

Abstract— This paper presents a methodology for producing

good design solutions more efficiently. The methodology is based on
augmenting a conventional evolutionary design approach with a
method for improving suboptimal design solutions with a domain-
specific knowledge-rich approach. This approach is based
conceptually on the practice of plastic surgery, i.e. making minor
adjustments to an entity, based on some desired qualities, i.e.
specified fitness function. Additionally, the modifications made to
the phenotype may require the re-engineering of the genotype to
accord with the modified phenotype if the entity is to be used further
in evolutionary operations. A method for genotype re-engineering is
proposed in the domain of cellular growth generation.

Keywords— evolutionary design, genetic algorithms, plastic
surgery, genetic re-engineering.

I. INTRODUCTION
ON-ROUTINE design tasks are characterized by the

lack of knowledge available for their immediate solution
[3]. Thus knowledge-lean approaches, such as evolutionary
computation methods, are well suited to the task of non-
routine design [14] [1], [2], [7]. Evolutionary computation
methods are able to arrive at reasonable solutions fairly
quickly to begin with but then need many generations to make
subsequent small improvements, [3], [11]. A great deal of
effort can be expended to make a small (but maybe critical)
improvement. In general, there is no guarantee that such an
improvement will be found. In addition, in non-routine design,
it is not always possible to perfectly specify the fitness
function such that optimal solutions will be found since the
design task is not well-known. This paper argues that, even in
such conditions, it is possible to obtain reasonable solutions
within the bounds given and then, using these resulting
solutions as a guide, make improvements to obtain better
solutions. For example, Fig. 1 (a) shows a configuration of 12
cells that may arise after a number of generations.

To produce an improvement such that the protrusion is
removed and the indentation is filled (leading to a square in
this case), Fig. 1 (b), may take a great deal effort from the
evolutionary computation process. Where the number of cells
is large, (>=100), the ability of such a system to remove such
irregularities will be inefficient. While we can see that

Manuscript received February 14, 2008.
M.A. Rosenman is with the Key Centre of Design Computing and Cognition,
The University of Sydney, Australia (phone: +61 (2) 9351; fax: 303-555-
5555; e-mail: mike@arch.usyd.edu.au).

N. Preema, is also with the Key Centre of Design Computing and
Cognition, The University of Sydney, Australia.

removing the protrusion and filling in the indentation would
lead to a good solution, the evolutionary system based on
random genetic operations (crossover and mutation) on the
genotype may not be able to produce the required solution
within a feasible timescale.

(a) an almost ‘perfect’ solution (b) an improved solution

Fig 1. Improvement of a design solution.

Plastic surgery is a practice whereby features of an entity

(generally a human) are altered to improve the appearance of
that entity. This may be for cosmetic purpose or for more
serious reasons. In all cases, the effect is on the entity itself,
i.e. the phenotype, and there is no change to the genotype
(DNA). Since evaluation is done on the phenotype, any
improvement to the phenotype gives the entity a better chance
of survival or attaining its goal, e.g. attaining self esteem,
attracting other entities, etc. Plastic surgery is generally done
to correct minor features; an entity has been generated in some
way, but is defective in some features and minor corrections
are made (to the phenotype) to improve it. It can be seen that
specialized knowledge is required to modify the phenotype.
Different domains require different knowledge. The
phenotype and the defects must be recognized and the means
for modification determined and implemented.

As in the human example, any modification to the
phenotype (design solution) is not transmitted to the genotype.
Any ‘children’ may carry the defective genes and reproduce
the same defects. However, in design, if the modified design
solution is the final solution required, and no more processing
is to take place, then this does not matter as the genotype was
just the means to the end and is no longer of any interest.
However, if the modified design solution is only a part
solution and is required to take part in further evaluation, a
problem exists since all evolutionary operations are carried
out on the genotype. In that case, its genotype must be re-
engineered to match the modified phenotype. This difficult to
implement since, in general, there is no known connection
between the phenotype and the genes in the genotype.

Knowledge-Based Repair for Knowledge-Lean
Techniques in Non-Routine Design

Michael A. Rosenman and Nicholas Preema

N

INTERNATIONAL JOURNAL of COMPUTERS, Issue 3, Vol. 1, 2007

27

Although there are some examples of genetic engineering
[10], in general, there is no universal knowledge on how to
modify the genotype to produce required characteristics of the
phenotype.

