
 

 

  
Abstract— This paper presents a methodology for producing 

good design solutions more efficiently. The methodology is based on 
augmenting a conventional evolutionary design approach with a 
method for improving suboptimal design solutions with a domain-
specific knowledge-rich approach. This approach is based 
conceptually on the practice of plastic surgery, i.e. making minor 
adjustments to an entity, based on some desired qualities, i.e. 
specified fitness function. Additionally, the modifications made to 
the phenotype may require the re-engineering of the genotype to 
accord with the modified phenotype if the entity is to be used further 
in evolutionary operations. A method for genotype re-engineering is 
proposed in the domain of cellular growth generation. 

Keywords— evolutionary design, genetic algorithms, plastic 
surgery, genetic re-engineering. 

I. INTRODUCTION 
ON-ROUTINE design tasks are characterized by the 

lack of knowledge available for their immediate solution 
[3]. Thus knowledge-lean approaches, such as evolutionary 
computation methods, are well suited to the task of non-
routine design [14] [1], [2], [7]. Evolutionary computation 
methods are able to arrive at reasonable solutions fairly 
quickly to begin with but then need many generations to make 
subsequent small improvements, [3], [11]. A great deal of 
effort can be expended to make a small (but maybe critical) 
improvement. In general, there is no guarantee that such an 
improvement will be found. In addition, in non-routine design, 
it is not always possible to perfectly specify the fitness 
function such that optimal solutions will be found since the 
design task is not well-known. This paper argues that, even in 
such conditions, it is possible to obtain reasonable solutions 
within the bounds given and then, using these resulting 
solutions as a guide, make improvements to obtain better 
solutions. For example, Fig. 1 (a) shows a configuration of 12 
cells that may arise after a number of generations. 

To produce an improvement such that the protrusion is 
removed and the indentation is filled (leading to a square in 
this case), Fig. 1 (b), may take a great deal effort from the 
evolutionary computation process. Where the number of cells 
is large, (>=100), the ability of such a system to remove such 
irregularities will be inefficient. While we can see that 
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removing the protrusion and filling in the indentation would 
lead to a good solution, the evolutionary system based on 
random genetic operations (crossover and mutation) on the 
genotype may not be able to produce the required solution 
within a feasible timescale.  

 
 
(a) an almost ‘perfect’ solution       (b) an improved solution 
 

Fig 1. Improvement of a design solution. 
 
Plastic surgery is a practice whereby features of an entity 

(generally a human) are altered to improve the appearance of 
that entity. This may be for cosmetic purpose or for more 
serious reasons. In all cases, the effect is on the entity itself, 
i.e. the phenotype, and there is no change to the genotype 
(DNA). Since evaluation is done on the phenotype, any 
improvement to the phenotype gives the entity a better chance 
of survival or attaining its goal, e.g. attaining self esteem, 
attracting other entities, etc. Plastic surgery is generally done 
to correct minor features; an entity has been generated in some 
way, but is defective in some features and minor corrections 
are made (to the phenotype) to improve it. It can be seen that 
specialized knowledge is required to modify the phenotype. 
Different domains require different knowledge. The 
phenotype and the defects must be recognized and the means 
for modification determined and implemented.  

As in the human example, any modification to the 
phenotype (design solution) is not transmitted to the genotype. 
Any ‘children’ may carry the defective genes and reproduce 
the same defects. However, in design, if the modified design 
solution is the final solution required, and no more processing 
is to take place, then this does not matter as the genotype was 
just the means to the end and is no longer of any interest. 
However, if the modified design solution is only a part 
solution and is required to take part in further evaluation, a 
problem exists since all evolutionary operations are carried 
out on the genotype. In that case, its genotype must be re-
engineered to match the modified phenotype. This difficult to 
implement since, in general, there is no known connection 
between the phenotype and the genes in the genotype. 
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Although there are some examples of genetic engineering 
[10], in general, there is no universal knowledge on how to 
modify the genotype to produce required characteristics of the 
phenotype. 

