
 

 

 

Abstract— In this article a new general algorithm for triangular 
mesh simplification is proposed. The algorithm extends Krivograd's 
work from 2D to 3D. For faster execution times a hash table is used. 
The main idea of the algorithm is based on vertex removal approach. 
With this approach we remove visually less important vertices. To 
determine their visual importance, all vertices have to be evaluated. 
This way models still preserve their essential characteristics. With 
simplification we can also easily present and transfer models over the 
network. 
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I. INTRODUCTION 

HE majority of free-form geometric objects are 
represented with triangular meshes. Due to high 

performance of today’s computers, meshes can be described 

with more than 1.000.000 triangles. Such meshes can be 
rendered in real-time even on low-cost personal computers. 
However, the problem occurs when transferring such large 
meshes over the network. Namely, beside geometric data 
(coordinates of vertices), triangular meshes are also described 
by topological information, which defines how triangles fit 
together. Hence, it follows that special-purpose methods for 
topology compression have been proposed [1], [2]. 
Fortunately, high precision of transferred triangular meshes is 
not always required. Sometimes we are satisfied only with 
good visual representation of the geometric model. So we can 
afford to lose some data with simplification. There are three 
main approaches to choose from: 

 The most frequently used methods are based on 
Schroeder's et. al. simplification algorithm [3], [4]. 
First, vertices are evaluated and then incrementaly 
removed from the mesh according to their 
importance. 

 Edge simplification methods evaluate and remove 
edges. Removed edge is replaced with a vertex [5], 
[9].  

 Simplification based on triangles is possible in theory 
yet practial solutions have not been reported. 
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The algorithm presented in this article is based upon 
Schroeder’s vertex simplification method [3]. To speed up the 

search for the most suitable vertex to be removed, a hash table 
is used [6]. Krivograd et. al. suggested this approach for 2.5D 
triangular meshes [7]. The presented algorithm expands 
Krivograds’s work in 3D.  

The rest of the paper is organized as follows. In section 2 
the algorithm in general is described. Most important steps of 
the algorithm are presented in the following subsections. In 
section 3 the results are discussed and section 4 concludes the 
paper. 

II. THE ALGORITHM 

The algorithm supports 2D, 2.5D and 3D triangular meshes. 
The method, which our algorithm is based on, calculates 
weights for all vertices, before they can be removed. The input 
of the algorithm are a list of vertices and a list of triangles. The 
algorithm works in the following steps: 

1. Evaluation of all vertices (computing weights). 
2. Arrangement of all vertices into a hash table. 
3. Selection of the most proper vertex for removal. 
4. Removal of the selected vertex from the hash table and 

triangular mesh. 
5. Removal of the surrounding triangles of the removed 

vertex. 
6. Triangulation of an empty space; empty space is a 

consequence of removed triangles. 
7. Reevaluation of neighbouring vertices of the removed 

vertex. 
8. Rearrangement of reevaluated vertices in the hash 

table. Returning to step 3 until the final condition is 
reached. 
 

The final condition depends on user’s decision about visual 

quality of the simplified model. User can stop the 
simplification process at a desired level of detail. The 
algorithm also stops when only the last list of vertices remains 
in the hash table (see section 2.3). 

A. Evaluation of Vertices 

The first step of our algorithm is the evaluation of all 
vertices in a triangular mesh. This way each vertex is evaluated 
according to its visual importance. Smaller is the evaluation 
factor, the less important is the vertex. There are different 
possibilities for the evaluation criteria. For example, in 2.5D, 
two approaches are proposed [7]: 

 The vectors connecting a chosen vertex and its 
neighbouring vertices are constructed. After that, 
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angles between these vectors and the appropriate 
plane is calculated. For 2.5D triangular meshes this 
plane is XY plane. The average value of all angles 
between this plane and vectors, which are defined by 
chosen vertex and its neighbouring vertices, is 
considered as an evaluation factor. 

 All distances from evaluated vertex and its 
neighbouring vertices to XY plane are computed. The 
evaluation factor is an average difference of all 
distances between chosen vertex and its neighbouring 
vertices regarding the XY plane. 

