2)−
1). Since, the sublist considered is only a part ofL, therefore,
the algorithm computessmall pos, and large pos.
Conclusion: The algorithm works correctly with a list of size,
n = 1. If it computes correctly with a list of size,i ≤ k, k ≥ 1,
then it also works for a list of size, (k + 1). Using the strong
induction, MKBS works correctly for every ordered list with
one or more elements. ut

Corollary 3: An m-key binary search algorithm may be
applied to any sorted list containingn elements, wheren >=
m.
Proof: A proof by contradiction is adopted. Suppose that
n < m. Therefore, the total number of keys to search for
becomes greater than the number of elements within the list.
In the best possible case,n different keys may be identified
at the index positions of then list elements, leaving (m-n)
keys undecided, for which, no positions may be available. This
violates the objective of them-key search, which is to identify
the index positions form-keys within the given list. Hence,
m 6> n, and at most,m = n. ut

Corollary 4: An m-key binary search requires consider-
ing (2m+1) individual cases in finding out the index positions
of the m different keys in a sorted list of elements. Here,
m ≥ 1.
Proof: Following is a proof by mathematical induction.
Base Case:For the base case,m=1. For P(1), it is the classical,
single key BS. It considers3-different cases. These are: (1)
key element = middle, (2) key element> middle, and (3)
key element< middle. Hence, (2× 1 + 1) = 3 different cases
are being considered.
Induction: Suppose that thek-key search algorithm requires
considering (2k+1) different cases. Here,k ≥ 1. It is required
to show that: [P(1)

∧ ∀ P(k)]→ P(k+1), which is proving that
for (k+1) different keys, (2(k + 1) + 1) = 2k + 3 different
cases are required. For the (k + 1)th key, two more cases are
required in addition to the (2k + 1) cases for the firstk keys.
For the sorted keys,(k + 1)th key is the largest and the last
key within the list. Therefore, it is required to consider only
2 additional cases. Firstly, verify whether the middle element
is equal to the (k + 1)th key. If so, the (k + 1)th key is found
in the middle, and it is needed to make a recursive call to
the k-key version of MKBS to locate the index positions of
the first k-keys. Secondly, it is needed to verify whether the
(k + 1)th key is larger, and thekth key is smaller than the
middle element. In that event, confine search for the(k +1)th
key to the right half of the current list using a classical BST,
and make a call to thek-key version of MKBS for the first
k keys. Rest of the cases are identical to thek-key version
except that we consider (k+1) keys instead ofk keys. Hence,
altogether, for the (k+1) key version, we require considering
(2k + 1 + 2) = 2(k + 1) + 1 different cases.

Conclusion: The corollary is true form = 1. Assuming that
the corollary holds true form = k different keys, it has been
proved that the corollary also holds true form = (k + 1)
different keys. As it holds true form = 1, it also holds true
for m = 2. As it holds true form = 2, it is also true for
m = 3, and so. Hence, the corollary holds true for anym
with m ≥ 1. ut

The 3-key binary search version may easily be designed
using the2-key BS version.

Algorithm BinarySearch 3key
Purpose: This algorithm performs3-key binary search.
The supplied parameters are: array arr[], position of the first
element: left,
position of the last element: right, smaller key, middle key
and the larger key.
3-key search finds out smallpos, middlepos, and largepos
for the smaller, middle and the larger key.

Require: small key < middle key, and middlekey <
largekey

Ensure: left > right or keys found
while left ≤ right do

middle = (left + right)/2
if arr[middle] < small key then

BinarySearch3key (arr, (middle+1), right, smallkey,
middle key, largekey, smallpos, middlepos,
largepos){Recursively call BinarySearch3key}

else if arr[middle] > largekey then
BinarySearch3key (arr, left, (middle-1), small key,
middle key, largekey, smallpos, middlepos,
largepos)

else if arr[middle] = small key then
small pos⇐ middle
BinarySearch2key (arr, (middle+1), right, middlekey,
largekey, middlepos, largepos)
return

else if arr[middle] > small key and arr[middle]< mid-
dle key then

small pos ⇐ BinarySearch (arr, left, middle-1,
small key)
BinarySearch2key (arr, (middle+1), right, middlekey,
largekey, middlepos, largepos)
return