A conventional evolutionary method may be used, in 
situations where the form required is not known a priori, to 
produce possible solutions which are reasonably good but 
need some improvement. Once the solutions are produced, 
any suitable solutions can be improved by making small 
modifications to the phenotype. If the resulting solution is 
required to take part in further evolutionary operations, 
genetic-re-engineering is required as described above. This 
paper will put forward a method for re-engineering the 
genotype in a given design representation. 

II. EVOLUTIONARY DESIGN 
While knowledge-lean methods, such as evolutionary 

design, are good for discovering possible reasonable solutions 
where little knowledge is known a priori regarding the form of 
the solution, they are generally computationally expensive and 
may not be able to make the necessary improvements in a 
reasonable time with reasonable resources. Additionally, in an 
environment where there exists little a priori knowledge, it is 
not always possible to perfectly specify the requirements, i.e. 
formulate a ‘perfect’ fitness function. On the other hand, 
while knowledge-rich approaches can solve problems where 
the problem is well defined and the knowledge and methods 
required are also known, they operate in specific problem 
areas and, even within those areas, have little capacity for 
producing innovative solutions. 

This paper presents an approach combines knowledge-lean 
and knowledge-rich approaches to increase the efficiency of 
producing good design solutions in a non-routine design 
problem environment. The conventional evolutionary 
computation approach generates reasonably good solutions 
within given initial specifications and the proposed plastic 
surgery makes small modifications as necessary based on local 
knowledge of the problem once the solutions are evident. 

A. A Design Representation 
In general, design can be defined as the derivation of 

structure (form) that will satisfy a given set of requirements 
[18]. In its simplest mode, the construction of form can be 
thought of as the set of decisions for locating a set of cells of 
substances, where a substance may be physical (composed of 
a physical material) or virtual (e.g. composed of graphic 
entities or pixels). The construction of a spatial entity may be 
considered as the allocation of a physical substance composed 
of a ‘space’ material, i.e. a number of space cells. So, in 
summary, design can be see as the generation of form which 
can be produced by cellular growth. In an evolutionary design 
approach, a gene selects a module of substance and allocates it 
to some location. In the approach of Rosenman [14], [15], a 
gene locates a module of substance relative to another module. 
A gene, GN, is thus (M1, M2, L12) where M1 and M2 are two 
modules of some substance and L12 is the operator for locating 

module M2 relative to module M1. A module, Mi, may be a 
single unit cell or a set of unit cells already grouped and, in 
general, M1 and M2 need not be composed of the same 
substance. Nor, in general, does a grouping of units 
necessarily need be constructed of units of the same 
substance. The instructions for a complete design solution, i.e. 
a genotype, G, is a sequence of genes where G = (GN1, … 
GNm) and GNi, i = 1,m is a gene.  

In the approach, based on the joining of polygons 
representing units of space, the allocation operation is founded 
on the joining of polygons through their free edges 
represented as vectors. Fig. 2 shows the representation of two 
triangles, T1 and T2, and a square, SQ1, as closed vector 
loops. The vector V1 is a vector of length 1 unit and angle 
180o, the vector V2 is a vector of length 1 unit and angle 90o, 
V5 is a vector of length 1 unit and angle 60o, etc. The 
phenotype, P, of each polygon is given as the loop of vectors. 
Since this is a loop, the start point of the loop is immaterial, 
although in the examples it is given as the lowest-leftmost 
point. 

Polygons may be joined by conjoining counteractive (equal 
and opposite) vectors [13].  

 
When a number of squares are joined randomly the 

resulting shapes (polyminos) are not likely to show much 
regularity, especially if the number of squares is large. A 
shape with many protrusions and indentations will have many 
changes of direction on its boundary. Fig. 4 shows 40 random 
generations of 16-unit polyminos. 
 

