INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

A New Approach for Multiple Element Binary Search in Database
Applications

Ahmed Tarek

Abstract—Binary Search is fundamental to the study and analysissing a variant of the BS. Sometimes for electronic word
of Discrete Computational Structures. This is an efficient seargfictionary, or telephone list processing applications, we need

strategy due to it's logarithmic time complexity. It is used to identify,y aficient technique to search for two to more different keys
the position of a key in a sorted list. Often, database applications

require searching for two to more different key elements at the sarWéth _6? Slngle execution of a glven_ algorlthm. In thI_S paper, a
execution. This is particularly true if the database includes structufiodified binary search algorithm in searching fordifferent
layering, which is based on a particular index or a field. In this papd®eys at the same execution in a list of elements is proposed.

a hybrid algorithm to perform binary search withto m different Here,m is an integer andn > 2. The proposed algorithm is

keys (n is an integer greater than or equal 2p in a sorted list pyhrig and can be extended to perform search with multiple
structure is proposed. Am-key version of the proposed algorithm t th fi The algorith b d
requires considering2¢n + 1) individual cases. Correctness proof of<€ys at the same execution pass. The algorithm may be use

the algorithm is established using induction on the size of the i@ search for the positions of different keys in a sorted array
n. Time complexity of the proposed algorithm is a function f containingn individual elements, where > m. If the list is

independent variables, andn, which is,O(mlog(n)) in the worst, organized in thescending ordewith the smaller key located
and also in the average cases. The best case complexity is |In§f’ilihejth position and the larger key at thign position, then

on the number of the keys, which @(m). Performance of the . . d the total b f el ts within thi ticul
and the3-key versions is compared with the classical single ke§/> J, an e total number ot elements within this particuiar

version. Possible key index combinations with the multi-key sear&@brange is,i(— j — 1). This information can be used for
strategies are explored for database applications. An extension of the statistical analysion an electronic word dictionary or an

algorithm known as the Multi-key Binary Insertion Search is alsglectronic telephone directory as well. In this papegaursive
proposed. Applications of the proposed algorithms are con5|der\<; rsionof the algorithm is considered
together with a model employee database management program wi erformance analysis for new algorithms is crucial for

improved efficiency. ! > taa
< e Multiole Kevs. Multikev B cearch. R _computer implementations. There are two separate criteria for
eywords— Multiple Keys, ulti-key binary osearcn, ecursive; H :
Algorithm, Hybrid Algorithm, Database Applications, Logarithmi ydglng c;heh performance of a new algorlthr?. Tnese are the
Time Complexity. time and the memory space requirements for the computer-
based implementation of the proposed algorithm. Time com-
plexity of an algorithm is the measure of the amount of
_ . INTRODUCTION _ computer time that it needs to run to completion [5]. There are
Binary searchS) is a popular and a useful technique fokwo separate techniques for judging the timing requirements
practical applications due to its logarithmic time complexitypf a proposed algorithm. These are Performance Analysis
As the time complexity is logarithmic, the algorithm exhibitand Performance Measurement. Performance Analysis uses
significant improvements in computation time with a veryhestandard mathematical techniqufes justifying the perfor-
Iarge Slze Of the list. But the Only ||m|tat.|0n.|s that it ne.ed$nance of a proposed a|gorithm in b|g Oh, Cap theta, and small
to be applied to an ordered list. If the list is not organizeg notation. Performance Measurement involves conducting
and needs frequent processing, one of the sorting algorithmgcticm experiments.
may conveniently be applied to organize the list, and the space Complexity of an algorithm is the amount of memory
binary search technique can be applied to the sorted list. Téigace that it needs for running to completion [5]. This analysis
limitation with the BS teChanue is that it can Only be used t% important due to a number of reasons. If the proposed
search for one element in a given list. algorithms are implemented on a multiuser computer system,
_State-of-the-art research in this arena is to apply the clagen it is necessary to specify the amount of memory required
sical binary search technique (BST) in solving computationg} execute the algorithms to completion. For any computer
problems. In [1], the author has identified a major flaw igystem, it would be useful to know in advance whether or
the classical BST for larger sizes of the lists, and suggestggh sufficientcomputational memorys available to run the
certain |m_provements on the classical version in St_andaéifborithms. The analysis pertaining to the space complexity
programming languages, such@sC ++, and.Java. Again, may conveniently be applied in estimating the largest problem
the work on semi-sum in [4] is particularly notable. In [6]size that a program can solve. This provides us with an upper
the authors have explored a technique that uses rapid searciignd on the size of the problem that may be considered with
the available resources.

This work was supported by the Califonia University 1 he focus in this paper is ent!rely dlﬁereqt compared to
of Pennsylvania in Pennsylvania, USA. other contemporary BS research issues. In this paper, a recur-
Ahmed Tarek is associated with the Department of Math and Compuig,a multi-key binary search (MKBS) algorithm in searching

Science at California University of Pennsylvanizbo University Avenue,
California, Pennsylvanid5419, USA (phone: [24) 938-4127; fax: (r24) fOr m different keys in a list ofn different list elements is
938-5972; e-mail: tarek@cup.edu) proposed, and the related database application is explored. The

269 Manuscript Received June 12, 2007; Revised November 17, 2007

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

proposed algorithm occasionally explores through the classicaMKBS algorithms are implemented recursively Binary-
binary search during it's computation. Search2key, BinarySearch 3key, BinarySearch_ 4key, ...

In section2, the terminology and notations used in théree-functions. Multikey search algorithms create a com-
paper are briefly discussed. SectiBnexplores the MKBS putational hierarchy founded upon the classical single-key
algorithm and shows the related analysis. The algorithm g$sarch. Therefore, the corrected version of the recursive BST
illustrated using a numerical example. Implementation issuissoutlined first.
are also considered. Sectiohdeals with the performance Algorithm binary _search
and the related issues. It analyzes the time complexity, andPurpose: This algorithm performsl-key recursive binary
considers the issues relating to the performance measuremengearch.