else if arr[middle] = middle key then
middle pos⇐ middle;
small pos ⇐ BinarySearch (arr, left, middle-1,
small key)
largepos ⇐ BinarySearch (arr, middle+1, right,
largekey)
return

else if arr[middle] = largekey then
largepos⇐ middle
BinarySearch2key (arr, left, (middle-1), small key,
middle key, smallpos, middlepos)
return

else if arr[middle] > middle key and arr[middle]<
largekey then
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BinarySearch2key (arr, left, middle-1, small key, mid-
dle key, smallpos, middlepos)
largepos ⇐ BinarySearch (arr, middle+1, right,
largekey)
return

else
small pos⇐ −1
middle pos⇐ −1
largepos⇐ −1
return

end if
end while
small pos⇐ −1
middle pos⇐ −1
largepos⇐ −1
return

C. Implementation

MKBS algorithm may be applied to the sorted lists. Fol-
lowing is the Modified Binary Insertion Sort (BIS) algorithm,
which is founded upon the basic binary search strategy. The
algorithm sorts a given list in ascending order.

Algorithm binary insertion sort
Purpose: This algorithm sorts a given list using BST.
Input: array arr[] andn, which is the size of the list.
j=1
while j < n do

left = 0
right = (j-1)
while left < right do

middle = left + (right− left)/2
if arr[j] ≥ arr[middle] then

left = (middle + 1)
else

right = middle
end if

end while
if arr[j] ≤ arr[left] then

i = left
else

i = (left + 1)
end if
m = arr[j]
for all k such thati ≤ k < j do

arr[k+1] = arr[k]
end for
arr[i] = m
j + +

end while
return
The m-key binary search builds up on an original version

of the basic binary search algorithm. Here,m = 2, 3, . . ..
Computation for the multi-key search effort makes recursive
calls to the basic binary search at its many different steps
depending upon the result of comparisons. The algorithm is
called in the form of a free-function. Function main calls the
m-key binary search on a sorted list. This recursive algorithm

was implemented in VisualC + +.NET and Java JDK,
Version5.0. The algorithms are described here for ascending
list of keys only. A k key version may be extended to the
(k + 1) key version through the following changes.
1. Recursive calls to thep key version, wherep < k, now
becomes recursive calls to the (p + 1) key version.
2. Keys in thek-key version becomes the firstk keys in the
(k + 1) key version.
3. An m key version requires considering (2m+1) independent
cases. The (k+1) key version requires (2(k+1)+1) = (2k+3)
cases to be considered. The additional2 cases are required
to account for the (k + 1)th key. One individual case checks
whether the (k + 1)th key is equal to the middle element.
Another individual case checks whether thekth key is less
than, and the (k+1)th key is greater than the middle element.
Rest of the block if cases remain almost the same except for
a few additional changes due to the increased number of the
keys.

With minor modifications, the proposed algorithm may be
used to search for the keys inside a descending list. There are
3 other possible combinations that may be considered for the
m-key variation of the trivial binary search.
(1) The list elements are in descending order, and the keys are
in ascending order. In this case, if the middle array element is
smaller than the current key, setright = (middle − 1), and
confine the search for this key and other larger keys to the
left half of the list. If the current middle element is larger, set
left = (middle + 1), and confine the search for this key and
other smaller keys to the right half of the list. If the middle
element is holding the same value as the current key, set the
index position for the key element tomiddle, and look for
the smaller keys to the right half, and other larger keys to the
left half of the list.
(2) Both the list elements and the keys are in descending
order. In this event, smaller keys follow the current key and
the larger keys precede the current key. The logic depicted in
combination1 still holds.
(3) The list elements are in ascending order and the keys are
in descending order. In this case, the larger keys precede the
current key, and the smaller keys follow. If thekth key is
smaller than the middle element, then set, left = (middle+1),
and look for the1st through thekth key to the right half of
the list, and the (k + 1)th key to themth key to the left half
of the list. If thekth key is equal to the middle element, then
look for the1st through the (k−1)th key to right half, and the
(k+1)th through themth keys to the left half of the list. If the
kth key is larger than the middle element, and the (k + 1)th
key is smaller than the middle element, then search for the
1st through thekth key to the right half, and the(k + 1)th
through themth key to the left half of the current list.

