

Abstract— In this article a new general algorithm for triangular
mesh simplification is proposed. The algorithm extends Krivograd's
work from 2D to 3D. For faster execution times a hash table is used.
The main idea of the algorithm is based on vertex removal approach.
With this approach we remove visually less important vertices. To
determine their visual importance, all vertices have to be evaluated.
This way models still preserve their essential characteristics. With
simplification we can also easily present and transfer models over the
network.

Keywords— average plane, hash table, simplification, triangular
mesh.

I. INTRODUCTION

HE majority of free-form geometric objects are
represented with triangular meshes. Due to high

performance of today’s computers, meshes can be described

with more than 1.000.000 triangles. Such meshes can be
rendered in real-time even on low-cost personal computers.
However, the problem occurs when transferring such large
meshes over the network. Namely, beside geometric data
(coordinates of vertices), triangular meshes are also described
by topological information, which defines how triangles fit
together. Hence, it follows that special-purpose methods for
topology compression have been proposed [1], [2].
Fortunately, high precision of transferred triangular meshes is
not always required. Sometimes we are satisfied only with
good visual representation of the geometric model. So we can
afford to lose some data with simplification. There are three
main approaches to choose from:

 The most frequently used methods are based on
Schroeder's et. al. simplification algorithm [3], [4].
First, vertices are evaluated and then incrementaly
removed from the mesh according to their
importance.

 Edge simplification methods evaluate and remove
edges. Removed edge is replaced with a vertex [5],
[9].

 Simplification based on triangles is possible in theory
yet practial solutions have not been reported.

Manuscript received May19, 07, revised Dec.20, 07 This work supported by

the University of Maribor, Faculty of Electrical Engineering and Computer
Science. The first author received research grant for one year.

B. Pivec and V. Domiter are with the Computer Science Department,
Faculty of Electrical Engineering and Computer Science, University of
Maribor, 2000 Maribor, Slovenia (e-mail: bostjan.pivec@uni-mb.si,
vid.domiter@uni-mb.si, web: http://gemma.uni-mb.si).

The algorithm presented in this article is based upon
Schroeder’s vertex simplification method [3]. To speed up the

search for the most suitable vertex to be removed, a hash table
is used [6]. Krivograd et. al. suggested this approach for 2.5D
triangular meshes [7]. The presented algorithm expands
Krivograds’s work in 3D.

The rest of the paper is organized as follows. In section 2
the algorithm in general is described. Most important steps of
the algorithm are presented in the following subsections. In
section 3 the results are discussed and section 4 concludes the
paper.

II. THE ALGORITHM

The algorithm supports 2D, 2.5D and 3D triangular meshes.
The method, which our algorithm is based on, calculates
weights for all vertices, before they can be removed. The input
of the algorithm are a list of vertices and a list of triangles. The
algorithm works in the following steps:

1. Evaluation of all vertices (computing weights).
2. Arrangement of all vertices into a hash table.
3. Selection of the most proper vertex for removal.
4. Removal of the selected vertex from the hash table and

triangular mesh.
5. Removal of the surrounding triangles of the removed

vertex.
6. Triangulation of an empty space; empty space is a

consequence of removed triangles.
7. Reevaluation of neighbouring vertices of the removed

vertex.
8. Rearrangement of reevaluated vertices in the hash

table. Returning to step 3 until the final condition is
reached.

The final condition depends on user’s decision about visual

quality of the simplified model. User can stop the
simplification process at a desired level of detail. The
algorithm also stops when only the last list of vertices remains
in the hash table (see section 2.3).

A. Evaluation of Vertices

The first step of our algorithm is the evaluation of all
vertices in a triangular mesh. This way each vertex is evaluated
according to its visual importance. Smaller is the evaluation
factor, the less important is the vertex. There are different
possibilities for the evaluation criteria. For example, in 2.5D,
two approaches are proposed [7]:

 The vectors connecting a chosen vertex and its
neighbouring vertices are constructed. After that,

A General Simplification Algorithm

Boštjan Pivec, Vid Domiter

T

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

307

mailto:bostjan.pivec@uni-mb.si
mailto:vid.domiter@uni-mb.si
http://gemma.uni-mb.si/

angles between these vectors and the appropriate
plane is calculated. For 2.5D triangular meshes this
plane is XY plane. The average value of all angles
between this plane and vectors, which are defined by
chosen vertex and its neighbouring vertices, is
considered as an evaluation factor.

 All distances from evaluated vertex and its
neighbouring vertices to XY plane are computed. The
evaluation factor is an average difference of all
distances between chosen vertex and its neighbouring
vertices regarding the XY plane.