It also compares the multi-key versions with the classical while right > left do
single key approach. Sectighconcerns an extended version middle =left + (right — left)/2
of the proposed algorithm for multi-key insertions inside a if arr[middle] = key.elementthen

sorted list. The extended algorithm is also clarified using return middle
a numerical example. In Sectiosy the applications of the else ifarrfmiddle] > key_elementthen
proposed algorithms are considered on an employee database return binary.search (arr, left, middle; key_element)
system model. Sectioh explores future research avenues. {recursive call to binangearch
else
Il. TERMINOLOGY AND NOTATIONS return binary.search (arr, middlet; right,

Following notations are used all throughout this paper. ke_y,element)

left: Left-most index in a list of elements. end 'T

right: Right-most index in a list. end while

middle: Index of the middle element in a list. return —1

arr: Name of the array holding the list elements. The 2-key BS algorithm makes use of the classidakey
smallkey: Holds the smallest of the keys. version.

large_key: Contains the largest of the keys.
smallpos: Positional index of the smallest key.
large_pos: Largest key position.

m: Total number of keys.

Algorithm BinarySearch _2key
Purpose: This algorithm perform2-key binary search.
The supplied parameters are: array arr[], position of the first

. | b list el element: left,
n: Total num ero .'St elements. . position of the last element: right, smaller key, and larger
Time Complexity:lt is the amount of computer time that a key

program requires to run to completion.
Space Complexitytt is the amount of memory space that a
program requires to run to completion.

2-key search finds out smatlos, largepos for the smaller
and the larger keys.
Require: smallkey < largekey

.)) Ensure: left > right or keys found
Performance evaluation of an algorithm considers perfor-\,piie left < right do

mance analysis and performance measurement. Performance iqqle =left + (right — left)/2

analysis uses theoretical and analytical tools and techniques. arrfmiddle] < smallkey then

Performance measurement is the practical testing results us- BinarySearctkey (arr, (middle+), right, smallkey
ing the proposed algorithm. In this paper, both performance largekey, smallpos, largepos) {Recursively call Bi-

analysis and measurement are considered. narySearcikey}
else if arrfmiddle] = smallkey then
[1l. M ULTI-KEY BINARY SEARCH (MKBS) ALGORITHM smallpos < middle
In the classical BST, there is a flaw. For finding out the middle largepos < BinarySearch(arr, middlet right,
index position, the average between the left and the right is largekey)
computed usinginiddle = (left + right)/2, truncated down return _ .
to the nearest integer. Apparently, this assertion might appear €lse if arffmiddle] > smallkey and arr[middle] <
correct, but it fails for large values of the integer variablegt large key then _ _
andright. Specifically, it fails if the sum ofeft and right smallpos <« BinarySearch(arr, left, middle;
is greater than the maximum positive integer val@é! ¢ 1). smallkey) _ . .
The sum overflows to a negative value, and the value stays largepos <« BinarySearch(arr, middlet right,
negative when it is divided by two. Ia;gekey)
return

This bug can manifest itself for arrays whose length in ;)
elements is23° or greater. In [1], the author refers to this ©lSe ifarr[middle] = largekey then

error in the first classical BST, which was publishedl 6. large.pos <= middle .
Following is an alternative to fix this bug. smallpos <« binary.search(arr, left, ~middle-
1,smallkey);
int middle = left + ((right —left) / 2) 1) return

270

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

else if arr[middle] > largekey then Theorem 2:MKBS algorithm works correctly with mul-
BinarySearctRkey (arr, left, middlet, smallkey, tiple key values for every ordered, nonempty list of size
largekey, smallpos, largepos) n > 1.
end if Proof: Let P(n) be the proposition: "MKBS algorithm works
end while correctly with multiple key values for every ordered, nonempty
smallpos < -1 list of sizen, n > 1"
largepos < -1 Basis step:To avoid too much complexity, only the-key
return search version is considered. In the basis step, the proposition

P(1) is shown to be true. Withh=1, le ft = 0, andright = 0.
Thenmiddle = int((0+ ((0 — 0)/2)) = 0, andleft = right.

A. Numerical Example o If arr[0] < small_key, the algorithm calls itself recursively

Consider the following list withl2 integer elements. with le ft=(middle+1)=1, andright = 0. Sinceleft > right,
-112, -88, -55, -12, -5, 15, 32, 67, 79, 98, 117, 133. therefore,small_pos = —1, andlarge_pos = —1.
e The two given keys aresmall_key = -12, andlarge_key o If arr[0] is equal tosmall_key, thensmall_pos = middle
= 67. = 0, andlarge_pos = binary_search
o Atfirst, left =0, andright = 11. Asleft < right, therefore (arr[], middle + 1, right, large_key). In this case,
miaddle = int (0+ ((11 —0)/2)) = 5. Now, arr[5] = 15. left=(middle + 1)=1, and right = 0. Sinceright < left,