After successful termination of the multi-key binary search
function call, the main program segment outputs the position
of the keys inside the given list. If some or all of the keys are
absent from the supplied list, the corresponding positions are
set to−1. For unsuccessful block if search efforts, theelse
blocks within the m-key versions set the keys to−1. Here,
m = 2, 3, 4, . . .. Following theorem holds true in this context.
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Theorem 5:The m-key binary search successfully com-
putes even in the event of partially or completely nonexistent
keys, and sets−1 at the index positions of the nonexistent
keys.

Proof: A proof by mathematical induction has been adopted
here.
Base Case:For m=1 (P (1)), the search is a typical binary
search. It returns−1 to the calling program in the event of
the non-existent key. Therefore, the theorem holds true for the
base case.
Induction: In the event of completely nonexistent list of keys,
it setsk −1s at the corresponding index positions. For partially
nonexistent keys, say out ofk keys,p keys are non-existent.
Then using the hypothesis, it setsp −1s at the non-existent
positions, and the correct non-negative index positions for the
rest of the (k − p) keys. It is required to prove that it also
holds true form = (k + 1). Now for the (k + 1)th key, if
the middle element is less than this key, but larger than the
kth key, the algorithm calls the ordinary binary search to find
the position of the (k + 1)th key to the right half of the list,
and look for the firstk keys to the left half. According to the
base condition, in the event of the (k + 1)th key non-existent,
the algorithm correctly returns−1 as its index position, and
according to the induction hypothesis, it works correctly for
the non-existent keys in the list of firstk keys. For alternative
non-existent case for the (k + 1)th key, the key has to be
smaller than the middle element (since it cannot be equal to
the middle element, in which case, the (k + 1)th key exists
within the list). If smaller, it is required to recursively call
the (k + 1)th key version of the algorithm. In the worst case,
all the keys are either to the right of the list and are even
larger than the greatest element inside the given list, or all
the keys lie to the left of the given list, and are even smaller
than the smallest element within the list. In these two extreme
cases, the algorithm terminates afterlog(n) recursive calls.
Now, from the structure of the proposed algorithm, the while
loop is exited afterlog(n) iterations for both of these extreme
cases, and the algorithm sets−1 to the index positions of all
these (k + 1) keys before it can return to the calling program.
Here,n is the size of the list, in which, it is required to look
for the keys. Hence, the proposed algorithm works correctly
for these extreme cases as well. For all other combinations
of conditions, the algorithm makes calls, starting from the1-
key to thek-key versions depending upon the key and the
list element combinations. From the induction hypothesis, the
algorithm works correctly for up tok keys. Therefore, it also
works correctly for all possible combinations of the (k + 1)
keys.
Conclusion: The algorithm works correctly with1 non-
existent key. If it works correctly for up tok non-existent
keys, then it also works correctly for up to (k+1) non-existent
keys. Hence, it works correctly for (1+1)=2 keys. As it works
correctly for2 keys, it also works correctly for(2+1) = 3 keys,
and so. Hence, the proposed algorithm is general, and works
correctly for any number of keys,m, wherem = 1, 2, 3, . . ..
ut

IV. PERFORMANCE

A. Time Complexity

Following result describes the time complexity of them-key
BS algorithm.