A conventional evolutionary method may be used, in
situations where the form required is not known a priori, to
produce possible solutions which are reasonably good but
need some improvement. Once the solutions are produced,
any suitable solutions can be improved by making small
modifications to the phenotype. If the resulting solution is
required to take part in further evolutionary operations,
genetic-re-engineering is required as described above. This
paper will put forward a method for re-engineering the
genotype in a given design representation.

II. EVOLUTIONARY DESIGN
While knowledge-lean methods, such as evolutionary

design, are good for discovering possible reasonable solutions
where little knowledge is known a priori regarding the form of
the solution, they are generally computationally expensive and
may not be able to make the necessary improvements in a
reasonable time with reasonable resources. Additionally, in an
environment where there exists little a priori knowledge, it is
not always possible to perfectly specify the requirements, i.e.
formulate a ‘perfect’ fitness function. On the other hand,
while knowledge-rich approaches can solve problems where
the problem is well defined and the knowledge and methods
required are also known, they operate in specific problem
areas and, even within those areas, have little capacity for
producing innovative solutions.

This paper presents an approach combines knowledge-lean
and knowledge-rich approaches to increase the efficiency of
producing good design solutions in a non-routine design
problem environment. The conventional evolutionary
computation approach generates reasonably good solutions
within given initial specifications and the proposed plastic
surgery makes small modifications as necessary based on local
knowledge of the problem once the solutions are evident.

A. A Design Representation
In general, design can be defined as the derivation of

structure (form) that will satisfy a given set of requirements
[18]. In its simplest mode, the construction of form can be
thought of as the set of decisions for locating a set of cells of
substances, where a substance may be physical (composed of
a physical material) or virtual (e.g. composed of graphic
entities or pixels). The construction of a spatial entity may be
considered as the allocation of a physical substance composed
of a ‘space’ material, i.e. a number of space cells. So, in
summary, design can be see as the generation of form which
can be produced by cellular growth. In an evolutionary design
approach, a gene selects a module of substance and allocates it
to some location. In the approach of Rosenman [14], [15], a
gene locates a module of substance relative to another module.
A gene, GN, is thus (M1, M2, L12) where M1 and M2 are two
modules of some substance and L12 is the operator for locating

module M2 relative to module M1. A module, Mi, may be a
single unit cell or a set of unit cells already grouped and, in
general, M1 and M2 need not be composed of the same
substance. Nor, in general, does a grouping of units
necessarily need be constructed of units of the same
substance. The instructions for a complete design solution, i.e.
a genotype, G, is a sequence of genes where G = (GN1, …
GNm) and GNi, i = 1,m is a gene.

In the approach, based on the joining of polygons
representing units of space, the allocation operation is founded
on the joining of polygons through their free edges
represented as vectors. Fig. 2 shows the representation of two
triangles, T1 and T2, and a square, SQ1, as closed vector
loops. The vector V1 is a vector of length 1 unit and angle
180o, the vector V2 is a vector of length 1 unit and angle 90o,
V5 is a vector of length 1 unit and angle 60o, etc. The
phenotype, P, of each polygon is given as the loop of vectors.
Since this is a loop, the start point of the loop is immaterial,
although in the examples it is given as the lowest-leftmost
point.

Polygons may be joined by conjoining counteractive (equal
and opposite) vectors [13].

When a number of squares are joined randomly the

resulting shapes (polyminos) are not likely to show much
regularity, especially if the number of squares is large. A
shape with many protrusions and indentations will have many
changes of direction on its boundary. Fig. 4 shows 40 random
generations of 16-unit polyminos.

Figure 3. 40 random generations of 16-unit polyminos

For the example in Fig. 3, using 16 cells, the evolutionary

program will evolve the shapes to find L- and T-shapes as
well as rectangles and the 4 x 4 square. However, when using
a small-scale cell to allow for small discriminations in the
dimensions, the number of total cells will be very large. For
example if the scale of the cells in Fig. 3 were reduced by a
factor of 10, allowing for increments in length of say 10cms

INTERNATIONAL JOURNAL of COMPUTERS, Issue 3, Vol. 1, 2007

28

rather than 1m, the total number of cells would be 1600. For a
large number of cells, an evolutionary process, will, after a
number of generations, give some indication of possible
satisfactory shapes but will, usually, not be able to perfectly
smooth out all the protrusions and indentations. One reason
for this may be that the fitness function is not perfectly
specified since such knowledge may be beyond the current
knowledge of the design situation. For example, a fitness
function based on minimizing the perimeter to area ratio will
find that, with a large number of cells, the number of cells at
the perimeter is small compared to the number of interior cells
which are fairly well compacted. Thus most of the solutions
will show a fairly high score for that fitness function. The
process will not be able to make any significant improvement
in any reasonable time. Fig. 4 shows a shape of 85 cells after
evolution over a number of generations. The perimeter to area
ratio shows a fitness of 85.8% compared to the ideal of a
square of area 85 (perimeter = 36.88).

