

Abstract—An abstract state machine (ASM) is a mathematical

model of the system’s evolving, runtime state. ASMs can be used to
faithfully capture the abstract structure and step-wise behaviour of
any discrete systems. We present a machine-executable model for an
Intelligent Vehicle Control System, implemented in the specification
language AsmL. Executable specifications are descriptions of how
software components work. The mathematical background for the
intelligent control of vehicles is represented by the stochastic
automata. A stochastic automaton can perform a finite number of
actions in a random environment. When a specific action is
performed, the environment responds by producing an environment
output that is stochastically related to the action. This response may
be favourable or unfavourable. The aim is to design an automata
system that can learn the best possible action based on the data
received from on-board sensors or from the localization system of
highway infrastructure. The reinforcement scheme presented is
shown to satisfy all necessary and sufficient conditions for absolute
expediency in a stationary environment. Some simulation results are
presented, which prove that our algorithm converges to a solution
faster than the one given in [7].The proposed model is verified
through simulation in SpecExplorer tool from Microsoft Research.

Keywords—Stochastic Learning Automata, Reinforcement
Learning, ASMs, systems modeling.

I. INTRODUCTION
HE past and present research on vehicle control
emphasizes the importance of new methodologies in order

to obtain stable longitudinal and lateral control. In this paper,
we consider stochastic learning automata as intelligent
controller within our model for an Intelligent Vehicle Control
System.

Specification and design in the software process are
inextricably mixed. Formal specifications are expressed in a
mathematical notation with precisely defined vocabulary,
syntax and semantics. To create executable specifications, we
need an industrial strength language. One such language has
been developed at Microsoft Research. It is called AsmL
(ASM Language). AsmL is a software specification language
based on abstract state machines, a mathematical model of the
system’s evolving, runtime state. AsmL specifications may be
run as a program, for instance, to simulate how a particular

Manuscript received April 13, 2007; Revised received December 28, 2007
Florin Stoica is with the Department of Computer Science,

Lucian Blaga University of Sibiu, Faculty of Sciences, Str. Dr. Ion Ratiu 5-7,
550012, Sibiu, ROMANIA (e-mail: florin.stoica@ulbsibiu.ro).

system will behave or to check the behavior of an
implementation against its specification.

The meaning of these executable specifications comes in
the form of an abstract state machine (ASM), a mathematical
model of the discrete system’s evolving, runtime state.

II. GUREVICH ABSTRACT STATE MACHINES

Gurevich abstract state machines, formerly known as
evolving algebras or ealgebras, were introduced in [6]. We
present here a self-contained introduction to ASMs.

A. States
The notion of ASM state is a variation of the notion of

(first-order) structure in mathematical logic.
A vocabulary is a collection of function symbols and

relation symbols (or predicates) each with a fixed arity.
Symbols split into dynamic and static. Every vocabulary
contains (static) logic symbols: nullary function names true,
false, undef, the equality symbol, and the standard
propositional connectives.

A state S of a given vocabulary V is a non-empty set X (the
superuniverse of S), together with interpretations of the
function symbols (the basic functions of S) and the predicates
(the basic relations of S) in V over X.

A function (respectively relation) symbol of arity r is
interpreted as a r-ary operation (respectively relation) over X.
A nullary function symbol is interpreted as an element of X.
The logic symbols are interpreted in the obvious way.

Let f be a relation symbol of arity r. We require that (the
interpretation of) f is true or false for every r-tuple of elements
of S. If f is unary, it can be viewed as a universe: the set of
elements a for which f(a) evaluates to true.

Let f be an r-ary basic function and U0,…,Ur be universes.
We say that f has type U1 x…x Ur → U0 in a given state if f(x)
is in the universe U0 for every x ∈ U1 x…x Ur, and f(x) has the
value undef otherwise.

B. Updates
A state is viewed as a kind of memory. Dynamic functions

are those that can change during computation. A location of a
state S is a pair l = (f, (x1,…, xj)) where f is a j-ary dynamic
function (or relation) symbol in the vocabulary of S and
(x1,…, xj) is a j-tuple of elements of S. The element y =
f(x1,…,xj) is the content of that location.