Theorem 6:MKBS is a linear logarithmic algorithm on two
variablesm and n, and has a big-oh complexity order of,
O(mlog(n)) in the worst case.
Proof: A proof by mathematical induction on the size of the
keys,m is adopted.
Base Case:For m=1, it becomes a classical BS problem.
Hence, it is logarithmic, and has a complexity order of,
O(1× log(n)). Hence, the result holds true for the base case.
Induction: Suppose that the induction hypothesis is true
for the k-key search. Therefore, thek-key search is linear
logarithmic, and has a complexity order of,O(klog(n)). It is
required to show that the(k + 1) key search is also linear
logarithmic. In the worst case, the search confines to both
halves of the list. Some keys exist on the left half and some
on the right half. At the minimum, the (k + 1)th key exists
on the right half, and the rest of the keys are on the left
half. Alternatively, only the1st key exists on the left half,
and the 2nd through the (k + 1)th keys are on the right
half. As the complexity order for up to thek key searches
is linear logarithmic by the induction hypothesis, therefore,
both of the search efforts on two halves of the list have linear
logarithmic time complexity. Suppose that the constant factor
of the highest order term inside the complexity function for
the left half isCl, and that on the right half isCr. Therefore,
gl(n) = Cl×klog2(n), andgr(n) = Cr× log2(n). Hence, the
combined highest order term for the(k + 1)-key search is,
g(n) = kCl× log2(n) + Cr× log2(n) = (kCl +Cr)× log2(n)
= (k + 1)Cl × log2(n) + (Cr − Cl) × log2(n). Hence, the
complexity order of the(k + 1) key search is also linear
logarithmic or O((k + 1)log2(n)). If gl(n) = Cl × log2(n),
and gr(n) = Cr × k(log2(n)), using a similar approach, it
may be shown that the time complexity order of the(k + 1)
key search is,O((k + 1)log2(n)).
Conclusion: From the basis, the single key version is linear
logarithmic or O(mlog2(n)). Using induction, if thek key
version is linear logarithmic, then also is the (k + 1) key
version. As the1-key version is linear logarithmic, therefore,
the (1 + 1) = 2 key version is also so. As the2-key version
is linear logarithmic, therefore, the3 key version is also.
Proceeding in this way, the proposedm key version has a
linear logarithmic time complexity of,O(mlog2(n)). ut

As the number of keys increases, the number of possible
key index combinations also increases. For the performance
evaluation, the average number of operations is a deciding
factor.

B. Key Index Combination

For each one of the multi-key and the single key searches,
all possible key positions are considered for calculating the
average total of the comparison and the assignment operations.
For a list withn elements, possible positions for the only key
is from index0 through index(n−1) for a total ofn positions.
Hence, the total possible positions is,O(n).

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

274



With the2-key version, the smaller key can be in any of the
index positions starting from0 through (n-2) for a total of(n−
1) positions. If the smaller key is at index0, the larger key may
be at any one of the index positions1 through (n-1). Therefore,
there are (n − 1) possible positions for the larger key. If the
smaller key is at1, the larger key may be anywhere from index
2 to (n− 1), for a total of (n− 2) positions. Proceeding this
way, the last possible position for the smaller key is at index
(n − 2), and then, there is only1 possible position for the
larger key, which is at(n− 1). Hence, total positions for the
larger key =(n−1)+(n−2)+ . . . 1 = n(n−1)

2 . Total possible
positions for both the keys= (n− 1) + n(n−1)

2 = (n+2)(n−1)
2 .

This number is,O(n2).
With the 3-key version, we consider the indices0 through

(n− 3) for the smallest key, the indices1 through(n− 2) for
the middle key, and the indices2 through(n−1) for the largest
key. There are (n− 3− 0+1) = (n− 2) possible positions for
the smallest key, which isO(n). With the smallest key at0,
the middle key may be anywhere from index1 through(n−2)
for a total of(n− 2) possible positions. If the smallest key is
at position1, there are ((n−2−2+1) = (n−3) positions for
the middle key. Proceeding this way, if the smallest key is at
index (n − 3), the middle key may only be at index position
(n− 2), with a total of1 position. Hence, for the middle key
(2nd key), there is a total of (n − 2) + (n − 3) + . . . + 1 =
(n−2)(n−1)

2 possible positions. This number is,O(n2).
If the smallest key is at index0, the middle key may be

anywhere from index1 through (n − 2). If the middle key
is at index1, the largest key may be anywhere from index
2 through (n − 1), with a total of (n − 2) positions. If the
middle key is at2, there are (n− 3) possible positions for the
largest key. Proceeding this way, there is a total of (n− 2) +
(n−3) + . . . + 1 = (n−1)(n−2)

2 possible positions for the largest
key. With the smallest key at index1, the middle key may be
anywhere from2 through (n − 2), and so. Hence, there are
(n−3) + (n−4) + . . . + 1 = (n−2)(n−3)