Figure 4. A polymino of 85 units

The reason for the high fitness, even though the perimeter is

not very smooth, is that the central part of the shape (outlined
in bold), which contains the majority of the units, is quite
compact. Continuing the evolutionary process usually leads to
convergence on one or other of the ‘better’ solutions to date
before any major improvement is attained.

III. PLASTIC SURGERY IN EVOLUTIONARY DESIGN
In an evolutionary system, selection acts with respect to the

phenotype. Those members whose phenotypes are judged to
be well-suited to their environment will have a better chance
of survival and of propagating their genes [7]. Thus any
improvement in the phenotype, regardless of any change in
the genotype, will improve that member’s chance of survival
and propagation. Of course, this improvement will not be
transmitted to the member’s descendants. In a design domain
the fitness of the design is what counts, how it got to be that
way is secondary.

The Merriam-Webster dictionary [9] states that plastic
surgery is:

“: surgery concerned with the repair, restoration, or
improvement of lost, injured, defective, or misshapen body
parts”

Plastic surgery is aimed at improving the organism’s

survival in its environment (whatever survival may mean).
Plastic surgery is proposed here as a solution to improving a

phenotype (design solution) generated through an
evolutionary computation method. It is proposed as a general
concept where the issues are as follows:
• design solutions are produced which are reasonable but

could be improved by relatively small modifications. This
requires particular domain knowledge.

• if the design solutions are the end product of the process
then the modified phenotype is the final solution and it is
no longer necessary to consider the genotype. However, if
the ‘solution’ is part of an on-going process, e.g. a
component of a hierarchical composition, it may be
necessary to re-engineer the genotype to match it to the
new phenotype so as to enable it to be operated on by the
genetic operators.

• the modifications should be limited to relatively small
remedial improvements. It is not meant to carry out major
reconstructions of the phenotype as this leads to too large a
departure from the solutions found.

While an example in the domain of the generation of

smooth polygons will be used to demonstrate the concepts,
this paper suggests that the general principles of plastic
surgery and genetic re-engineering could be applied to all
domains since all design is a function of locating elements in a
certain configuration.

IV. METHODOLOGY
The implementation of plastic surgery consists of several

transformation functions. There exist various smoothing
algorithms mainly in image processing, where they are used to
produce smoothed surfaces from polygonal or noisy surfaces
[5], [6], [19]. Algorithms such as Potrace [12] transform
bitmap images into vector graphics. Another process uses
sampling for anti-aliassing in ray tracing [17].

(a) smoothing maintaining (b) smoothing using
sampling smaller unit size

Figure 5. Comparing plastic surgery to sampling

INTERNATIONAL JOURNAL of COMPUTERS, Issue 3, Vol. 1, 2007

29

Sampling works by overlaying a grid of larger cells on the
form. Each cell is analyzed to determine what percentage of
the cell is occupied. Cells with 50% or more occupation
would be filled in completely, while those with less than 50%
occupation would be left empty. This process is shown in Fig.
5 where it is compared to the process which allows smaller
increments of discrimination. The small-increment method is
closer to the philosophy of making minor repairs rather than
large-scale modifications and results in shapes closer to the
original shapes than the sampling method which results in
‘major reconstructions’.

Modifications can be carried out to various levels of
refinement, i.e. with respect to the number of units to be
treated. Fig. 6 shows the various examples (defects) which
may require modification. These include protrusions,
indentations and corners, ranging from one unit to several
units. The number of units in each direction may depend on
the scale, i.e. the total number of units in a shape. While Fig. 6
shows defects on one edge or corner only, the defects may
occur on any of the four edge or corner directions (for
polymino shapes).

Fig. 7 shows the rules for plastic surgery, i.e. modifying the
phenotype (shape) according to the type of defect (protrusion,
indentation or corner) and the number of units to be rectified
in the two directions. Again, it should be noted that the defect
may occur in any direction so that the depth and width of a
defect are local to the particular direction.