 
Figure 3. 40 random generations of 16-unit polyminos 

 
For the example in Fig. 3, using 16 cells, the evolutionary 

program will evolve the shapes to find L- and T-shapes as 
well as rectangles and the 4 x 4 square. However, when using 
a small-scale cell to allow for small discriminations in the 
dimensions, the number of total cells will be very large. For 
example if the scale of the cells in Fig. 3 were reduced by a 
factor of 10, allowing for increments in length of say 10cms 
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rather than 1m, the total number of cells would be 1600. For a 
large number of cells, an evolutionary process, will, after a 
number of generations, give some indication of possible 
satisfactory shapes but will, usually, not be able to perfectly 
smooth out all the protrusions and indentations. One reason 
for this may be that the fitness function is not perfectly 
specified since such knowledge may be beyond the current 
knowledge of the design situation. For example, a fitness 
function based on minimizing the perimeter to area ratio will 
find that, with a large number of cells, the number of cells at 
the perimeter is small compared to the number of interior cells 
which are fairly well compacted. Thus most of the solutions 
will show a fairly high score for that fitness function. The 
process will not be able to make any significant improvement 
in any reasonable time. Fig. 4 shows a shape of 85 cells after 
evolution over a number of generations. The perimeter to area 
ratio shows a fitness of 85.8% compared to the ideal of a 
square of area 85 (perimeter = 36.88). 

 
Figure 4. A polymino of 85 units 

 
The reason for the high fitness, even though the perimeter is 

not very smooth, is that the central part of the shape (outlined 
in bold), which contains the majority of the units, is quite 
compact. Continuing the evolutionary process usually leads to 
convergence on one or other of the ‘better’ solutions to date 
before any major improvement is attained. 

III. PLASTIC SURGERY IN EVOLUTIONARY DESIGN 
In an evolutionary system, selection acts with respect to the 

phenotype. Those members whose phenotypes are judged to 
be well-suited to their environment will have a better chance 
of survival and of propagating their genes [7]. Thus any 
improvement in the phenotype, regardless of any change in 
the genotype, will improve that member’s chance of survival 
and propagation. Of course, this improvement will not be 
transmitted to the member’s descendants. In a design domain 
the fitness of the design is what counts, how it got to be that 
way is secondary. 

The Merriam-Webster dictionary [9] states that plastic 
surgery is: 

“: surgery concerned with the repair, restoration, or 
improvement of lost, injured, defective, or misshapen body 
parts” 

 
Plastic surgery is aimed at improving the organism’s 

survival in its environment (whatever survival may mean).  
Plastic surgery is proposed here as a solution to improving a 

phenotype (design solution) generated through an 
evolutionary computation method. It is proposed as a general 
concept where the issues are as follows: 
• design solutions are produced which are reasonable but 

could be improved by relatively small modifications. This 
requires particular domain knowledge.  

• if the design solutions are the end product of the process 
then the modified phenotype is the final solution and it is 
no longer necessary to consider the genotype. However, if 
the ‘solution’ is part of an on-going process, e.g. a 
component of a hierarchical composition, it may be 
necessary to re-engineer the genotype to match it to the 
new phenotype so as to enable it to be operated on by the 
genetic operators.  

• the modifications should be limited to relatively small 
remedial improvements. It is not meant to carry out major 
reconstructions of the phenotype as this leads to too large a 
departure from the solutions found. 

 
While an example in the domain of the generation of 

smooth polygons will be used to demonstrate the concepts, 
this paper suggests that the general principles of plastic 
surgery and genetic re-engineering could be applied to all 
domains since all design is a function of locating elements in a 
certain configuration.  

IV. METHODOLOGY 
The implementation of plastic surgery consists of several 

transformation functions. There exist various smoothing 
algorithms mainly in image processing, where they are used to 
produce smoothed surfaces from polygonal or noisy surfaces 
[5], [6], [19]. Algorithms such as Potrace [12] transform 
bitmap images into vector graphics. Another process uses 
sampling for anti-aliassing in ray tracing [17].  