2 possible positions for
the largest key. Proceeding in this way, if the smallest key is
at index (n−3), the middle key is at index (n−2), and there is
only 1 possible position for the largest key, which is at (n−1).
Hence, altogether there are ((n−1)(n−2)

2 + (n−2)(n−3)
2 + . . . +

1) possible positions for the largest key, which isO(n3). Total
possible positions for the keys in a3-key binary search is,=
[(n− 2) + (n−2)(n−1)

2 + (n−1)(n−2)
2 + (n−2)(n−3)

2 + . . . + 1].
This is,O(n3). In a similar fashion, it is possible to show that
for 4 keys, the number of possible positions is,O(n4), and
so. Hence, for a total ofm keys, the number of possible key
index combinations is,O(nm).

The average number of the assignment and the comparison
operations are computed from the following equation:

Average =

∑m
j=1(total operations for keyj)

Total possible positions for m keys
(2)

Following plots show the variations in the number of possible
key index combinations for the1-key, 2-key, and the3-key
versions with the changing sizes of the list. From the plotted
curves, possible index combinations vary linearly with the list
size for the classical BS. The parabolic curve for the2-key
binary search is representative of theO(list size2) complexity

(a) (b) (c)

 0

 200

 400

 600

 800

 1000

 1200

 0  200  400  600  800  1000  1200

N
um

be
r 

of
 p

os
si

bl
e 

ke
y 

po
si

tio
ns

List size, n

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  200  400  600  800  1000  1200

N
um

be
r 

of
 p

os
si

bl
e 

ke
y 

po
si

tio
ns

List size, n

 0

 2e+007

 4e+007

 6e+007

 8e+007

 1e+008

 1.2e+008

 1.4e+008

 1.6e+008

 0  200  400  600  800  1000  1200

N
um

be
r 

of
 p

os
si

bl
e 

ke
y 

po
si

tio
ns

List size, n

1-key 2-key 3-key

Fig. 1. Possible key index combinations for the1-key, the2-key & the3-key
BSs, which are plotted against the list size,n

for the key index combinations. Curve for the3-key grows
at a faster rate compared to the2-key version due to it’s
O(list size3) complexity.

C. Key Index Computation Time

Average consumed time for each possible index combina-
tion with different list sizes are recorded and plotted for the
3-key MKBS as follows. As is evident from Fig.2, time to
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Fig. 2. Average computation time in microseconds for each possible index
combination is plotted against the list size,n for the 3-key BS.

calculate each key combination is almost zero (negligible)
whenevern ≤ 100. As the list size grows beyond100,
the timing overhead for each combination jumps sharply in
a straight line until it reachesn = 400. Beyond this, the
timing overhead encounters a slower growth being maximum
at n = 1, 000.

Following figures show the variations in the total consumed
time with the possible key index combinations with the
increasing sizes of the list for the2 and the3-key searches.
From Fig.3(a) and Fig.3(b), the total consumed time varies
linearly with the possible key index combinations for the2-
key and the3-key searches. From Fig.3(c), it is possible
to infer that the slope for both of these lines are almost
same, since the3-key line almost coincides with that for2-
key. Therefore, the time required to compute each possible
key combination is almost the same for the2 and the3-
key searches. From Fig.3(b), slope of the straight line=

102
57167200 = 1.784 micro seconds per position.
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Fig. 3. Total time consumed in calculating the key index combinations is
plotted against all possible positions.

D. Average Operation Count

Following figures show the2-key BS performance in terms
of the average operations count. Fig.4(a) is a plot of 2
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Fig. 4. Performance comparison between2 applications of1-key BS (upper
curve-Fig. (a)) and1 application of the2-key BS (lower curve-Fig. (a)).

applications of the1-key BST and1 application of the2-
key BS. Average operation count for the2-key is always less
than that of the2 applications of the1-key BST, indicating
the gain in efficiency in terms of the number of operations.
This difference is maximum atn = 15, 000 (see Fig.4(b)),
indicating the optimum list size for the maximum gain within
the range considered.

Fig. 5 depicts the3-key search characteristics. From Fig.
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Fig. 5. Performance comparison between3 applications of the1-key BS
(upper curve-Fig. (a)) and1 application of the3-key BS (lower curve-Fig.
(a)).