An update of state S is a pair (l, y'), where l is a location (f,
(x1,…, xj)) of S and y' is an element of S; of course y' is true or

An executable model for an Intelligent Vehicle
Control System

Florin Stoica

T

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

325

false if f is a predicate. To fire the update (l, y'), replace the
old value y = f(x1,…, xj) at location l with the new value y' so
that f(x1,…, xj) = y' in the new state.

A set Upd = {(l1, y'1), ..., (ln, y'n)} of updates is consistent if
the locations are distinct. In other words, Upd is inconsistent if
there are i, j such that li = lj but y'i is distinct from y'j.
(Example: set-valued variables can be updated partially by
inserting and removing individual set members; several such
updates are non-conflicting partial updates if the set of
updates is consistent, i.e. don't both insert and remove the
same element).

C. Transition Rules
Expressions are defined inductively. If f is a j-ary function

symbol and e1,...,ej are expressions then f(e1,...,ej) is an
expression. (The base of induction is obtained when j = 0.) If f
is a predicate then the expression is Boolean.

An update rule R has the form:
f(e1,..., ej) := e0
where f is a j-ary dynamic function symbol and each ei is an

expression. (If f is a predicate then e0 should be a Boolean
expression). To execute R, fire the update (l, a0) where l = (f,
(a1,..., aj)) and each ai is the value of ei.

A conditional rule R has the form:
if e then R1 else R2
where e is a Boolean expression and R1, R2 are rules. To

execute R, evaluate the guard e. If e is true, then execute R1;
otherwise execute R2.

A do-in-parallel rule R has the form:
do in-parallel
R1
R2
where R1, R2 are rules. To execute R, execute rules R1, R2

simultaneously.
A do-forall rule R has the form:
forall x ∈ set_expr
R1(x)
where set_expr is a set expression, R1(x) is a rule and x does

not occur freely in the expression set_expr. To execute R,
execute all subrules R1(x) with x in set_expr at once.

A choose rule R has the form:
choose x ∈ set_expr
R1(x)
where R1(x) is a rule and x does not occur freely in the set

expression set_expr. To execute R, choose any element x of
set_expr and execute the subrule R1(x).

The behaviour of a machine (its run) can always be
depicted as a sequence of states linked by state transitions.
The run starts form initial state and can be seen as what
happens when the control logic is applied to each state in turn:

S1 ⇒ S2 ⇒ S3 ⇒ …
 The machine’s control logic behaves like a fix set of

transition rules that say how state may evolve.

III. STOCHASTIC LEARNING AUTOMATA
An automaton is a machine or control mechanism designed

to automatically follow a predetermined sequence of
operations or respond to encoded instructions. The term
stochastic emphasizes the adaptive nature of the automaton
we describe here. The automaton described here does not
follow predetermined rules, but adapts to changes in its
environment. This adaptation is the result of the learning
process. Learning is defined as any permanent change in
behavior as a result of past experience, and a learning system
should therefore have the ability to improve its behavior with
time, toward a final goal.

The stochastic automaton attempts a solution of the
problem without any information on the optimal action
(initially, equal probabilities are attached to all the actions).
One action is selected at random, the response from the
environment is observed, action probabilities are updated
based on that response, and the procedure is repeated. A
stochastic automaton acting as described to improve its
performance is called a learning automaton. The algorithm
that guarantees the desired learning process is called a
reinforcement scheme [5].

Mathematically, the environment is defined by a triple
},,{ βα c where },...,,{ 21 rαααα = represents a finite set

of actions being the input to the environment, },{ 21 βββ =

represents a binary response set, and },...,,{ 21 rcccc = is a

set of penalty probabilities, where ic is the probability that

action iα will result in an unfavourable response. Given that
0)(=nβ is a favourable outcome and 1)(=nβ is an

unfavourable outcome at time instant ...),2,1,0(=nn , the

element ic of c is defined mathematically by:

rinnPc ii ...,,2,1))(|1)((==== ααβ
The response values can be represented in three different

models. In the P-model (described above), the response values
are either 0 or 1, in the S-model the response values are
continuous in the range (0, 1) and in the Q-model the values
belong to a finite set of discrete values in the range (0, 1).