In our approach, the second possibility is generalized to 3D

triangular meshes. Instead of using the XY plane, we use an
average plane on which the evaluation factor is calculated.

The evaluation factor can represent the distance between the
evaluated vertex and the line defined by its neighbouring
vertices, if the evaluated vertex has only two neighbours. This
case can occur only in the corners of non-closed triangular
meshes. The most frequent situation appears when the
evaluated vertex has three or more neighbouring vertices. In
this case, the average plane has to be calculated.

 The first step in determination of the average plane is the
calculation of all possible combinations of three arbitrary
neighbouring vertices. Each combination defines a plane in the
space described by a normal vector. The average normal
vector, which determines the average plane, is calculated as
the avarage value of all normal vectors. Thus, the evaluation
factor represents the average distances between the selected
vertex (Fig. 1) and its neighbouring vertices regarding the
average plane.

Figure 1: evaluation of vertex v1 according to average plane Σ

B. Visual Importance

One of the aims of the simplification algorithm is to keep
essential characteristics of the simplified model. With
simplification we lose some data from our triangular mesh. It
is very important that the data we lost during the process do
not affect the main characteristics too much. The data which
do not noticeably affect main characteristics are visually
important. To keep visually important data we associate each
vertex with a value that represents its visual importance. This

value is called evaluation factor (see section 2.1).
In Fig. 2 a simple example of visual important vertices in

2.5D is shown. Vertices that have higher evaluation factor also
have a higher visual importance (vertex v13 in Fig. 2). These
vertices are usually farther away from the average plane or
plane XY as is the case in the Fig. 2. Vertices that are closer to
the plane would cause the smallest visual change on the model
so they can be removed (vertices from v9 to v12). In case the
model is not manifold it is important to preserve vertices that
are connected to its boundary edges (vertices from v1 to v8).

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11v12

v13

Figure 2: Example of vertex visual importance

C. Hash Table

The smallest visual change in triangular mesh is caused by
deleting a vertex with the smallest evaluation factor. After
deleting such a vertex, the evaluation factors of its
neighbouring vertices has to be recomputed. After that, the
vertex with the smallest evaluation factor has to be found
again. In this way, O(n2) time complexity is reached. To speed
up the selection of the vertex for its removal, a hash table is
applied as suggested by Franc and Skala [6] (Fig. 3). Vertices
are inserted in the hash table according to their evaluation
factors. The same heuristics for constructing the hash table as
proposed in [7], has been used.

Figure 3: Structure of the hash table where n is the number of
intervals

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

308

The algorithm always selects the first vertex from the lowest

non empty hash table entry. The surrounding neighbours of
removed vertex have to be evaluated again. Normally,
reevaluation change their evaluation factor and sometimes also
the interval in the hash table. The reevaluated vertices are
always placed at the end of the list of vertices in the
corresponding interval of the hash table. This way, the local
simplification of the triangular mesh is prevented.

The hash table is also used to preserve the basic shape of
geometric objects. This can be accomplished by preserving the
last list of vertices in the hash table, where the edge vertices
and vertices with the highest evaluation factors are stored.

D. Triangulation

All triangles defined by deleted vertex are removed too. The
result is a hole in the triangular mesh which needs to be filled
with new triangles. The outer edges of the removed triangles
form a polygon which has to be triangulated. This polygon is
not necessarily planar. Therefore, all vertices of this polygon
are mapped to the average plane (see section 2.1). In Fig. 4
vertices from v2 to v6 are projected onto vertices v'2 to v'6 of
the planar polygon.

Figure 4: Projection of vertices on average plane

If the polygon is convex, the triangulation is trivial, but if it
is concave, the well known ear cutting method [8] is applied.
In Fig. 5 we can see a triangulation of the concave polygon.

Figure 5: Triangulation of concave polygon

When the triangulation of the planar polygon is finished the

newly constructed triangles are mapped to the triangular mesh.
Fig. 6 shows the innitial polygon filled with new triangles.

Figure 6: Result of the triangulation

III. RESULTS

In this chapter we estimate theoretical time complexity and
show practial results of the algorithm. The time complexity is
as follows:

 Evaluation of vertices. l neighbouring vertices of the
evaluated vertex are needed for calculation of the
evaluation factor. As l<<n we can suppose that
constant time O(1) is needed. Therefore all vertices
are evaluated in time O(n).

 Hash table. Constructing the hash table and filling it
with vertices is done in linear time O(n). Each step
removes selected vertex from the hash table in
constant time O(1). There are l << n reevaluated
vertices. Each is inserted into the hash table in
constant time as well.