5(a), 3-key BS performs much better in terms of the operations
count in comparison to the3 applications of the classical BST.
The difference in operations is maximum atn=700, which is
the maximum efficiency point within the plotted range (see
Fig. 5(b)).

V. M ULTI -KEY BINARY INSERTIONSEARCH

An extended version of the proposed MKBS algorithm is
discussed here. Multi-key Binary Insertion Search (MKBIS)

is a modified and enhanced version of the MKBS algorithm
proposed in this paper. This modified algorithm performs in-
sertion and rearrangement operations after identifying the most
appropriate insertion positions for the multiple key elements.
MKBIS acceptsm keys as inputs, finds the most appropriate
insertion positions for the supplied keys in a previously sorted
list of elements, and then inserts the keys in their appropriate
positions. If the originally sorted list containsn elements,
then after performing the multi-key binary insertion search,
the new list contains (n + m) elements. Hence, the original
array for the list of elements must contain at leastm extra
spaces to accommodate for the multiple key insertions through
the MKBIS algorithm.

A. The Multi-key Binary Insertion Search (MKBIS) Algorithm

Algorithm binary insertion search
Purpose: This algorithm performs modified binary search
operations for finding out the insertion position of a key in
the list.
The supplied parameters are: array arr[], position of the first
element: left,
position of the last element: right, and the keyelement.
The algorithm returns the single insertion position.

Ensure: correct insertion position is identified.
int i
while left < right do

middle = left + (right− left)/2
if key element≥ arr[middle] then

left = (middle+1){Insertion position is to the right of
the current middle.}

else
right = middle

end if
end while
if key element≤ arr[left] then

i = left
else

i = (left + 1)
end if
return i

Algorithm BinaryInsertionSearch 2key
Purpose: This algorithm performs2-key binary insertion
search.
The supplied parameters are: array arr[], position of the first
element: left,
position of the last element: right, smaller key, and larger
key.
2-key insertion search finds out smallpos, largepos for
inserting the smaller and the larger key.

Require: small key < largekey
Ensure: Appropriate insertion positions of the keys have been

detected.
while left < right do

middle = left + (right− left)/2
if arr[middle] < small key then

BinaryInsertionSearch2key (arr, (middle+1),
right, smallkey, largekey, smallpos, largepos)
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{Recursively call BinaryInsertionSearch2key}
else if arr[middle] = small key then

small pos⇐ middle
largepos ⇐ binary insertionsearch(arr, middle+1,
right, largekey)
return

else if arr[middle] > small key and arr[middle] <
largekey then

small pos⇐ binary insertionsearch (arr, left, middle-
1, small key)
largepos ⇐ binary insertionsearch (arr, middle+1,
right, largekey)
return

else if arr[middle] = largekey then
largepos⇐ middle
small pos⇐ binary insertionsearch(arr, left, middle-
1,small key);
return

else if arr[middle] > largekey then
BinaryInsertionSearch2key (arr, left, middle-1,
small key, largekey, smallpos, largepos)

end if
end while
return

Following is the binary insertion search algorithm for three
different keys.

Algorithm BinaryInsertionSearch 3key
Purpose: This algorithm performs3-key binary insertion
search.
The supplied parameters are: array arr[], position of the first
element: left,
position of the last element: right, smaller key, middle key
and the larger key.
3-key search finds out smallpos, middlepos, and largepos
for inserting the smaller, middle and the larger key.

Require: small key < middle key, and middlekey <
largekey

Ensure: Appropriate insertion positions of the keys have been
detected.
while left < right do

middle = left + (right− left)/2
if arr[middle] < small key then

BinaryInsertionSearch3key (arr, (middle+1), right,
small key, middlekey, largekey, smallpos, mid-
dle pos, largepos) {Recursively call BinaryInsertion-
Search3key}

else if arr[middle] > largekey then
BinaryInsertionSearch3key (arr, left, (middle-
1), small key, middlekey, largekey, smallpos,
middle pos, largepos)

else if arr[middle] = small key then
small pos⇐ middle
BinaryInsertionSearch2key (arr, (middle+1), right,
middle key, largekey, middlepos, largepos)
return