The environment can further be split up in two types,
stationary and nonstationary. In a stationary environment the
penalty probabilities will never change. In a nonstationary
environment the penalties will change over time.

In order to describe the reinforcement schemes, is defined
)(np , a vector of action probabilities:

rinPnp ii ,1),)(()(=== αα
Updating action probabilities can be represented as follows:

)](),(),([)1(nnnpTnp βα=+
where T is a mapping. This formula says the next action
probability)1(+np is updated based on the current
probability)(np , the input from the environment and the
resulting action. If)1(+np is a linear function of)(np , the
reinforcement scheme is said to be linear; otherwise it is

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

326

termed nonlinear.

IV. REINFORCEMENT SCHEMES

A. Performance Evaluation
A learning automaton generates a sequence of actions on

the basis of its interaction with the environment. If the
automaton is “learning” in the process, its performance must
be superior to “intuitive” methods. In the following we will
consider the simplest case, the P-model and stationary random
environments.

Consider a stationary random environment with penalty
probabilities

},...,,{ 21 rccc where))(|1)((ii nnPc ααβ === .
We define a quantity)(nM as the average penalty for a

given action probability vector:

∑∑
==

==∗==

===
r

i
ii

r

i
ii npcnPnnP

npnPnM

11

)())(())(|1)((

))(|1)(()(

ααααβ

β

An automaton is absolutely expedient if the expected value

of the average penalty at one iteration step is less than it was
at the previous step for all steps:)()1(nMnM <+ for all n
[10].

Absolutely expedient learning schemes are presently the
only class of schemes for which necessary and sufficient
conditions of design are available. The algorithm we will
present in this paper is derived from a nonlinear absolutely
expedient reinforcement scheme presented by [7].

B. Absolutely expedient reinforcement schemes
The reinforcement scheme is the basis of the learning

process for learning automata. The general solution for
absolutely expedient schemes was found by Lakshmivarahan
and Thathachar [5].

A learning automaton may send its action to multiple
environments at the same time. In that case, the action of the
automaton results in a vector of responses from environments
(or “teachers”). In a stationary N-teacher P-model
environment, if an automaton produced the action iα and the

environment responses are Njj
i ,...,1=β at time instant n ,

then the vector of action probabilities)(np is updated as
follows [7]:

∑∑
≠
==

−∗⎥
⎦

⎤
⎢
⎣

⎡
+=+

r

ij
j

j

N

k

k
iii np

N
npnp

11

))((1)()1(φβ

∑∑
≠
==

∗⎥
⎦

⎤
⎢
⎣

⎡
−−

r

ij
j

j

N

k

k
i np

N 11

))((11 ψβ

))((11

))((1)()1(

1

1

np
N

np
N

npnp

j

N

k

k
i

j

N

k

k
ijj

ψβ

φβ

∗⎥
⎦

⎤
⎢
⎣

⎡
−+

+∗⎥
⎦

⎤
⎢
⎣

⎡
−=+

∑

∑

=

=
 (1)

for all ij ≠ where the functions iφ and iψ satisfy the
following conditions:

))((
)(
))((

...
)(
))((

1

1 np
np
np

np
np

r

r λ
φφ

=== (2)

))((
)(
))((

...
)(
))((

1

1 np
np
np

np
np

r

r μ
ψψ

===

∑
≠
=

>+
r

ij
j

ji npnp
1

0))(()(φ (3)

∑
≠
=

<−
r

ij
j

ji npnp
1

1))(()(ψ (4)

0))(()(>+ npnp jj ψ (5)

1))(()(<− npnp jj φ (6)

for all }{\},...,1{ irj ∈

The conditions (3)-(6) ensure that rkpk ,1,10 =<< .

Theorem If the functions))((npλ and))((npμ satisfy

the following conditions:
0))((≤npλ
0))((≤npμ (7)

0))(())((<+ npnp μλ
then the automaton with the reinforcement scheme in (1) is
absolutely expedient in a stationary environment.

The proof of this theorem can be found in [9]

V. A NEW NONLINEAR REINFORCEMENT SCHEME
Because the above theorem is also valid for a single-teacher

model, we can define a single environment response that is a
function f of many teacher outputs.