Figure 6. Cases for modification

The level of refinement is set by setting the depth and
width, in terms of number of units, for the plastic surgery to
take effect. The degree of refinement and the order of
implementation of the operations will determine the final
result. Different parameters and sequences will produce
different results. In the physical world it is not possible to try
several alternatives, whereas in a computational process it is
possible to try alternatives and select among them depending
on the result. Fig. 8 shows two different sequences of
operations on a shape of 50 units based on the following
operations or rules:

Rule 1: Defect = protrusion max depth = n
 max width = 1
Rule 2: Defect = indentation max depth = 1

 max width = 3
Rule 3: Defect = corner max depth = 1
 max width = 1

Rule 1 states that all protrusions of width 1 unit, no matter

their depth, are to be deleted.

Figure 7. Rules for plastic surgery of defects

Figure 8. Two different sequences for plastic surgery

The shaded and dotted units show the units added or

trimmed. The first solution has grown from 50 units to 54
units whereas the second solution has increased to 52 units.
The size of the resulting solution depends on the number of
units trimmed or filled. Since the number (size of the element)
may be critical, some constraints may need be applied
regarding the number of units trimmed or added or the number
of elements trimmed may need to be balanced by the number

INTERNATIONAL JOURNAL of COMPUTERS, Issue 3, Vol. 1, 2007

30

of elements added (and vice versa). In a very large number of
units, the number of units adjusted may not makes a
significant change to the size of the shape since the number of
units on the perimeter is small compared to the total number
of units.

A method for recognizing which shapes are suitable for
plastic surgery is based on the measure of fitness of the shape
as well as on a measure of the number of defective units with
respect to the shape’s perimeter.

V. IMPLEMENTATION EXAMPLE
An example in the domain of room designs was

implemented. Rooms need not necessarily have rectangular
shapes nor do they necessarily have to have ‘smooth’ walls.
They may have recesses but generally these need to be large
enough to accommodate furniture such as bookshelves etc. So,
in general, small protrusions and recesses in the perimeter are
not acceptable. The aim is to generate shapes for a room of 18
m2. A variation of 300 mm in each dimension was set to allow
for a wide range of possible dimensions. This results in the
arrangement of 200 square units of 300 mm x 300 mm.

The fitness functions used were those used in Rosenman
[14], [15]. A function that tends to smooth the perimeter is
that of minimizing the perimeter. The minimum perimeter of a
polymino shape is ideally a square. Using this fitness function
will tend to make shapes more compact, thus reducing the
length of the perimeter. The aim of room design is not to
necessarily produce square or rectangular shapes but to use
the fitness function to drive the evolutionary process towards
such shapes, generating other suitable shapes in the process.
Another measure of the smoothness of the perimeter is that of
minimizing the number of corners. The minimum number of
corners of a polymino shape is 4. Obviously a square has both
the minimum area and the minimum number of corners. This
function has a tendency to prefer L-shapes over T-shape. Both
these shapes will have the same perimeter to area ratio but the
L-shape has six corners compared to eight for the T-shape.

For the first function, minimizing the perimeter to area
function, the fitness is given by:

f1 = (MaxP – P / MaxP – MinP) x 100 --------- (1)
where
f1 = fitness function wrt minimum
 perimeter to area
MaxP = maximum possible perimeter for
 a shape of n units
P = perimeter of generated shape
MinP = (ideal) minimum perimeter of a
 shape of n units
and
Min P = 4√n (ideal square)
MaxP = 2n + 2 (e.g. shape of 1 unit width
 and n units length)
where
n = number of units

For the second function, that of minimizing the number of

corners, the fitness is given by:

f2 = (Max C – C / MaxC – 4) x 100 ----------- (2)
where
MaxC = maximum possible number of corners for a
 shape of n units
C = number of corners of generated shape
and
MaxC = 2n (e.g. fully stepped shape)

Both functions use a ratio of the range of possible values to

determine the normalized percentage fitness of the shape. The
total fitness is given as:

TF = (f1 + f2) /2 ------------------------------------- (3)

Different weightings could be used for each fitness function

to influence the shape towards one or the other but for this
example a simple weighting of 1 for each has been used for
simplicity.

A C++ program for Windows was written to generate and
evolve a population of polymino shapes using a genetic
algorithm based on cell addition using the edge vector
representation discussed previously and then to perform
plastic surgery. The inputs to the generation and evolution are:
the number of units, the number of members of the population
and the maximum number of generations to be run. The
genetic algorithm may terminate before the maximum number
of generations is reached if it converges or remains stable. A
run converges if the average fitness is within 5% of the best
fitness and remains stable if there is no significant change in
the best solution or average fitness over a specified number of
generations. Simple one-point crossover was used with the
best of the two populations (parent and child) kept to preserve
the best solution. The remaining members of the new
generation are selected using the roulette wheel method. The
inputs to the plastic surgery are the width and length of the
three repair cases (protrusion, indentation and corner)
specifying the scale of the repair.