e As arr[5] = 15 > —12, andarr[5] = 15 < 67. Therefore, therefore,small_pos = 0, andlarge_pos = —1.
smallpos =binary_search(arr(],0,4,—-12), and largepos = e If arr[0] > small_key, and arr[0] < large_key,
binary_search(arr]] ,6,11,67). After two classical binary then, small_pos = binary_search(arr]], left, middle —
searches at this stage 12 is found at index3 with counting 1, small_key). Therefore]eft = 0, andright = (middle — 1)
beginning at index). Similarly, 67 is identified at index7. = —1, therefore,left > right. Hence, small_pos = —1.
The smaller key position i3 4 1) = 4, and the larger key Again, large_pos = binary_search(arr[], middle + 1, right,
position is,(7 4+ 1) = 8. Total number of elements in betweenarge_key), andleft = 1, andright = 0. Sinceright < left,
these2 keys is, { —3 — 1) = 3. therefore large_pos = —1.
o If (arr[0] == large_key), then large_pos =middle = 0,
and small_pos = binary_search(arr(], 0, —1, small_key).
] As right < left, therefore,small_pos = —1.
Following result holds true for am-key BS. o If arr[0] > large_key, then recursively call Binary-
Lemma 1:An m-key binary search algorithm may makeSearcthey with left = 0, andright = (0 — 1) = —1. Since
recursive calls starting from itsn{-1) key version up to right < left, therefore,small_pos = —1, and large_pos =
the single key version of the classical binary search in itsy Hence,P(1) holds true.
computational hierarchy. Induction step: In the inductive step, it is established that
Proof: In anm-key BS, if the first key (similar also for the Iast[p(l) AP2)APB)A ... AN\P(k)] — P(k+1) is true for
key) becomes equal to the middle element of the current lighery positive integek. Assume that(i) holds true for every
the algorithm makes a recursive call to the< 1) key version ; < . wherek > 1; this implies that the algorithm terminates
that searches thend through themth key in the subrange correctly for any list of sizei < k. It is required to show that
(middle+1) throughend. If the mth key is equal to the middle p(z + 1) is true. Consider an ordered ligt of size ¢ + 1).
element, it makes a recursive call to the {- 1)-key version |y ¢ 4 4 and Java, positional index starts @t Therefore,
within the subrange starting frofa ft to (middle—1). For the right = k > 0 andleft = 0 (ask > 1). Thus, middle =
(m —1)-key version, if thelst key =middle or the (n — 1)th int((0+ ((k —0)/2)) = int(k/2).
key is equal to the middle element, it makes recursive call §9f rr[middie] < small_key, then BinarySearchkey is
the (n — 2)-key version. Proceeding in this way, thekey called recursively withieft = int(k/2) + 1. Sinceleft =
binary search makes recursive calls to the-(1)-key binary ,¢(x/2)+1, andright = k represents a sublist of the original
search. In the minimum, a-key version may make a call|ist, I, therefore, according to the induction hypothesis, this
to the classicl-key version. Hence, following computationala|gorithm works.
hierarchy is produced. o If arr[0] is equal tosmall_key, thensmall_pos = middle =
m-key version makes call to then — 1)-key version,(m — int(k/2), andlarge_pos = binary_search(arrf], middle + 1,
1)-key version calls thém—2)-key version, .., 2-key version ight, large_key). In this caseleft = int(k/2)+1, andright
may make call to thel-key version. With the best possible= i represents a sublist df. Using induction hypothesis, the
recursion, then-key version may even make a call to the algorithm works.

key version. It is the best, since a key has been identified@t |f qrr[int(k/2)] > small_key, and arr[int(k/2)]
the middle of the current list, which is making a call to the: j4rge_key, then, smallpos = binary_search

B. Analytical Results

next lower version. In the next lower version, another key {§;[],0,int(k/2) — 1,small_key). In this case, the
identified at the m|dd|e, and recursively Ca”ing the fO”OWingub”st is shorter than half oﬂ, and the classical BST
lower version, and so on. U perfectly computes small_pos. Again, large_pos =
Following proof uses Strong Induction [7] to prove that thgmaryfsem.ch(aw[], int(k/2) + 1,k large_key), and
recursive MKBS works correctly. the sublist is shorter thah. Using induction hypothesis, the

271

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

algorithm computesarge_pos. Conclusion: The corollary is true forn = 1. Assuming that
. If (arr[int(k/2)] == large_key), then the corollary holds true fom = k different keys, it has been
large_pos =middle = int(k/2), and small_pos = proved that the corollary also holds true for = (k + 1)
binary_search(arr[],0,int(k/2) — 1, small_key). Therefore, different keys. As it holds true fom = 1, it also holds true
the algorithm correctly computesnall_pos. for m = 2. As it holds true form = 2, it is also true for
o I arrlint(k/2)] > large_key, then the2-key binary search @ = 3, and so. Hence, the corollary holds true for any
recursively calls itself witeft = 0, andright = (int(k/2)— With m > 1. U
1). Since, the sublist considered is only a parteftherefore,
the algorithm computesmall_pos, andlarge_pos.
Conclusion: The algorithm works correctly with a list of size,
n = 1. If it computes correctly with a list of sizeé,< k, k > 1,
then it also works for a list of sizek(+ 1). Using the strong
induction, MKBS works correctly for every ordered list with
one or more elements. O

Corollary 3: An m-key binary search algorithm may be
applied to any sorted list containingelements, where >=
m.

The 3-key binary search version may easily be designed
using the2-key BS version.

Algorithm BinarySearch _3key

Purpose: This algorithm performs-key binary search.

The supplied parameters are: array arr[], position of the first

element: left,

position of the last element: right, smaller key, middle key

and the larger key.

3-key search finds out smasbos, middlepos, and larggos

Proof: A proof by contradiction is adopted. Suppose that for the smaller, middle and the larger key.

n < m. Therefore, the total number of keys to search f

QRequire: smallkey < middlekey,

and middlekey <

becomes greater than the number of elements within the ”Stiargekey

In the best possible case, different keys may be identified Ensure: left >

at the index positions of the list elements, leavingng-n)

keys undecided, for which, no positions may be available. This

violates the objective of thei-key search, which is to identify
the index positions forn-keys within the given list. Hence,
m % n, and at mostn = n. O
Corollary 4: An m-key binary search requires consider-
ing (2m+1) individual cases in finding out the index positions
of the m different keys in a sorted list of elements. Here,
m > 1.
Proof: Following is a proof by mathematical induction.
Base CaseFor the base case;=1. For P(), it is the classical,
single key BS. It consider8-different cases. These aret) (
key_element = middle, 2) key_element> middle, and §)
key_element< middle. Hence,q x 1 + 1) = 3 different cases
are being considered.
Induction: Suppose that thé-key search algorithm requires
considering 2k +1) different cases. Herd;, > 1. It is required
to show that: [P]) A V P()]— P(k+1), which is proving that
for (k+1) different keys, 2(k + 1) + 1) = 2k + 3 different
cases are required. For the-£ 1)th key, two more cases are
required in addition to the2¢ + 1) cases for the firsk keys.
For the sorted keysk + 1)th key is the largest and the last
key within the list. Therefore, it is required to consider only
2 additional cases. Firstly, verify whether the middle element
is equal to the X + 1)th key. If so, the k + 1)th key is found
in the middle, and it is needed to make a recursive call to
the k-key version of MKBS to locate the index positions of
the first k-keys. Secondly, it is needed to verify whether the
(k + 1)th key is larger, and théth key is smaller than the
middle element. In that event, confine search for(the- 1)th
key to the right half of the current list using a classical BST,
and make a call to thé-key version of MKBS for the first
k keys. Rest of the cases are identical to thkey version
except that we considek+€1) keys instead of keys. Hence,
altogether, for the(+1) key version, we require considering
(2k+1 +2) =2(k+ 1) + 1 different cases.