Thus, we can update the above algorithm as
follows:

)](1[)()1(
)](1[))(()()1(

npf
npnHfnpnp

i

iii

−∗−∗−−
−−∗∗−∗+=+

θ
θ

)()()1(

)())(()()1(

npf

npnHfnpnp

j

jjj

∗−∗−+

+∗∗−∗−=+

θ

θ
 (8)

for all ij ≠ , i.e.:

)())((npnp kk ∗−= θψ

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

327

)()())((npnHnp kk ∗∗−= θφ
where the learning parameter θ is a real value which satisfy:

10 << θ .
The function H is defined as:

{{
⎩
⎨
⎧

−
−

= ,
))(1(

)(
minmax;1min)(ε

θ np
np

nH
i

i

 }}0;
)(
)(1

,1 ⎪
⎭

⎪
⎬

⎫

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∗

−

≠
=

ij
rjj

j

np
np

ε
θ

Parameter ε is an arbitrarily small positive real number.
Our reinforcement scheme differs from the one given in [7]

by the definition of these two functions: H and kφ .
We will show that are satisfied all the conditions of the

reinforcement scheme (1).
From (2) we have:

))(()(
)(

)()(
)(
))((

npnH
np

npnH
np
np

k

k

k

k λθ
θφ

=∗−=
∗∗−

=

))((
)(

)(
)(
))((

np
np

np
np
np

k

k

k

k μθ
θψ

=−=
∗−

=

The rest of the conditions translate to the following:
Condition (3):

))(1(
)(

)()())(1()(

0))(1()()(

0))(()(
1

np
np

nHnpnpnH

npnHnp

npnp

i

i
ii

ii

r

ij
j

ji

−∗
<⇔<−∗∗

⇔>−∗∗−

⇔>+ ∑
≠
=

θ
θ

θ

φ

This condition is satisfied by the definition of the function
)(nH .

Condition (4):

1))(1()(1))(()(
1

<−∗+⇔<− ∑
≠
=

npnpnpnp ii

r

ij
j

ji θψ

But 1)(1)())(1()(=−+<−∗+ npnpnpnp iiii θ since
10 << θ

Condition (5):
0)()(0))(()(>∗−⇔>+ npnpnpnp jjjj θψ for all

}{\},...,1{ irj ∈
But 0)1()()()(>−∗=∗− θθ npnpnp jjj since

10 <<θ and 1)(0 << np j for all }{\},...,1{ irj ∈

Condition (6):
1)()()(1))(()(<∗∗+⇔<− npnHnpnpnp jjjj θφ for

all }{\},...,1{ irj ∈
We have:

)(
)(1

)(1)()()(
np
np

nHnpnHnp
j

j
jj ∗

−
<⇔<∗∗+

θ
θ for

all }{\},...,1{ irj ∈ .
This condition is satisfied by the definition of the function

)(nH .
With all conditions of the equations (1) satisfied, we

conclude that the reinforcement scheme is a candidate for
absolute expediency.

Furthermore, the functions λ and μ for our nonlinear
scheme satisfy the following:

0)())((≤∗−= nHnp θλ
0))((≤−= θμ np

0))(1())(())((<+∗−=+ nHnpnp θμλ
because 10 << θ and 1)(0 ≤≤ nH
In conclusion, we state the algorithm given in equations (8)

is absolutely expedient in a stationary environment.

VI. SIMULATION RESULTS

A. Problem formulation
Reinforcement learning is justified if it is easier to

implement the reinforcement function than the desired
behavior, or if the behavior generated presents desirable
emergent properties (like generalization, robustness,
redundancy, adaptability) which cannot be directly built. This
last reason is certainly the best motivation for the use of
reinforcement learning in autonomous robotics.

To show that our algorithm converges to a solution faster
than the one given in [7], let us consider a simple example.
Figure 1 illustrates a grid world in which a robot navigates.
Shaded cells represent barriers. The current position of the
robot is marked by a circle.

Fig. 1 A grid world for robot navigation

Navigation is done using four actions },,,{ WESN=α ,
the actions denoting the four possible movements along the
coordinate directions [8].