The program was run several times with the following
parameters:

No. of units 200
Population 40
Max. no. of generations 60
Max. depth 1
Max width 3

Results were similar over a number of runs. Fig. 9 shows

the results of one of these runs. Fig. 9. shows a typical growth
in fitness over the 60 generations using the conventional
evolutionary process. The average fitness of the population is
72.6%. As can be seen from the graph, the population has
arrived at a fairly stable state and it could take a very large
number of additional generations to produce any improvement

INTERNATIONAL JOURNAL of COMPUTERS, Issue 3, Vol. 1, 2007

31

(if any is possible). After the application of plastic surgery, the
average fitness jumps to 89.3%. This is a 23% improvement.

Figure 9. Effect of plastic surgery after the evolutionary process

Fig. 10. shows three of the shapes subjected to plastic

surgery. It can be seen that these three members, previous to
the plastic surgery, had a high fitness (95.6 to 96.6) even
though their shapes are not all that good. The first shape is
better than the other two but still has some small changes in
direction in the upper left-hand part.

The relatively high fitness values are due to the fitness
function used which, in part measures the compactness of the
shape. Since a large proportion of the shapes is indeed
compact, the fitness values are high and there is little pressure
to improve them. In the previous work (Rosenman 1996a, b)
where only relatively small number of units were used
(maximum 25) this problem did not exist. It can be seen that
while the application of the plastic surgery has improved the
fitness values, its main contribution is in producing better
shapes, i.e. shapes with fewer small protrusions, etc. No
method was used to ensure that the size of the shape (room)
remained the same and the first shape has increased to 208
units, the second to 206 and the third to 207, an increase of
less than 5% in all cases. Note that while none of the shapes
shown are rectangles, nevertheless they could be suitable as
rooms in certain instances.

Figure 10. members from the run before and after plastic surgery

VI. RE-ENGINEERING THE GENOTYPE
A phenotype may be generated in many ways, i.e. the same
phenotype may have different genotypes. Fig. 11 shows just
three examples of the same shape generated by adding the
cells in different sequences. The bold lines are the edges
joined. The genotype description shows just the edge joining
part of the genes for simplicity as the module added is the
same unit square cell.

Figure 11. Three different ways of generating the same shape

A shape can be ordered according to different traversal

strategies. Fig. 12 shows three such strategies. The genotype
shown below each strategy is for the general case (n units)
calculated according to the particular traversal carried out.

All three strategies are based on starting at the left-hand
bottom corner. The first strategy is based on traversing the
shape left-to-right as far as possible, moving up one unit and
then traversing right-to-left as far as possible, moving up one
unit and repeating the process until all units have been
traversed. The second strategy is based on a single direction
traversal. That is traversing left-to-right as far as possible then
moving up one unit from the starting point and repeating the
process. The third strategy is based on a spiral traversal. Note
that traversal could be carried out either horizontally or
vertically. Other geometries, those not based on orthogonal
axes, may need different strategies. The genotype is calculated
by simply noting whether the traversal was carried out in a
left-to-right, right-to-left, upward or downward direction,
equating to a V4:V2, V2:V4, V3:V1 or V1:V3 edge joining.
While this is not an exhaustive presentation of all possible
strategies, it shows that it may be possible to construct a
genotype given a phenotype where the phenotype has been

INTERNATIONAL JOURNAL of COMPUTERS, Issue 3, Vol. 1, 2007

32

constructed through a sequential series of allocation of cellular
units.

Figure 12. Three different strategies for generating a shape

VII. CONCLUSIONS
This paper has presented a method of generating form

through cellular growth as a simplified model of design
through the allocation of substance to satisfy a set of given
requirements. It has argued that evolutionary design methods
are suitable approaches for non-routine design generation
since they are knowledge-lean and hence suitable for
situations where there is little a priori knowledge available
regarding any associations between the requirements and the
form to be generated. A simple model of allocating substances
through gene sequences was presented, where each gene
carries the instruction for locating one module of substance
relative to another module. An example using square cells was
used for simplicity although the approach could be
generalized to 3-D polyhedral shapes. However, it is argued
that for complex objects with large number of cells, with
fitness functions that may be imprecise, the solutions arrived
after a reasonable effort may still need improvement.