 The triangulation using the ear cutting method of a
polygon having l vertices is built in time O(l). As l

<< n the task can be considered as done in constant
time O(1) per removed vertex.

Therefore the common time complexity of the algorithm is
O(n).

The algorithm was tested on various triangular meshes. We
simplified meshes to a level that still assures good visual
quality. Results of the simplification of Pumpkin and Horse
models are shown in Table I. The time graphs in Fig. 7
confirms good behaviour of the algorithm.

The simplification of the Pumpkin model is presented in
figures 8, 9 and 10. In figures 11, 12 and 13 the simplification
of the Horse model is shown.

All measurements were performed on a computer with
AMD Athlon XP 2800+ processor and 1GB DDR 333Mhz
RAM.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

309

TABLE I:
SIMPLIFICATION RESULTS FOR PUMPKIN AND HORSE MODEL

Figure 7: Time graphs for simplification of the Pumpkin and Horse
models

Figure 8: Pumpkin model with 5002 vertices and 10000 triangles

Figure 9: Simplified Pumpkin model at 50%

Figure 10: Simplified Pumpkin model at 10%

Figure 11: Horse model with 48485 vertices and 96966 triangles

Mesh % Vertices Triangles Time(s)

Pumpkin

Vertices:
5002

Triangles:
10000

90 4502 9000 0.062
80 4002 8000 0.125
70 3502 7000 0.188
60 3002 6000 0.25
50 2501 4998 0.297
40 2001 3998 0.359
30 1501 2998 0.406
20 1001 1998 0.438
10 501 998 0.484

Horse

Vertices:
48485

Triangles:
96966

90 43647 87270 6.469
80 38788 77572 13.969
70 33940 67876 20.782
60 29091 58178 26.312
50 24243 48482 29.516
40 19394 38784 32.359
30 15242 30480 33.437
20 9725 19448 34.61
10 4876 9754 35.265

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

310

Figure 12: Simplified Horse model at 50%

Figure 13: Simplified Horse model at 30%

IV. CONCLUSION

In this article a simple and efficient algorithm for model
simplification is presented. The algorithm is based on the
vertex removal method. It is common for this method that all
vertices have to be evaluated before simplification.
Afterwards, vertices are arranged into a hash table according
to their evaluation factor. This factor represents visual
importance of the vertex. Less visually important vertices have
lower evaluation factor and are placed at the beginning of the
hash table. When all vertices are arranged in a hash table, the
simplification process can begin. Process can be stopped by
the user at any level of detail, or it stops automatically when
all vertices have been removed except those in the last interval
of the hash table. The hash table significantly speeds up the
simplification process.

The algorithm supports 2D, 2.5D and 3D triangular meshes
that are used to represent geometrical models. With use of
simplification we can lower the level of detail of models so
they can be easily transferred over the network.

REFERENCES
[1] C. Touma, C. Gotsman, “Triangle Mesh Compression”, Graphics

Interface, 1998, pp. 26-34.
[2] P. Alliez, M. Desbrun, “Valence-Driven Connectivity Encoding for 3D

Meshes”, Computer Graphics Forum, Vol. 20, No. 3, 2001, pp. 480-
489.

[3] William J. Schroeder, Jonathan A. Zarge, William E. Lorensen,
“Decimation of Triangle Meshes”, Computer Graphics, Vol. 26, No. 2,
1992, pp. 65-70.

[4] Michael Garland, Paul S. Heckbert, “Fast Polygonal Approximation of
Terrains and Height Fields”, technical report, CMU-CS-95-181, 19.
September 1995.

[5] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, Werner
Stuetzle, “Mesh Optimization”, ACM Computer Graphics –

SIGGRAPH’93, Anaheim, California, Unated States, 1993, pp. 19-26.
[6] M. Franc, V. Skala, “Parallel Triangular Mesh Decimation Without

Sorting”, SCCG Proceedings, Budmerice, 2001, pp. 69-75.
[7] Sebastian Krivograd, Borut Žalik, Franc Novak, “Triangular mesh

decimation and undecimation for engineering data modeling”, Inf.

MIDEM, Vol. 32, No. 3, September 2002.
[8] Marko Lamot, Borut Žalik, “A fast polygon triangulation algorithm

based on uniform plane subdivision”, Computer & Graphics, Vol. 23,
No. 2, 2003, pp. 239-253.

[9] Muhhamad Hussain, Yoshihiro Okada, Koichi Niijima, “Efficient and
Feature-Preserving Triangular Mesh Decimation”, WSCG 2004, 2004,
pp. 167-174.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

311