B. Comparative results
We compared two reinforcement schemes using these four

actions and two different initial conditions. The data shown in
Table 1 are the results of two different initial conditions where
in first case all probabilities are initially the same and in
second case the optimal action initially has a small probability
value (0.0005), with only one action receiving reward (i.e.,
optimal action).

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

328

 Average number of steps to reach popt=0.9999
 4 actions with

4,1,4/1)0(== ipi
4 actions with

3/9995.0

,0005.0)0(

=

=

≠opti

opt

p

p

θ Alg. From [7] New alg. Alg. From [7] New alg.
0.01 644.84 633.96 921.20 905.18
0.03 222.45 216.69 332.89 324.59
0.05 136.99 130.41 202.96 198.25
0.1 70.81 63.09 105.12 99.20
0.2 34.73 30.90 53.35 50.93
0.5 11.06 9.75 22.50 19.43

Table 1 Convergence rates for a single optimal action of a
4-action automaton in a stationary environment (200 runs for

each parameter set)

Comparing values from corresponding columns, we
conclude that our algorithm converges to a solution faster than
the one given in [7].

VII. USING STOCHASTIC LEARNING AUTOMATA FOR
INTELLIGENT VEHICLE CONTROL

The task of creating intelligent systems that we can rely on
is not trivial. In this section, we present a method for
intelligent vehicle control, having as theoretical background
Stochastic Learning Automata. We visualize the planning
layer of an intelligent vehicle as an automaton (or automata
group) in a nonstationary environment. We attempt to find a
way to make intelligent decisions here, having as objectives
conformance with traffic parameters imposed by the highway
infrastructure (management system and global control), and
improved safety by minimizing crash risk. The aim here is to
design an automata system that can learn the best possible
action based on the data received from on-board sensors, of
from roadside-to-vehicle communications. For our model, we
assume that an intelligent vehicle is capable of two sets of
lateral and longitudinal actions. Lateral actions are LEFT
(shift to left lane), RIGHT (shift to right lane) and LINE_OK
(stay in current lane). Longitudinal actions are ACC
(accelerate), DEC (decelerate) and SPEED_OK (keep current
speed). An autonomous vehicle must be able to “sense” the
environment around itself. Therefore, we assume that there are
four different sensors modules on board the vehicle (the
headway module, two side modules and a speed module), in
order to detect the presence of a vehicle traveling in front of
the vehicle or in the immediately adjacent lane and to know
the current speed of the vehicle. These sensor modules
evaluate the information received from the on-board sensors
or from the highway infrastructure in the light of the current
automata actions, and send a response to the automata.

The response from physical environment is a combination
of outputs from the sensor modules. Because an input
parameter for the decision blocks is the action chosen by the
stochastic automaton, is necessary to use two distinct
functions 1F and 2F for mapping the outputs of decision

blocks in inputs for the two learning automata, namely the
longitudinal automaton and respectively the lateral automaton.

After updating the action probability vectors in both
learning automata, using the nonlinear reinforcement scheme
presented in section 5, the outputs from stochastic automata
are transmitted to the regulation layer. The regulation layer
handles the actions received from the two automata in a
distinct manner, using for each of them a regulation buffer. If
an action received was rewarded, it will be introduced in the
regulation buffer of the corresponding automaton, else in
buffer will be introduced a certain value which denotes a
penalized action by the physical environment. The regulation
layer does not carry out the action chosen immediately;
instead, it carries out an action only if it is recommended k
times consecutively by the automaton, where k is the length
of the regulation buffer. After an action is executed, the action

probability vector is initialized to
r
1

, where r is the number

of actions. When an action is executed, regulation buffer is
initialized also.

VIII. SENSOR MODULES
The four teacher modules mentioned above are decision

blocks that calculate the response (reward/penalty), based on
the last chosen action of automaton. Table 2 describes the
output of decision blocks for side sensors.

As seen in Table 2, a penalty response is received from the
left sensor module when the action is LEFT and there is a
vehicle in the left or the vehicle is already traveling on the
leftmost lane. There is a similar situation for the right sensor
module.