 
(a) smoothing maintaining                   (b) smoothing using 
sampling                                              smaller unit size 
 

Figure 5. Comparing plastic surgery to sampling 
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Sampling works by overlaying a grid of larger cells on the 
form. Each cell is analyzed to determine what percentage of 
the cell is occupied. Cells with 50% or more occupation 
would be filled in completely, while those with less than 50% 
occupation would be left empty. This process is shown in Fig. 
5 where it is compared to the process which allows smaller 
increments of discrimination. The small-increment method is 
closer to the philosophy of making minor repairs rather than 
large-scale modifications and results in shapes closer to the 
original shapes than the sampling method which results in 
‘major reconstructions’. 

Modifications can be carried out to various levels of 
refinement, i.e. with respect to the number of units to be 
treated. Fig. 6 shows the various examples (defects) which 
may require modification. These include protrusions, 
indentations and corners, ranging from one unit to several 
units. The number of units in each direction may depend on 
the scale, i.e. the total number of units in a shape. While Fig. 6 
shows defects on one edge or corner only, the defects may 
occur on any of the four edge or corner directions (for 
polymino shapes). 

Fig. 7 shows the rules for plastic surgery, i.e. modifying the 
phenotype (shape) according to the type of defect (protrusion, 
indentation or corner) and the number of units to be rectified 
in the two directions. Again, it should be noted that the defect 
may occur in any direction so that the depth and width of a 
defect are local to the particular direction. 
 

 
 

Figure 6. Cases for modification 
 

The level of refinement is set by setting the depth and 
width, in terms of number of units, for the plastic surgery to 
take effect. The degree of refinement and the order of 
implementation of the operations will determine the final 
result. Different parameters and sequences will produce 
different results. In the physical world it is not possible to try 
several alternatives, whereas in a computational process it is 
possible to try alternatives and select among them depending 
on the result. Fig. 8 shows two different sequences of 
operations on a shape of 50 units based on the following 
operations or rules: 
 

Rule 1: Defect = protrusion max depth = n 
                          max width = 1 
Rule 2: Defect = indentation max depth = 1 

           max width = 3 
Rule 3: Defect = corner max depth = 1 
       max width = 1  
 
Rule 1 states that all protrusions of width 1 unit, no matter 

their depth, are to be deleted. 

 
Figure 7. Rules for plastic surgery of defects 

 

 
Figure 8. Two different sequences for plastic surgery 

 
The shaded and dotted units show the units added or 

trimmed. The first solution has grown from 50 units to 54 
units whereas the second solution has increased to 52 units. 
The size of the resulting solution depends on the number of 
units trimmed or filled. Since the number (size of the element) 
may be critical, some constraints may need be applied 
regarding the number of units trimmed or added or the number 
of elements trimmed may need to be balanced by the number 
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of elements added ( and vice versa). In a very large number of 
units, the number of units adjusted may not makes a 
significant change to the size of the shape since the number of 
units on the perimeter is small compared to the total number 
of units. 

A method for recognizing which shapes are suitable for 
plastic surgery is based on the measure of fitness of the shape 
as well as on a measure of the number of defective units with 
respect to the shape’s perimeter. 

V. IMPLEMENTATION EXAMPLE 
An example in the domain of room designs was 

implemented. Rooms need not necessarily have rectangular 
shapes nor do they necessarily have to have ‘smooth’ walls. 
They may have recesses but generally these need to be large 
enough to accommodate furniture such as bookshelves etc. So, 
in general, small protrusions and recesses in the perimeter are 
not acceptable. The aim is to generate shapes for a room of 18 
m2. A variation of 300 mm in each dimension was set to allow 
for a wide range of possible dimensions. This results in the 
arrangement of 200 square units of 300 mm x 300 mm.  