272

right or keys found

while left < right do

middle = (left + right)/2

if arrfmiddle] < smallLkey then
BinarySearctBkey (arr, (middlet), right, smallkey,
middle key, largekey, smallpos, middlepos,
large pos) {Recursively call BinarySearcikey}

else ifarrfmiddle] > largekey then
BinarySearctkey (arr, left, (middlet), smallkey,
middlekey, largekey, smallpos, middlepos,
largepos)

else ifarrmiddle] = smallkey then
smallpos < middle
BinarySearch2key (arr, (middle+t), right, middlekey,
large key, middlepos, largepos)

return
else if arrmiddle] > smallkey and arr[middle]< mid-
dle_key then
smallpos <« BinarySearch (arr, left, middlé;
smallkey)

BinarySearch2key (arr, (middlet), right, middlekey,
large key, middlepos, largepos)
return
else ifarrfmiddle] = middle key then
middle_pos < middle;

smallpos <« BinarySearch (arr, left, middlg;
smallkey)

largepos < BinarySearch (arr, middlg+ right,
largekey)

return

else ifarrfmiddle] = largekey then
large pos < middle
BinarySearctekey (arr, left, (middlet), smallkey,
middle key, smallpos, middlepos)
return
else if arrmiddle] > middlekey and arr[middle] <
large key then

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

BinarySearctRkey (arr, left, middlet, smallkey, mid-
dle_key, smallpos, middlepos)
largepos <« BinarySearch (arr, middlgt right,
large key)
return
else
smallpos <« —1
middle pos < —1
largepos < —1
return
end if
end while
smallpos <« —1
middle pos< —1
largepos < —1
return

C. Implementation

MKBS algorithm may be applied to the sorted lists. Fol
lowing is the Modified Binary Insertion Sort (BIS) algorithm
which is founded upon the basic binary search strategy. The

algorithm sorts a given list in ascending order.
Algorithm binary _insertion_sort
Purpose: This algorithm sorts a given list using BST.
Input: array arr[] andh, which is the size of the list.

=1

while j < n do
left =0
right = (j-1)

while left < right do
middle = left + (right — left)/2
if arr[j] > arr|middle] then
left = (middle + 1)

else
right = middle
end if
end while
if arr[j] < arr[left] then
i = left
else
i = (left+1)
end if
m = arr[j]

for all k such thati < k < j do
arrfk+1] = arr[k]
end for
arrfil = m
j++
end while
return

was implemented in Visual + +.NET and Java JDK,
Version5.0. The algorithms are described here for ascending
list of keys only. Ak key version may be extended to the
(k + 1) key version through the following changes.

1. Recursive calls to the key version, wherep < k, now
becomes recursive calls to the{ 1) key version.

2. Keys in thek-key version becomes the firgtkeys in the

(k + 1) key version.

3. An m key version requires consideringyf+1) independent
cases. Thek(+1) key version require2(k+1)+1) = (2k+3)
cases to be considered. The additiodatases are required

to account for the X + 1)th key. One individual case checks
whether the £ + 1)th key is equal to the middle element.
Another individual case checks whether théh key is less
than, and thek+ 1)th key is greater than the middle element.
Rest of the block if cases remain almost the same except for
a few additional changes due to the increased number of the
keys.

With minor modifications, the proposed algorithm may be
Used to search for the keys inside a descending list. There are
'3 other possible combinations that may be considered for the
key variation of the trivial binary search.

(1) The list elements are in descending order, and the keys are
in ascending order. In this case, if the middle array element is
smaller than the current key, seight = (middle — 1), and
confine the search for this key and other larger keys to the
left half of the list. If the current middle element is larger, set
left = (middle 4+ 1), and confine the search for this key and
other smaller keys to the right half of the list. If the middle
element is holding the same value as the current key, set the
index position for the key element taiddle, and look for

the smaller keys to the right half, and other larger keys to the
left half of the list.

(2) Both the list elements and the keys are in descending
order. In this event, smaller keys follow the current key and
the larger keys precede the current key. The logic depicted in
combination1 still holds.

(3) The list elements are in ascending order and the keys are
in descending order. In this case, the larger keys precede the
current key, and the smaller keys follow. If thgh key is
smaller than the middle element, then set, lefirgddle + 1),

and look for thelst through thekth key to the right half of

the list, and the ¥ + 1)th key to themth key to the left half

of the list. If thekth key is equal to the middle element, then
look for the1st through the § — 1)th key to right half, and the
(k+1)th through thenth keys to the left half of the list. If the

kth key is larger than the middle element, and thei(1)th

key is smaller than the middle element, then search for the
1st through thekth key to the right half, and thék + 1)th
through themth key to the left half of the current list.

After successful termination of the multi-key binary search

The m-key binary search builds up on an original versiofunction call, the main program segment outputs the position

of the basic binary search algorithm. Here, = 2, 3,

of the keys inside the given list. If some or all of the keys are

Computation for the multi-key search effort makes recursiabsent from the supplied list, the corresponding positions are
calls to the basic binary search at its many different stepst to —1. For unsuccessful block if search efforts, thise
depending upon the result of comparisons. The algorithm bfocks within the m-key versions set the keys tel. Here,
called in the form of a free-function. Function main calls the: = 2, 3,4, Following theorem holds true in this context.
m-key binary search on a sorted list. This recursive algorithm

273

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

Theorem 5:The m-key binary search successfully com- V. PERFORMANCE
putes even in the event of partially or completely nonexistept Time Complexity
keys, and sets-1 at the index positions of the nonexisten

keys l:ollowing result describes the time complexity of thekey

BS algorithm.
Theorem 6:MKBS is a linear logarithmic algorithm on two

Proof: A proof by mathematical induction has been adopte\(garlablesm ‘fi”d n, and has a big-oh complexity order of,
(mlog(n)) in the worst case.