The Headway (Frontal) Module is defined as shown in
Table 3. If there is a vehicle at a close distance (< admissible
distance), a penalty response is sent to the automaton for
actions LINE_OK, SPEED_OK and ACC. All other actions
(LEFT, RIGHT, DEC) are encouraged, because they may
serve to avoid a collision.

The Speed Module compares the actual speed with the
desired speed, and based on the action chosen send a feedback
to the longitudinal automaton.

The reward response indicated by 0* (from the Headway
Sensor Module) is different than the normal reward response,
indicated by 0: this reward response has a higher priority and
must override a possible penalty from other modules.

 Left/Right Sensor Module

Actions
Vehicle in sensor

range or no
adjacent lane

No vehicle in
sensor range and

adjacent lane exists
LINE_OK 0/0 0/0

LEFT 1/0 0/0
RIGHT 0/1 0/0
Table 2 Outputs from the Left/Right Sensor Module

 Headway Sensor Module

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

329

Actions
Vehicle in range
(at a close frontal

distance)

No vehicle in
range

LINE_OK 1 0
LEFT 0 0

RIGHT 0 0
SPEED_OK 1 0

ACC 1 0
DEC 0* 0

Table 3 Outputs from the Headway Module

 Speed Sensor Module

Actions Speed:
too slow

Acceptable
speed

Speed:
too fast

SPEED_OK 1 0 1
ACC 0 0 1
DEC 1 0 0

Table 4 Outputs from the Speed Module

IX. AN ASML MODEL FOR INTELLIGENT VEHICLE CONTROL
In this section is described an AsmL program-model for

Intelligent Vehicle Control. In Figure 2 is showed the class
diagram of our AsmL model.

Fig. 2 The class diagram of the AsmL model

From this model are given detailed descriptions of the
sensor modules and their outputs, definitions of functions for
mapping the outputs of decision blocks in inputs for the two
learning automata, namely the longitudinal automaton and
respectively the lateral automaton, the learning process which
are using the reinforcement scheme from section 5 and the
selection of the action to be executed, according to the policy
imposed through the regulation buffers.

For the longitudinal automaton, the environment response
has the following form:
function reward(action as Integer) as Double
 var combine as Integer
 step
 combine := (max x | x in
 {speedModule(action),frontModule(action)})
 step
 if (combine = 2) combine := 0

 step
 return combine as Double

The speed module and the headway (frontal) module are
specified as follows:
function frontModule(action as Integer) as Integer
 match action
 SPEED_OK:
 return auto.frontSensor()
 ACC:
 return auto.frontSensor()
 DEC:
 if (auto.frontSensor()=1)
 return 2
 else
 return 0
 _:
 return 0
function speedModule(action as Integer) as Integer
 match action
 SPEED_OK:
 if (auto.speedSensor() <> 0)
 return 1
 else
 return 0
 DEC:
 if (auto.speedSensor() = -1)
 return 1
 else
 return 0
 ACC:
 if (auto.speedSensor() = 1)
 return 1
 else
 return 0
 _:
 return 0

The frontSensor() method of the class Automobile are using
the highway infrastructure in order to obtain the current
position of headway vehicle, and return 1 (penalty) if there is
such a vehicle at a lower distance than the minimum
admissible distance, respectively 0 (reward) in other case.
function frontSensor() as Integer
 if (h.inFront(me))
 return 1
 else
 return 0
where h is the Highway object which are supervising the
traffic. The inFront() method of class Highway must detect if
there is an vehicle in front of the driven vehicle, at a distance
lower than the minimum admissible distance:
function inFront(auto as Automobile) as Boolean
 if exists a in cars where
 (a.getLane() = auto.getLane())
 and (a.getX() - auto.getX() < front_dist)
 and (a.getX() - auto.getX() > 0.0)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