The fitness functions used were those used in Rosenman 
[14], [15]. A function that tends to smooth the perimeter is 
that of minimizing the perimeter. The minimum perimeter of a 
polymino shape is ideally a square. Using this fitness function 
will tend to make shapes more compact, thus reducing the 
length of the perimeter. The aim of room design is not to 
necessarily produce square or rectangular shapes but to use 
the fitness function to drive the evolutionary process towards 
such shapes, generating other suitable shapes in the process. 
Another measure of the smoothness of the perimeter is that of 
minimizing the number of corners. The minimum number of 
corners of a polymino shape is 4. Obviously a square has both 
the minimum area and the minimum number of corners. This 
function has a tendency to prefer L-shapes over T-shape. Both 
these shapes will have the same perimeter to area ratio but the 
L-shape has six corners compared to eight for the T-shape.  

For the first function, minimizing the perimeter to area 
function, the fitness is given by: 

 
f1  = (MaxP – P / MaxP – MinP) x 100  --------- (1) 
where  
f1  = fitness function wrt minimum  
    perimeter to area 
MaxP  = maximum possible perimeter for  
    a shape of n units 
P = perimeter of generated shape 
MinP = (ideal) minimum perimeter of a  
    shape of n units 
and 
Min P = 4√n  (ideal square) 
MaxP = 2n + 2 (e.g. shape of 1 unit width  
    and n units length) 
where 
n = number of units 

 
For the second function, that of minimizing the number of 

corners, the fitness is given by: 
 
f2 = (Max C – C / MaxC – 4) x 100  -----------  (2) 
where 
MaxC = maximum possible number of corners for a  
    shape of n units 
C = number of corners of generated shape 
and 
MaxC = 2n (e.g. fully stepped shape) 
 
Both functions use a ratio of the range of possible values to 

determine the normalized percentage fitness of the shape. The 
total fitness is given as: 

 
TF = (f1 + f2) /2 ------------------------------------- (3) 
 
Different weightings could be used for each fitness function 

to influence the shape towards one or the other but for this 
example a simple weighting of 1 for each has been used for 
simplicity. 

A C++ program for Windows was written to generate and 
evolve a population of polymino shapes using a genetic 
algorithm based on cell addition using the edge vector 
representation discussed previously and then to perform 
plastic surgery. The inputs to the generation and evolution are: 
the number of units, the number of members of the population 
and the maximum number of generations to be run. The 
genetic algorithm may terminate before the maximum number 
of generations is reached if it converges or remains stable. A 
run converges if the average fitness is within 5% of the best 
fitness and remains stable if there is no significant change in 
the best solution or average fitness over a specified number of 
generations. Simple one-point crossover was used with the 
best of the two populations (parent and child) kept to preserve 
the best solution. The remaining members of the new 
generation are selected using the roulette wheel method. The 
inputs to the plastic surgery are the width and length of the 
three repair cases (protrusion, indentation and corner) 
specifying the scale of the repair. 

The program was run several times with the following 
parameters: 

No. of units 200 
Population 40 
Max. no. of generations 60 
Max. depth  1 
Max width 3 
 
Results were similar over a number of runs. Fig. 9 shows 

the results of one of these runs. Fig. 9. shows a typical growth 
in fitness over the 60 generations using the conventional 
evolutionary process. The average fitness of the population is 
72.6%. As can be seen from the graph, the population has 
arrived at a fairly stable state and it could take a very large 
number of additional generations to produce any improvement 
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(if any is possible). After the application of plastic surgery, the 
average fitness jumps to 89.3%. This is a 23% improvement. 

 
Figure 9. Effect of plastic surgery after the evolutionary process 

 
Fig. 10. shows three of the shapes subjected to plastic 

surgery. It can be seen that these three members, previous to 
the plastic surgery, had a high fitness (95.6 to 96.6) even 
though their shapes are not all that good. The first shape is 
better than the other two but still has some small changes in 
direction in the upper left-hand part.  