 
In our approach, the second possibility is generalized to 3D 

triangular meshes. Instead of using the XY plane, we use an 
average plane on which the evaluation factor is calculated. 

The evaluation factor can represent the distance between the 
evaluated vertex and the line defined by its neighbouring 
vertices, if the evaluated vertex has only two neighbours. This 
case can occur only in the corners of non-closed triangular 
meshes. The most frequent situation appears when the 
evaluated vertex has three or more neighbouring vertices. In 
this case, the average plane has to be calculated. 

 The first step in determination of the average plane is the 
calculation of all possible combinations of three arbitrary 
neighbouring vertices. Each combination defines a plane in the 
space described by a normal vector. The average normal 
vector, which determines the average plane, is calculated as 
the avarage value of all normal vectors. Thus, the evaluation 
factor represents the average distances between the selected 
vertex (Fig. 1) and its neighbouring vertices regarding the 
average plane. 

 

 
Figure 1: evaluation of vertex v1 according to average plane Σ 
 

B. Visual Importance 

One of the aims of the simplification algorithm is to keep 
essential characteristics of the simplified model. With 
simplification we lose some data from our triangular mesh. It 
is very important that the data we lost during the process do 
not affect the main characteristics too much. The data which 
do not noticeably affect main characteristics are visually 
important. To keep visually important data we associate each 
vertex with a value that represents its visual importance. This 

value is called evaluation factor (see section 2.1). 
In Fig. 2 a simple example of visual important vertices in 

2.5D is shown. Vertices that have higher evaluation factor also 
have a higher visual importance (vertex v13 in Fig. 2). These 
vertices are usually farther away from the average plane or 
plane XY as is the case in the Fig. 2. Vertices that are closer to 
the plane would cause the smallest visual change on the model 
so they can be removed (vertices from v9 to v12). In case the 
model is not manifold it is important to preserve vertices that 
are connected to its boundary edges (vertices from v1 to v8). 
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Figure 2: Example of vertex visual importance 
 

C. Hash Table 

The smallest visual change in triangular mesh is caused by 
deleting a vertex with the smallest evaluation factor. After 
deleting such a vertex, the evaluation factors of its 
neighbouring vertices has to be recomputed. After that, the 
vertex with the smallest evaluation factor has to be found 
again. In this way, O(n2) time complexity is reached. To speed 
up the selection of the vertex for its removal, a hash table is 
applied as suggested by Franc and Skala [6] (Fig. 3). Vertices 
are inserted in the hash table according to their evaluation 
factors. The same heuristics for constructing the hash table as 
proposed in [7], has been used. 

 

 
Figure 3: Structure of the hash table where n is the number of 
intervals 
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The algorithm always selects the first vertex from the lowest 

non empty hash table entry. The surrounding neighbours of 
removed vertex have to be evaluated again. Normally, 
reevaluation change their evaluation factor and sometimes also 
the interval in the hash table. The reevaluated vertices are 
always placed at the end of the list of vertices in the 
corresponding interval of the hash table. This way, the local 
simplification of the triangular mesh is prevented. 

The hash table is also used to preserve the basic shape of 
geometric objects. This can be accomplished by preserving the 
last list of vertices in the hash table, where the edge vertices 
and vertices with the highest evaluation factors are stored.  

D. Triangulation 

All triangles defined by deleted vertex are removed too. The 
result is a hole in the triangular mesh which needs to be filled 
with new triangles. The outer edges of the removed triangles 
form a polygon which has to be triangulated. This polygon is 
not necessarily planar. Therefore, all vertices of this polygon 
are mapped to the average plane (see section 2.1). In Fig. 4 
vertices from v2  to v6  are projected onto vertices v'2 to v'6 of 
the planar polygon. 

 

 
Figure 4: Projection of vertices on average plane 
 
 

If the polygon is convex, the triangulation is trivial, but if it 
is concave, the well known ear cutting method [8] is applied. 
In Fig. 5 we can see a triangulation of the concave polygon. 