330

 return true
 else
 return false
where cars represents the set of all vehicles which are running
on the highway.
The learning process of the longitudinal automaton is
described by the following method:
procedure learning()
 var i as Integer = 0
 var f as Double = 0.0
 var h as Double = 0.0
 var doIt as Boolean = false
 // choose an action
 step
 i := getAction()
 // compute environment response
 step
 f := reward(i)
 step for k = 1 to HISTORY-1
 regulation_layer(k-1):=regulation_layer(k)
 step
 if (f = 0)
 regulation_layer(HISTORY-1) := i
 else
 // ignore the action
 regulation_layer(HISTORY-1) := -1
 doIt:=true
 step for k = 0 to HISTORY - 1
 if (regulation_layer(k)<>i)
 doIt:=false
 step
 if (doIt)
 init()
 match i
 ACC:
 auto.setCurrentSpeed(
 auto.getCurrentSpeed()+delta)
 DEC:
 if (auto.getCurrentSpeed() > delta)
 auto.setCurrentSpeed(
 auto.getCurrentSpeed()-delta)
 step
 h := H(i)
 // update action probabilities
 // according to the our reinforcement scheme
 step
 p(i):=p(i)+f*(-t*h)*(1.0-p(i))-
 (1.0-f)*(-t)*(1.0-p(i))
 step for j=0 to ACTIONS-1
 if (j <> i)
 p(j):=p(j)-f*(-t*h)*p(j)+(1.0-f)*(-t)*p(j)

The function H of the nonlinear reinforcement scheme is
specified as follows:
function H(i as Integer) as Double
 var h as Double = 0.0

 step
 h := p(i)/(t*(1.0-p(i)))-eps
 step for j=0 to ACTIONS-1
 if (j <> i)
 h := (min x | x in {h, (1.0-p(j))/(t*p(j))-eps })
 step
 h := (max x | x in {h, 0.0})
 step
 h := (min x | x in {h, 1.0})
 step
 return h

X. SIMULATION USING SCENARIOS
Spec Explorer is a software development tool for model-

based specification and testing. Spec Explorer can help
software development teams to detect errors in the design,
specification and implementation of their systems [14].

The core idea behind Spec Explorer is to encode a system's
intended behavior (its specification) in machine-executable
form (as an AsmL "model program" [13]) which capture the
relevant states of the system and show the constraints that a
correct implementation must follow. The goal is to specify
from a chosen viewpoint what the system must do, what it
may do and what it must not do.

Also, Spec Explorer is used to explore the possible runs of
the specification-program to validate designs, in other words,
to see that no incorrect scenarios arise as a consequence of the
design and that required scenarios are possible.

Discrepancies between actual and expected results are
called conformance failures and may indicate any of the
following: implementation bug, modeling error, specification
error or design error.

The output of the exploration feature consists of possible
runs of the model program that it discovers. Spec Explorer
represents this data as a finite-state machine (FSM). The
nodes of the FSM are the states of the model program before
and after the invocation of a top-level method (an action).
Actions are the top-level methods that cause transition of the
system from one state to another. Scenario actions represent
sequences of subactions given programmatically. In the
typical case, we use a scenario action to drive the system into
a desired initial state.

In our model, there is a scenario action Main():
[Action(Kind=ActionAttributeKind.Scenario)]
Main()
 require init = false
 step
 h := new Highway()
 step
 a1 := new Automobile(“auto1”, 0, 95, 100, h)
 a2 := new Automobile(“auto2”, 0, 110, 80, h)
 // …
step
 // partial update
 h.addCar(a1)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

331

 h.addCar(a2)
 // …
 step
 init := true

The object Highway represents the highway infrastructure,
namely the localization system of the vehicles. After objects
instantiations, the AsmL model is simulated in SpecExplorer
through the execution of the Run() action, within all vehicles
included in the scenario are driving in parallel, in an
intelligent fashion.
[Action]
procedure Run()
 require init = true
 step forall a in h.cars
 a.Driving()

Using SpecExplorer, we can detect error states (having the
red color in the FSM generated by the exploration algorithm),
and then, using the information provided by the SpecExplorer
related to the error discovered, we can correct our model or
design.

By example, an error can occur from a postcondition
violation (in method setLane()).

Fig. 3 An error state in SpecExplorer

procedure setLane(lane as Integer)
 step
 me.lane := lane
 me.y := lane * Highway.laneWidth +
 Highway.laneWidth/2
 step
 require not (exists a in h.cars
 where lane = a.getLane()
 and (a.getX()-me.getX()) < h.front_dist and
 (a.getX()-me.getX()) > -h.front_dist)

XI. CONCLUSION
Reinforcement learning has attracted rapidly increasing

interest in the machine learning and artificial intelligence
communities. Its promise is beguiling - a way of programming
agents by reward and punishment without needing to specify
how the task (i.e., behavior) is to be achieved. Reinforcement
learning allows, at least in principle, to bypass the problems of
building an explicit model of the behavior to be synthesized
and its counterpart, a meaningful learning base (supervised
learning).