The relatively high fitness values are due to the fitness 
function used which, in part measures the compactness of the 
shape. Since a large proportion of the shapes is indeed 
compact, the fitness values are high and there is little pressure 
to improve them. In the previous work (Rosenman 1996a, b) 
where only relatively small number of units were used 
(maximum 25) this problem did not exist. It can be seen that 
while the application of the plastic surgery has improved the 
fitness values, its main contribution is in producing better 
shapes, i.e. shapes with fewer small protrusions, etc. No 
method was used to ensure that the size of the shape (room) 
remained the same and the first shape has increased to 208 
units, the second to 206 and the third to 207, an increase of 
less than 5% in all cases.  Note that while none of the shapes 
shown are rectangles, nevertheless they could be suitable as 
rooms in certain instances. 

 

 
Figure 10. members from the run before and after plastic surgery 

VI. RE-ENGINEERING THE GENOTYPE 
A phenotype may be generated in many ways, i.e. the same 
phenotype may have different genotypes. Fig. 11 shows just 
three examples of the same shape generated by adding the 
cells in different sequences. The bold lines are the edges 
joined. The genotype description shows just the edge joining 
part of the genes for simplicity as the module added is the 
same unit square cell. 

 
Figure 11. Three different ways of generating the same shape 

 
A shape can be ordered according to different traversal 

strategies. Fig. 12 shows three such strategies. The genotype 
shown below each strategy is for the general case (n units) 
calculated according to the particular traversal carried out. 

All three strategies are based on starting at the left-hand 
bottom corner. The first strategy is based on traversing the 
shape left-to-right as far as possible, moving up one unit and 
then traversing right-to-left as far as possible, moving up one 
unit and repeating the process until all units have been 
traversed. The second strategy is based on a single direction 
traversal. That is traversing left-to-right as far as possible then 
moving up one unit from the starting point and repeating the 
process. The third strategy is based on a spiral traversal. Note 
that traversal could be carried out either horizontally or 
vertically. Other geometries, those not based on orthogonal 
axes, may need different strategies. The genotype is calculated 
by simply noting whether the traversal was carried out in a 
left-to-right, right-to-left, upward or downward direction, 
equating to a V4:V2, V2:V4, V3:V1 or V1:V3 edge joining. 
While this is not an exhaustive presentation of all possible 
strategies, it shows that it may be possible to construct a 
genotype given a phenotype where the phenotype has been 
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constructed through a sequential series of allocation of cellular 
units. 

 
Figure 12. Three different strategies for generating a shape 

VII. CONCLUSIONS 
This paper has presented a method of generating form 

through cellular growth as a simplified model of design 
through the allocation of substance to satisfy a set of given 
requirements. It has argued that evolutionary design methods 
are suitable approaches for non-routine design generation 
since they are knowledge-lean and hence suitable for 
situations where there is little a priori knowledge available 
regarding any associations between the requirements and the 
form to be generated. A simple model of allocating substances 
through gene sequences was presented, where each gene 
carries the instruction for locating one module of substance 
relative to another module. An example using square cells was 
used for simplicity although the approach could be 
generalized to 3-D polyhedral shapes. However, it is argued 
that for complex objects with large number of cells, with 
fitness functions that may be imprecise, the solutions arrived 
after a reasonable effort may still need improvement.  

The results of the implementation of the example show that 
plastic surgery is a useful method for efficiently improving 
design solutions where the evolutionary process has achieved 
stability. Plastic surgery is seen as a knowledge-based 
mutation of the form (phenotype). Though illustrated in the 
context of the 2D cellular formation of shapes and the 
smoothing of irregular perimeters, it is a general concept 
applicable to 3D forms and other applications. Other 
applications will use domain specific knowledge for their 
repair rules.  

Future work will need to take into consideration the 
allocation of units of different substances and the repair of the 
whole. This will mean deciding not only what form needs to 
be repaired but what substance should be used. 
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