else if arr[middle] > small key and arr[middle]< mid-
dle key then

small pos⇐ binary insertionsearch (arr, left, middle-
1, small key)
BinaryInsertionSearch2key (arr, (middle+1), right,
middle key, largekey, middlepos, largepos)
return

else if arr[middle] = middle key then
middle pos⇐ middle;
small pos⇐ binary insertionsearch (arr, left, middle-
1, small key)
largepos ⇐ binary insertionsearch (arr, middle+1,
right, largekey)
return

else if arr[middle] = largekey then
largepos⇐ middle
BinaryInsertionSearch2key (arr, left, (middle-1),
small key, middlekey, smallpos, middlepos)
return

else if arr[middle] > middle key and arr[middle]<
largekey then

BinaryInsertionSearch2key (arr, left, middle-1,
small key, middlekey, smallpos, middlepos)
largepos ⇐ binary insertionsearch (arr, middle+1,
right, largekey)
return

end if
end while{since, there are always insertion positions, it will
never return a−1.}
return
It has been assumed that the given list is sorted in ascend-

ing order. Also, the keys are required to be sorted before
invoking the proposed algorithm. It has been assumed that
the smaller key is stored atsmall key, middle key is stored at
middle key, and the larger key is stored atlarge key memory
locations.

Multi-key Binary Insertion Search can be used to look
through an ordered database table bybisection. For this
particular application, there is an ordered table containing the
elementsx1, x2, . . . , xn, and two given keyskey1 and key2.
The goal is to find two unique indicesi andj such thati < j,
xi ≤ key1 < xi+1, andxj ≤ key2 < xj+1.

The proposed algorithm can conveniently be used to insert
new words or phrases in an already sorted electronic word
dictionary. The algorithm or one of its modified versions
may be used to upgrade, and update the older version of an
electronic dictionary conveniently.

VI. A PPLICATION

A model employee database management program has been
implemented using the proposed multi-key binary search and
the multi-key binary insertion search algorithms. The pro-
gram uses object-oriented approach to create and manage the
employee objects inside the database model. The program is
capable of performing the following functions.
• Create a new employee:User inputs the first name, last

name, age and the salary to create a new employee record.
• Adjust for the overtime pay: User inputs the name,

overtime hours and the overtime pay. The program recom-
putes, and adjusts the current salary for the employees.
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• Generate the database statistics:The user inputs upper
and a lower limits on the ages. Using the MKBS, the
program finds out all the employees (inclusive) that lie
within this provided range of ages, displays the employee
count falling within the range together with their names,
ages and salaries. For multiple pay range scales, it uses
the MKBS algorithm to extract the groups of employees
together with their pertinent information that lie within
the specific salary ranges. Following algorithm making
use of them-key binary search:

Algorithm EmployeeBinarySearch mkey
Purpose: This algorithm performsm-key binary
search withm ages.
Supplied parameters are: vector<Employee> empl
containing records of the employees.
Each record is an object of the Employee class.
Inputs arem employee ages as keys:age1, age2, . . .,
agem.
Outputs are thepos1, pos2, . . . posm of the employee
database records.

Require: List of m keys be sorted
Ensure: Locations of the records within the database

containing the supplied ages are identified.
Sort the vector<Employee> according to the ages
using Binary Insertion Sort{Useempl[i].get age() to
get the age of the employee at theith record.}
Make a call to the m-key binary search as follows:
BinarySearchmkey (vector<Employee> empl, int
age1, int age2, . . ., int agem, int& pos1, int& pos2,
. . ., int& posm)
Upon termination,pos1, pos2, . . ., posm contains the
positions of them different ages inside the sorted
employee database.
return

To extract the records with the supplied salary values,
these need to be stored as keys. Next a version of the
EmployeeBinarySearchmkey is used to identify records
with the given salary values. Using this algorithm, it
is possible to sort the employee records according to
the salary values instead of the ages. The Employee
class member functionget salary() extracts the salary
information that is stored within a particular record. A
standard template library has been used to apply the same
algorithm with the age and salary keys. For age keys,
the data type is integer. For salary keys, the data type is
double.

• Add employee to a department and a rank:The pro-
gram uses a separate class to add employees to different
departments and job ranks.