here. o . .
Base Case:For m=1 (P(1)), the search is a typical bmaryPrOOf' A proof by mathematical induction on the size of the
) . keys,m is adopted.
search. It returns-1 to the calling program in the event of) S .
. ase Case:For m=1, it becomes a classical BS problem.
the non-existent key. Therefore, the theorem holds true for the o T .
énce, it is logarithmic, and has a complexity order of,
base case. . . O(1 x log(n)). Hence, the result holds true for the base case.
Induction: In the event of completely nonexistent list of keys '

) R I 7 Induction: Suppose that the induction hypothesis is true
it setsk —1s at the corresponding index positions. For parual%r the k-key search. Therefore, thiekey search is linear
nonexistent keys, say out &f keys, p keys are non-existent. L ' . .
Then using the hypothesis, it sets—1s at the non-existent logarithmic, and has a complexity order @}(klog(n)). It is

" T L equired to show that thék + 1) key search is also linear
positions, and the correct non-negative index positions for the' " "~)

: . . ogarithmic. In the worst case, the search confines to both
rest of the £ — p) keys. It is required to prove that it also

.. _halves of the list. Some keys exist on the left half and some
holds true form = (k + 1). Now for the & + 1)th key, if : 2 .
the middle element is less than this key, but larger than tRe the right half. At the minimum, thek(+ 1)th key exists

kth key, the algorithm calls the ordinary binary search to fing. the right half, and the rest of the keys are on the left

- . . half. Alternatively, only thelst key exists on the left half,
the position of thgl(+ 1)th key to the right half of the list, and the 2nd thrgugh)t/he K+ 1)”31/ keys are on the right
and look f(_)r_ the_flrsik keys to the left half. Accordlng_ to the half. As the complexity order for up to the key searches
base con_dltlon, in the event of thkfl)th key non-existent, is linear logarithmic by the induction hypothesis, therefore,
the algorithm correctly returns 1 as its index position, and both of the search efforts on two halves of the list have linear
according to the induction hypothesis, it works correctly fqr o .

. ;) . 2 “logarithmic time complexity. Suppose that the constant factor
the nor_1-eX|stent keys in the list of firktkeys. For alternative of the highest order term inside the complexity function for
non-existent case for thek ¢+ 1)th Key, the key has to be tpe left half isC;, and that on the right half i€'.. Therefore,
smaller than the middle element (since it cannot be equal (i — O % Kl d _ ol H h
the middle element, in which case, the £ 1)th key exists 9\"") = 1 X kloga(n), andg,(n) = C» x logs(n). Hence, the

o . ' o i ; combined highest order term for tHé& + 1)-key search is,
within the list). If smaller, it is required to recursively call (n) = kCy x Loga(n) + Cy x loga(n) = (kCy+ C.) x loga(n)
the (+ 1)th key version of the algorithm. In the worst casei 7(1k :r 1)1@ Xoglyign(n) +r<cog_2 gl)—x logl i rHenOCQeQ Ttlhe
all the keys are either to the right of the list and are even mplexity order 20f the(k J_ 1) key sea?ch .is also ,Iinear
larger than the greatest element inside the given list, or ﬂ)ﬁgarithmic or O((k + 1)logs(n)). If gi(n) = C; x loga(n)
the keys lie to the left of the given list, and are even smaII%‘rnol (n) = O, x k(I (g% uéin g; similarl a r%2ach, it
than the smallest element within the list. In these two extremmea gl;ensh;)wnrthat thOeQQtir?]e,com gljexit order O?p 1)’
cases, the algorithm terminates affer(n) recursive calls. y plexity ﬂ

Now, from the structure of the proposed algorithm, the whilkey search isO((k + 1)loga(n)).

. : . i onclusion: From the basis, the single key version is linear
loop is exited aftefog(n) iterations for both of these extremeIO arithmic or O(mloga(n)). Using induction, if thek ke
cases, and the algorithm setd to the index positions of all 9 miog2\n)). g X y

these [+ 1) keys before it can return to the calling program\./ers!On Is linear Iogarlth.mlc,. then also 'S the. € 1) key
. . T o . version. As thel-key version is linear logarithmic, therefore,

Here,n is the size of the list, in which, it is required to look _ S .
tlhe (L + 1) = 2 key version is also so. As thz-key version

for the keys. Hence, the proposed algorithm works correctg/ : o N
.. 1s_linear logarithmic, therefore, th8 key version is also.
for these extreme cases as well. For all other comblnatloBs

of conditions, the algorithm makes calls, starting from the .roceedmg. n t.h'S. way, the pr.opose:d key version has a
linear logarithmic time complexity ofQ(mloga(n)). O

key to the k-key versions depending upon the key and the As the number of keys increases, the number of possible

list element combinations. From the induction hypothesis, the ™ S .
. . key index combinations also increases. For the performance
algorithm works correctly for up t& keys. Therefore, it also

works correctly for all possible combinations of the { 1) gg{l:ratlon, the average number of operations is a deciding
keys. '

Conclusion: The algorithm works correctly withl non- o

existent key. If it works correctly for up t& non-existent B- Key Index Combination

keys, then it also works correctly for up tb 1) non-existent For each one of the multi-key and the single key searches,
keys. Hence, it works correctly fot {1)=2 keys. As it works all possible key positions are considered for calculating the
correctly for2 keys, it also works correctly fd2-+1) =3 keys, average total of the comparison and the assignment operations.
and so. Hence, the proposed algorithm is general, and woRar a list withn elements, possible positions for the only key
correctly for any number of keysp, wherem = 1,2,3,.... is from index0 through indexn—1) for a total ofn positions.

a Hence, the total possible positions 3(n).