 

 
Figure 5: Triangulation of concave polygon 
 

 
When the triangulation of the planar polygon is finished the 

newly constructed triangles are mapped to the triangular mesh. 
Fig. 6 shows the innitial polygon filled with new triangles. 

 

 
Figure 6: Result of the triangulation 
 
 

III. RESULTS 

In this chapter we estimate theoretical time complexity and 
show practial results of the algorithm. The time complexity is 
as follows: 

 Evaluation of vertices. l neighbouring vertices of the 
evaluated vertex are needed for calculation of the 
evaluation factor. As l<<n we can suppose that 
constant time O(1) is needed. Therefore all vertices 
are evaluated in time O(n). 

 Hash table. Constructing the hash table and filling it 
with vertices is done in linear time O(n). Each step 
removes selected vertex from the hash table in 
constant time O(1). There are l << n reevaluated 
vertices. Each is inserted into the hash table in 
constant time as well. 

 The triangulation using the ear cutting method of a 
polygon having l vertices is built in time O(l). As l 

<< n the task can be considered as done in constant 
time O(1) per removed vertex.  

Therefore the common time complexity of the algorithm is 
O(n). 

The algorithm was tested on various triangular meshes. We 
simplified meshes to a level that still assures good visual 
quality. Results of the simplification of Pumpkin and Horse 
models are shown in Table I. The time graphs in Fig. 7 
confirms good behaviour of the algorithm. 

The simplification of the Pumpkin model is presented in 
figures 8, 9 and 10. In figures 11, 12 and 13 the simplification 
of the Horse model is shown. 

All measurements were performed on a computer with 
AMD Athlon XP 2800+ processor and 1GB DDR 333Mhz 
RAM. 
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TABLE I:  
SIMPLIFICATION RESULTS FOR PUMPKIN AND HORSE MODEL 

 
 
 

 
 
Figure 7: Time graphs for simplification of the Pumpkin and Horse 
models 
 
 

 
 
Figure 8: Pumpkin model with 5002 vertices and 10000 triangles 
 
 
 

 
 
Figure 9: Simplified Pumpkin model at 50% 

 
 
 

 
 
Figure 10: Simplified Pumpkin model at 10% 
 
 
 
 

 
 
Figure 11: Horse model with 48485 vertices and 96966 triangles 
 
 

Mesh % Vertices Triangles Time(s) 
 
Pumpkin 

 
Vertices:  
5002 
 
Triangles: 
10000 

90 4502 9000 0.062 
80 4002 8000 0.125 
70 3502 7000 0.188 
60 3002 6000 0.25 
50 2501 4998 0.297 
40 2001 3998 0.359 
30 1501 2998 0.406 
20 1001 1998 0.438 
10 501 998 0.484 

 
Horse 

 
Vertices: 
48485 
 
Triangles: 
96966 

90 43647 87270 6.469 
80 38788 77572 13.969 
70 33940 67876 20.782 
60 29091 58178 26.312 
50 24243 48482 29.516 
40 19394 38784 32.359 
30 15242 30480 33.437 
20 9725 19448 34.61 
10 4876 9754 35.265 
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Figure 12: Simplified Horse model at 50% 
 
 
 

 
 
Figure 13: Simplified Horse model at 30% 
 
 

IV. CONCLUSION 

In this article a simple and efficient algorithm for model 
simplification is presented. The algorithm is based on the 
vertex removal method. It is common for this method that all 
vertices have to be evaluated before simplification. 
Afterwards, vertices are arranged into a hash table according 
to their evaluation factor. This factor represents visual 
importance of the vertex. Less visually important vertices have 
lower evaluation factor and are placed at the beginning of the 
hash table. When all vertices are arranged in a hash table, the 
simplification process can begin. Process can be stopped by 
the user at any level of detail, or it stops automatically when 
all vertices have been removed except those in the last interval 
of the hash table. The hash table significantly speeds up the 
simplification process. 

The algorithm supports 2D, 2.5D and 3D triangular meshes 
that are used to represent geometrical models. With use of 
simplification we can lower the level of detail of models so 
they can be easily transferred over the network. 
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