• Non-uniform increase in salary values depending on
the pay scales:With this option, the user is capable
of providing non-uniform salary raises based upon the
employees’ pay scales. For example, for the highest scale,
the employer may decide on a4% raise, where as for
the next lower scale, the employer may agree on a5%
raise.Algorithm EmployeeBinarySearchmkey is used to
implement this uneven raise in salary ranges.

• Sort employees and insert new employee records:With
this feature, the program sorts the employees according to
their most recent pays in ascending order of magnitudes
using the Binary Insertion Sort algorithm, and then inserts
new employee records. Multi-key Binary Insertion Search
(MKBIS) is used in this step to insert multiple records
at the same execution. Following algorithm serves this
requirement.

Algorithm EmployeeBinaryInsertionSearch mkey
Purpose: This algorithm performsm-key binary in-
sertion search to insertm new Employee class objects
with the given salaries.
The supplied parameters are: vector<Employee> empl
containing records of the employees.
Each record is an object of the Employee class.
Inputs arem Employee class records with theirm
salary values:salary1, salary2, . . ., salarym as keys.
Appropriate insertion positions:pos1, pos2, . . . posm

of the employee records within the database are iden-
tified.

Require: Them records supplied be sorted according to
salary values.
Salary of an Employee class object may be extracted
using objectname.getsalary().

Ensure: Proper insertion positions within the Employee
database are identified.
Sort vector<Employee> according to salary
values using the Binary Insertion Sort{Use
empl[i].get salary() to get the salary of the
employee at theith record.}
Make a call to the m-key binary insertion search as
follows:
BinaryInsertionSearchmkey (vector<Employee>
empl, Employee& employ1, Employee& employ2,
. . ., Employee&employm, int& pos1, int& pos2, . . .,
int& posm)
Upon termination,pos1, pos2, . . ., posm contains
positions of them different records to be inserted.
return

While insertingm records, the first record is inserted at
pos1. Before inserting the next record, we shift all the
records beginning at the insertion position that are to the
right of this position by1 place to the right.

• Quit the program: This last option is used to exit from
the program.

Consider the third option. It is possible to identify multiple
employees in the set of records using a looping or an iterative
construct. However, the iterative search efforts have linear
complexity order of,O(n) on the size of the list,n. The
proposed MKBS for smallm (for example,m = 2, 3, 4 or 5)
approximates the logarithmic complexity ofO(log2n), and is
more efficient with large number of database records.

VII. C ONCLUSION

In this paper, a multi-key binary search (MKBS) algorithm
capable of performing search with multiple number of keys is
proposed, and it’s database application is explored through the
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implementations. The algorithm may be used to identify the
index positions ofm different keys withm ≥ 2 in the same
execution in a sorted list of elements. So far up tom = 5
key MKBS version has been implemented. The algorithm is
capable of identifying the index positions form different keys
in the same execution in a supplied list of elements. Form
different keys withm ≥ 2, the list of keys needs to be
sorted first in ascending or in descending order. The algorithm
uses a modified divide-and-conquer approach. The typical
divide-and-conquer uses recursion to solve the subproblems
independently. When the smallest subproblem is solved, all
the results are combined together to provide with the final
result. The standard binary search technique uses a variation
of this approach known as the tail recursion. The proposed
MKBS algorithm is a variation of the tail recursion, and it
discards half of the current list depending upon the result of
a comparison. Multi-key BS is more flexible compared to the
traditional divide-and-conquer, and the tail recursion searches.

An extended version of the proposed algorithm, known
as the multi-key binary insertion search (MKBIS) is also
discussed. This algorithm can be used to insert multiple
elements inside a sorted list. The proposed algorithm is an
improvement over the proposed MKBS algorithm. Both the
MKBS and the MKBIS algorithms are used in connection
to an Employee Database Model for extracting records from
different layers within the structure as well as for inserting
multiple records.

Future Research includes developing and implementing
the multi-key interpolation search (MKIS), and the multi-
key interpolation insertion search (MKIIS) algorithms on a
uniformly distributed list of elements. MKIS and MKIIS have
time complexities, which isO(log(log(n))). Also, designing
and implementing the multi-key block search (MKBLS), and
the multi-key block insertion search (MKBLIS) remain another
avenue of research.
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