274

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

With the 2-key version, the smaller key can be in any of the(®) (b) (©
index positions starting frord through @-2) for a total of (n— - -
1) positions. If the smaller key is at ind@xthe larger key may
be at any one of the index positiohshrough @-1). Therefore, !
there are« — 1) possible positions for the larger key. If the
smaller key is at, the larger key may be anywhere from index
2to (n—1), for a _total of (z_— 2) positions. Proceeding t_his 1-key 2-key 3-key
way, the last possible position for the smaller key is at index
(n — 2), and then, there is only possible position for the Fig. 1. Possible key index combinations for théey, the2-key & the 3-key
larger key, which is afn — 1). Hence, total positions for the BSs, which are plotted against the list size,
larger key =(n—1)+(n—2)+...1 = @ Total possible

(n—1) (n+2)(n—1)

positions for both the keys: (n — 1) + 2= =(+2)

This number isO(n2). " for the key index combinations. Curve for ttekey grows

With the 3-key version, we consider the indicesthrough @&t @ faster rate compared to tizekey version due to it's
(n—3) for the smallest key, the indicesthrough(n — 2) for OUist-size®) complexity.
the middle key, and the indic&€sthrough(n—1) for the largest
key. There arer{—3 — 0+ 1) = (n — 2) possible positions for
the smallest key, which i®)(n). With the smallest key af,
the middle key may be anywhere from indexhrough(n—2) Average consumed time for each possible index combina-
for a total of (n — 2) possible positions. If the smallest key isjon with different list sizes are recorded and plotted for the

at positionl, there are (n —2—2+1) = (n—3) positions for 3.key MKBS as follows. As is evident from Fi@, time to
the middle key. Proceeding this way, if the smallest key is at

index (» — 3), the middle key may only be at index position
(n — 2), with a total of1 position. Hence, for the middle key
(2nd key), there is a total ofn(—2) + (n —3) + ... + 1 =
W possible positions. This number i©(n?).

If the smallest key is at indeR, the middle key may be
anywhere from indexi through ¢ — 2). If the middle key
is at index1, the largest key may be anywhere from index
2 through @ — 1), with a total of (— 2) positions. If the
middle key is a2, there are« — 3) possible positions for the
largest key. Proceeding this way, there is a totalrof-(2) +
n=3)+...+1= w possible positions for the largest
key. With the smallest key at indelx the middle key may be
anywhere from2 through (n — 2), and so. Hence, there are ot s L o s s 0
(n—=3)+(n—4)+...+1= % possible positions for Listsize.n
the largest key. Proceeding in this way, if the smallest key is
at index @_3)’ the middle key is at indexn(— 2), and there is Fig. 2 _Aver_age computation time_in microseconds for each possible index
only 1 possible position for the largest key, which is at(1). combination is plotted against the list size for the 3-key BS.
Hence, altogether there ar€ ¢ n=2) + (n=2)n=3) 4 4 S o
1) possible positions for the largest key, which(ig:?). Total calculate each key combmaﬂ_on is almost zero (negligible)
possible positions for the keys indakey binary search is= Whenevern < 100. As the list size grows beyond00,
[(n—2) + (n72)2(n71) + (n71)2(n72) + (n72)2(n73) + +1] the timing overhead for each combination jumps sharply in

This is, O(n®). In a similar fashion, it is possible to show thaf Straight line until it reaches = 400. Beyond this, the
for 4 keys, the number of possible positions {¥(n*), and timing overhead encounters a slower growth being maximum

so. Hence, for a total ofn keys, the number of possible keyat” = 1,000.

C. Key Index Computation Time

15

05

Average time in microseconds to compute each key position, t_avg/position
-

index combinations isQ(n™). Following figures show the variations in the total consumed
The average number of the assignment and the comparidf With the possible key index combinations with the

From Fig.3(a) and Fig.3(b), the total consumed time varies
: — 2) linearly with the possible key index combinations for the
Total possible positions for m keys key and the3-key searches. From Fig(c), it is possible
Following plots show the variations in the number of possible infer that the slope for both of these lines are almost
key index combinations for thé-key, 2-key, and the3-key same, since th8-key line almost coincides with that fa-
versions with the changing sizes of the list. From the plottday. Therefore, the time required to compute each possible
curves, possible index combinations vary linearly with the liseey combination is almost the same for tBeand the 3-
size for the classical BS. The parabolic curve for thkey key searches. From Figi(b), slope of the straight line=

binary search is representative of (0¢ist_size?) complexity =22 = 1.784 micro seconds per position.

Z;n:l(total operations for key;)

Average =

275

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

(b) (©

(@) is a modified and enhanced version of the MKBS algorithm
b proposed in this paper. This modified algorithm performs in-
i sertion and rearrangement operations after identifying the most
- appropriate insertion positions for the multiple key elements.
- MKBIS acceptsm keys as inputs, finds the most appropriate
insertion positions for the supplied keys in a previously sorted
list of elements, and then inserts the keys in their appropriate
positions. If the originally sorted list contains elements,

Fig. 3. Total time consumed in calculating the key index combinations then after performing the multi-key binary insertion search,
plotted against all possible positions. the new list containsn(+ m) elements. Hence, the original
array for the list of elements must contain at leastextra
spaces to accommodate for the multiple key insertions through

the MKBIS algorithm.

2-key total time 3-key total time 2 & 3-key plots

D. Average Operation Count

Following figures show th@-key BS performance in terms

of the average operations count. Fiffa) is a plot of 2)]))
A. The Multi-key Binary Insertion Search (MKBIS) Algorithm

(a) (b) Algorithm binary _insertion_search

. Purpose: This algorithm performs modified binary search
operations for finding out the insertion position of a key in
i i W\/\ the list.

b The supplied parameters are: array arr[], position of the first
) element: left,

position of the last element: right, and the kelgment.
The algorithm returns the single insertion position.

Diff. in op. plot .] INgie in of
Ensure: correct insertion position is identified.

Avg. op. plots

Fig. 4. Performance comparison betwerapplications ofl-key BS (upper
curve-Fig. (a)) and application of the2-key BS (lower curve-Fig. (a)).

applications of thel-key BST and1 application of the2-
key BS. Average operation count for tBekey is always less
than that of the2 applications of thel-key BST, indicating

the gain in efficiency in terms of the number of operations.

This difference is maximum at = 15,000 (see Fig.4(b)),
indicating the optimum list size for the maximum gain within
the range considered.

Fig. 5 depicts the3-key search characteristics. From Fig.

(a) (b)

=

JT——

Avg operation curves Diff. in op. curve

Fig. 5. Performance comparison betwegrapplications of thel-key BS
(upper curve-Fig. (a)) and application of the3-key BS (lower curve-Fig.

(@)

int i
while left < right do
middle =left + (right — left)/2
if key_element> arr[middle] then
left = (middle+1) {Insertion position is to the right of
the current middlg.
else
right = middle
end if
end while
if key_element< arr[left] then
i = left
else
i = (left + 1)
end if
return i

Algorithm BinarylnsertionSearch _2key

Purpose: This algorithm performs2-key binary insertion
search.