The reinforcement scheme presented in this paper satisfies
all necessary and sufficient conditions for absolute expediency
in a stationary environment. Used within a simulator of an
Intelligent Vehicle Control System, this new reinforcement
scheme has proved its efficiency.

An AsmL model program typically does much less than the
implementation; it does just enough to capture the relevant
states of the system and show the constraints that a correct
implementation must follow. The goal is to specify from a
chosen viewpoint what the system must do, what it may do
and what it must not do.

Exploration of the the possible runs of the specification-
program using SpecExplorer was used to validate the model,
in other words, to see that no incorrect scenarios arise as a
consequence of the design and that required scenarios are
possible.

REFERENCES
[1] A. Barto, S. Mahadevan, Recent advances in hierarchical reinforcement

learning, Discrete-Event Systems journal, Special issue on
Reinforcement Learning, 2003.

[2] R. Sutton, A. Barto, Reinforcement learning: An introduction, MIT-
press, Cambridge, MA, 1998.

[3] O. Buffet, A. Dutech, and F. Charpillet. Incremental reinforcement
learning for designing multi-agent systems, In J. P. Müller, E. Andre, S.
Sen, and C. Frasson, editors, Proceedings of the Fifth International
Conference onAutonomous Agents, pp. 31–32,Montreal, Canada, 2001.
ACM Press.

[4] J. Moody, Y. Liu, M. Saffell, and K. Youn. Stochastic direct
reinforcement: Application to simple games with recurrence, In
Proceedings of Artificial Multiagent Learning. Papers from the 2004
AAAI Fall Symposium,Technical Report FS-04-02, 2004.

[5] S. Lakshmivarahan, M.A.L. Thathachar, Absolutely Expedient Learning
Algorithms for Stochastic Automata, IEEE Transactions on Systems,
Man and Cybernetics, vol. SMC-6, pp. 281-286, 1973

[6] Gurevich Y., Evolving Algebras 1993: Lipari Guide, Specification and
Validation Methods, ed. E. Börger, Oxford University Press, 1995, pg.
9-36.

[7] Cem Ünsal, Pushkin Kachroo, John S. Bay, Multiple Stochastic
Learning Automata for Vehicle Path Control in an Automated Highway
System, IEEE Transactions on Systems, Man, and Cybernetics -part A:
systems and humans, vol. 29, no. 1, january 1999

[8] Florin Stoica, Emil M. Popa, An Absolutely Expedient Learning
Algorithm for Stochastic Automata, WSEAS Transactions on Computers,
Issue 2, Volume 6, February 2007, ISSN 1109-2750, pp. 229-235

[9] N. Baba, New Topics in Learning Automata: Theory and Applications,
Lecture Notes in Control and Information Sciences Berlin, Germany:
Springer-Verlag, 1984.

[10] K. S. Narendra, M. A. L. Thathachar, Learning Automata: an
introduction, Prentice-Hall, 1989.

[11] C. Rivero, Characterization of the absolutely expedient learning
algorithms for stochastic automata in a non-discrete space of actions,
ESANN'2003 proceedings - European Symposium on Artificial Neural
Networks Bruges (Belgium), 23-25 April 2003, d-side publi., ISBN 2-
930307-03-X, pp. 307-312

[12] K.P. Topon, I. Hitoshi, Reinforcement Learning Estimation of
Distribution Algorithm, Proceedings of the Genetic and Evolutionary
Computation Conference 2003 (GECCO2003)

[13] Foundations of Software Engineering - Microsoft Research, AsmL: The
Abstract State Machine Language, Reference manual, revised 2006,
Available: http://research.microsoft.com/fse/asml/

[14] Foundations of Software Engineering - Microsoft Research, Spec
Explorer Reference, Reference manual, Available:

 http://research.microsoft.com/specexplorer/.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

332