The results of the implementation of the example show that
plastic surgery is a useful method for efficiently improving
design solutions where the evolutionary process has achieved
stability. Plastic surgery is seen as a knowledge-based
mutation of the form (phenotype). Though illustrated in the
context of the 2D cellular formation of shapes and the
smoothing of irregular perimeters, it is a general concept
applicable to 3D forms and other applications. Other
applications will use domain specific knowledge for their
repair rules.

Future work will need to take into consideration the
allocation of units of different substances and the repair of the
whole. This will mean deciding not only what form needs to
be repaired but what substance should be used.

REFERENCES
[1] Bentley, P. J. (ed.), Evolutionary Design by Computers, Morgan

Kaufman, San Francisco, CA, 1999.
[2] Bentley, P. J., “Natural design by computers”, Proc of the AAAI

Symposium on Computational Synthesis, Stanford University, Palo Alto,
CA, (2003)..

[3] Coyne, R. D., Rosenman, M. A., Radford, A. D., and Balachandran, M.
B. and Gero, J. S., Knowledge Based Design, Addison-Wesley, Reading,
Mass., 1990.

[4] Goldberg, D. E., Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley Reading, Mass., 1989.

[5] Hobby, J. D, Smoothing digitized contours, Theoretical Foundations of
Computer Graphics and CAD, 1998, pp.777-793.

[6] Hoppe, H., “Progressive meshes in computer graphics”, SIGGRAPH’96
proceedings, Aug 4-9, 1996, pp.99-108.

[7] Janssen, P., Frazer, J. and Ming-Xi, T,. “Evolutionary design systems
and generative processes”, Applied Intelligence, 2002, 16:119-128.

[8] Koza, J. R., Jones, L. W., Keane, M. A., Streeter, M. W. and Al-Sakran,
S. H, “Towards automated design of industrial-strength analog circuits
by means of genetic programming”, in Genetic Programming Theory
and Practice II, U-M Oreilly, R. L. Riolo, G. Yu and W. Worzel (eds),
Klewer Academic, Boston, 2004, Chapter 8, pp121-142.

[9] Merriam-Webster Online Dictionary, http://www.m-
w.com/dictionary/Plastic+Surgery

[10] Old, R. W. and Primrose, S. B., Principles of Gene Manipulation: An
Introduction to Genetic Engineering (studies in Microbiology),
Blackwell Science 5th ed., Oxford, UK, 1994.

[11] Parmee, I. C. and Denham, J., “The integration of adaptive search
techniques with current engineering design practice”, in Proc.of
Adaptive Computing in Engineering Design and Control ’94, University
of Plymouth, Plymouth, 1994, pp1-13.

[12] Potrace, Transforming bitmaps into vector graphics,
http://potrace.sourceforge.net , 2007.

[13] Rosenman, M. A,. “An edge vector representation for the construction of
2-dimensional shapes”, Environment and Planning B:Planning and
Design, 1995, 22:191-212.

[14] Rosenman, M. A., “The generation of form using an evolutionary
approach”, in Artificial Intelligence '96, J. S. Gero and F. Sudweeks
(eds), Kluwer Academic, Dordrecht, The Netherlands, 1996a, pp.643-
662.

[15] Rosenman, M. A., “A growth model for form generation using a
hierarchical evolutionary approach”, Microcomputers in Civil
Engineering, special issue on Evolutionary Systems in Design, 1996b,
11(3):161-172.

[16] Rosenman, M. A., “A face vector representation for the construction of
polyhedra”, Environment and Planning B: Planning and Design, 1999,
26:265-280.

[17] Rossignac, J. R. and Borrel, P., “Multi-resolution 3D approximations for
rendering complex scenes”, in Geometric Modelling in Computer
Graphics, B. Falcidieno and T. L. Kunii (eds), Springer-Verlag, Genoa,
Italy, 1992, pp455-465.

[18] Simon, H. A,. The Sciences of the Artificial, MIT Press, Cambridge,
Mass., 1989.

[19] [Volino, P. and Magenat Thalman, T., “The SPHERIGON: a simple
polygonal patch for smoothing quickly your polygonal meshes”,
MIRAlab Copyright Information, 1998,
http://www.miralab.unige.ch/papers/50.pdf.

INTERNATIONAL JOURNAL of COMPUTERS, Issue 3, Vol. 1, 2007

33