The supplied parameters are: array arr[], position of the first
element: left,

position of the last element: right, smaller key, and larger
key.

2-key insertion search finds out smalbs, largepos for

5(a), 3-key BS performs much better in terms of the operations jnserting the smaller and the larger key:.
count in comparison to th&applications of the classical BST.Require: smallkey < largekey

The difference in operations is maximums&700, which is Ensure: Appropriate insertion positions of the keys have been
the maximum efficiency point within the plotted range (see detected.

Fig. 5(b)).

V. MULTI-KEY BINARY INSERTION SEARCH

An extended version of the proposed MKBS algorithm is

discussed here. Multi-key Binary Insertion Search (MKBIS)

276

while left < right do
middle =left + (right — left)/2
if arrfmiddle] < smallkey then
BinarylnsertionSearcBkey
right, smallkey, largekey,

(arr,
smallpos,

(middlet),
largepos)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

{Recursively call BinarylnsertionSearckey}
else ifarrfmiddle] = smallkey then
smallpos < middle
largepos <« binary.insertionsearch(arr, middlet;
right, largekey)

return
else if arr[middle] > smallkey and arr[middle] <
large key then
smallpos < binary.insertionsearch (arr, left, middle-
1, smallkey)

largepos < binary.insertionsearch (arr, middlet;
right, largekey)
return
else ifarrfmiddle] = largekey then
large pos < middle
smallpos < binary.insertionsearch(arr, left, middle-
1,smallkey);
return
else ifarrfmiddle] > largekey then
BinarylnsertionSearcBkey (arr, left,
smallkey, largekey, smallpos, largepos)
end if
end while
return

middlet,

smallpos < binary.insertionsearch (arr, left, middle-
1, smallkey)
BinarylnsertionSearcBkey (arr, (middlet), right,
middle key, largekey, middlepos, largepos)
return
else ifarrmiddle] = middle key then
middle pos < middle;
smallpos < binary.insertionsearch (arr, left, middle-
1, smallkey)
large pos < binary.insertionsearch (arr, middlet;
right, largekey)
return
else if arrfmiddle] = large key then
large pos < middle
BinarylnsertionSearcBkey (arr, left, (middlet),
smallkey, middlekey, smallpos, middlepos)
return
else if arrmiddle] > middlekey and arr[middle] <
large key then
BinarylnsertionSearcBkey (arr, left, middlet,
smallkey, middlekey, smallpos, middlepos)
largepos < binary.insertionsearch (arr, middlet,
right, largekey)
return
end if

Following is the binary insertion search algorithm for three end while{since, there are always insertion positions, it will
different keys. never return a-1.}
Algorithm BinarylnsertionSearch _3key return
Purpose: This algorithm performs3-key binary insertion |t has been assumed that the given list is sorted in ascend-
search. ing order. Also, the keys are required to be sorted before
The supplied parameters are: array arrf], position of the firgioking the proposed algorithm. It has been assumed that
element: left, the smaller key is stored atnall_key, middle key is stored at
position of the last element: right, smaller key, middle keyiddie_key, and the larger key is storedatrge_key memory
and the larger key. locations.
3-key search finds out smgtlos, middlepos, and larggpos Multi-key Binary Insertion Search can be used to look
for inserting the smaller, middle and the larger key. through an ordered database table hbigection For this
Require: smallkey < middlekey, and middlekey < particular application, there is an ordered table containing the
large key elementszy, s, . .., x,, and two given keyscey; and keys.
Ensure: Appropriate insertion positions of the keys have beemhe goal is to find two unique indicésandj such thati < 7,
detected. r; < keyy < Tig1, andxj < keys < Tjy1-
while left < right do The proposed algorithm can conveniently be used to insert
middle =left + (right — left)/2 new words or phrases in an already sorted electronic word
if arrfmiddle] < smallkey then dictionary. The algorithm or one of its modified versions
BinarylnsertionSearcBkey (arr, (middlet), right, may be used to upgrade, and update the older version of an
smallkey, middlekey, largekey, smallpos, mid- electronic dictionary conveniently.
dle_pos, largepos) {Recursively call Binarylnsertion-
Search3key}
else ifarr[middle] > largekey then
BinarylnsertionSearcBkey (arr, left,
1), smallkey, middlekey, largekey,
middle pos, largepos)
else ifarrfmiddle] = smallkey then
smallpos < middle
BinarylnsertionSearcBkey (arr, (middlet), right,
middle key, largekey, middlepos, largepos)

VI. APPLICATION

A model employee database management program has been
(middle- implemented using the proposed multi-key binary search and
smallpos, the multi-key binary insertion search algorithms. The pro-
gram uses object-oriented approach to create and manage the
employee objects inside the database model. The program is
capable of performing the following functions.
« Create a new employeelUser inputs the first name, last
name, age and the salary to create a new employee record.

return o Adjust for the overtime pay: User inputs the name,
else if arrfmiddle] > smallLkey and arr[middlel< mid- overtime hours and the overtime pay. The program recom-
dle_key then putes, and adjusts the current salary for the employees.

277

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

« Generate the database statisticsThe user inputs upper « Sort employees and insert new employee recordgvith

and a lower limits on the ages. Using the MKBS, the this feature, the program sorts the employees according to
program finds out all the employees (inclusive) that lie their most recent pays in ascending order of magnitudes
within this provided range of ages, displays the employee using the Binary Insertion Sort algorithm, and then inserts
count falling within the range together with their names, new employee records. Multi-key Binary Insertion Search
ages and salaries. For multiple pay range scales, it uses (MKBIS) is used in this step to insert multiple records
the MKBS algorithm to extract the groups of employees at the same execution. Following algorithm serves this
together with their pertinent information that lie within requirement.

the specific salary ranges. Following algorithm making Algorithm EmployeeBinaryInsertionSearch_mkey

use of them-key binary search: Purpose: This algorithm performsn-key binary in-
Algorithm EmployeeBinarySearch.mkey sertion search to insert new Employee class objects
Purpose: This algorithm performsm-key binary with the given salaries.
search withm ages. The supplied parameters are: veet&mployee- empl
Supplied parameters are: vect@mployee> empl containing records of the employees.
containing records of the employees. Each record is an object of the Employee class.
Each record is an object of the Employee class. Inputs arem Employee class records with thein
Inputs arem employee ages as keysge,, ages, .. ., salary valuessalaryy, salarys, .. ., salary,, as keys.
agem,. Appropriate insertion positiongiosy, possa, ... pos;,
Outputs are theos;, poss, ... pos,, of the employee of the employee records within the database are iden-
database records. tified.

Require: List of m keys be sorted Require: Them records supplied be sorted according to

Ensure: Locations of the records within the database salary values.
containing the supplied ages are identified. Salary of an Employee class object may be extracted
Sort the vectorEmployee- according to the ages using objectname.gessalary().
using Binary Insertion SorffUse empl[i].get_age() to Ensure: Proper insertion positions within the Employee
get the age of the employee at tfth record} database are identified.
Make a call to the m-key binary search as follows: Sort vectokEmployee- according to salary
BinarySearchmkey (vectokEmployee> empl, int values using the Binary Insertion Sor{Use
age1, int ages, ..., int age,,, iNt& posy, iNt& poss, emplli].get_salary() to get the salary of the
...y INt& pos,,) employee at théth record}
Upon terminationposy, poss, ..., pos,, contains the Make a call to the m-key binary insertion search as
positions of them different ages inside the sorted follows:
employee database. BinarylnsertionSearchkey (vectok Employee-
return empl, Employee& employ,, Employee& employs,

To extract the records with the supplied salary values, ..., Employee&employ,, int& posy, int& pos,, .. .,

these need to be stored as keys. Next a version of the iNt& posy,)

EmployeeBinarySearctnkey is used to identify records Upon termination, posi, posz, ..., posm, contains

with the given salary values. Using this algorithm, it positions of them different records to be inserted.

is possible to sort the employee records according to return

the salary values instead of the ages. The Employee While insertingm records, the first record is inserted at
class member functiometsalary() extracts the salary posy. Before inserting the next record, we shift all the
information that is stored within a particular record. A records beginning at the insertion position that are to the
standard template library has been used to apply the same right of this position byl place to the right.

algorithm with the age and salary keys. For age keys,e Quit the program: This last option is used to exit from
the data type is integer. For salary keys, the data type is the program.

double. Consider the third option. It is possible to identify multiple

+ Add employee to a department and a rank:The pro- employees in the set of records using a looping or an iterative
gram uses a separate class to add employees to differ@ristruct. However, the iterative search efforts have linear
departments and job ranks. complexity order of,O(n) on the size of the listn. The

« Non-uniform increase in salary values depending on proposed MKBS for smalin (for example;m = 2, 3, 4 or 5)
the pay scales:With this option, the user is capablegpproximates the logarithmic complexity 6flog.n), and is

of providing non-uniform salary raises based upon th@ore efficient with large number of database records.
employees’ pay scales. For example, for the highest scale,

the employer may decide on &% raise, where as for
the next lower scale, the employer may agree ditia

raise.Algorithm EmployeeBinarySearchkeyis used to In this paper, a multi-key binary search (MKBS) algorithm
implement this uneven raise in salary ranges. capable of performing search with multiple number of keys is

proposed, and it's database application is explored through the

VIl. CONCLUSION

278

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

implementations. The algorithm may be used to identify the
index positions ofim different keys withm > 2 in the same
execution in a sorted list of elements. So far upnto= 5

key MKBS version has been implemented. The algorithm is
capable of identifying the index positions for different keys

in the same execution in a supplied list of elements. #or
different keys withm > 2, the list of keys needs to be
sorted first in ascending or in descending order. The algorithm
uses a modified divide-and-conquer approach. The typical
divide-and-conquer uses recursion to solve the subproblems
independently. When the smallest subproblem is solved, all
the results are combined together to provide with the final
result. The standard binary search technique uses a variation
of this approach known as the tail recursion. The proposed
MKBS algorithm is a variation of the tail recursion, and it
discards half of the current list depending upon the result of
a comparison. Multi-key BS is more flexible compared to the
traditional divide-and-conquer, and the tail recursion searches.

An extended version of the proposed algorithm, known
as the multi-key binary insertion search (MKBIS) is also
discussed. This algorithm can be used to insert multiple
elements inside a sorted list. The proposed algorithm is an
improvement over the proposed MKBS algorithm. Both the
MKBS and the MKBIS algorithms are used in connection
to an Employee Database Model for extracting records from
different layers within the structure as well as for inserting
multiple records.

Future Research includes developing and implementing
the multi-key interpolation search (MKIS), and the multi-
key interpolation insertion search (MKIIS) algorithms on a
uniformly distributed list of elements. MKIS and MKIIS have
time complexities, which i$(log(log(n))). Also, designing
and implementing the multi-key block search (MKBLS), and
the multi-key block insertion search (MKBLIS) remain another
avenue of research.

REFERENCES

[1] Jon Bentley, Programming pearls, second editio(Boston, MA:
Addison-Wesley, Inc.2000).

[2] Kenneth H. RosenDiscrete Mathematics and Its Applications, Fifth
Edition (New York: McGraw-Hill, 2003).

[3]] Lawrence Wong, Binary Search Algorithm on the TMS320C5kx,
TMS320 DSP Designer's Notebook, Application Brief: SPRA238, Texas
Instruments 1997.

[4] Salvatore Ruggieri, On computing the semi-sum of two intedefer-
mation Processing Letter87(2), 2003, 67 — 71.

[5] Sartaj Sahni,Data Structures, Algorithms, and Applications in C++
(New York: WCB / McGraw-Hill, 1998).

[6] T. Bell, M. Powell, A. Mukherjee, D. Adjeroh, Searching BWT com-
pressed text with the Boyer-Moore algorithm and binary sedbaita
Compression Conference (DCC) Proceedin§mowbird, UT, 2002,
112 — 121.

[7] Thomas KoshyDiscrete Mathematics with ApplicationSan Diego,
CA: Elsevier Academic Pres2004).

279

	Button3:
	Button4:
	Button5:

