
 

 

  
Abstract—An abstract state machine (ASM) is a mathematical 

model of the system’s evolving, runtime state. ASMs can be used to 
faithfully capture the abstract structure and step-wise behaviour of 
any discrete systems. We present a machine-executable model for an 
Intelligent Vehicle Control System, implemented in the specification 
language AsmL. Executable specifications are descriptions of how 
software components work. The mathematical background for the 
intelligent control of vehicles is represented by the stochastic 
automata. A stochastic automaton can perform a finite number of 
actions in a random environment. When a specific action is 
performed, the environment responds by producing an environment 
output that is stochastically related to the action. This response may 
be favourable or unfavourable. The aim is to design an automata 
system that can learn the best possible action based on the data 
received from on-board sensors or from the localization system of 
highway infrastructure. The reinforcement scheme presented is 
shown to satisfy all necessary and sufficient conditions for absolute 
expediency in a stationary environment. Some simulation results are 
presented, which prove that our algorithm converges to a solution 
faster than the one given in [7].The proposed model is verified 
through simulation in SpecExplorer tool from Microsoft Research. 
 

Keywords—Stochastic Learning Automata, Reinforcement 
Learning, ASMs, systems modeling.  

I. INTRODUCTION 
HE past and present research on vehicle control 
emphasizes the importance of new methodologies in order 

to obtain stable longitudinal and lateral control.  In this paper, 
we consider stochastic learning automata as intelligent 
controller within our model for an Intelligent Vehicle Control 
System. 

Specification and design in the software process are 
inextricably mixed. Formal specifications are expressed in a 
mathematical notation with precisely defined vocabulary, 
syntax and semantics. To create executable specifications, we 
need an industrial strength language. One such language has 
been developed at Microsoft Research. It is called AsmL 
(ASM Language). AsmL is a software specification language 
based on abstract state machines, a mathematical model of the 
system’s evolving, runtime state. AsmL specifications may be 
run as a program, for instance, to simulate how a particular 
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system will behave or to check the behavior of an 
implementation against its specification. 

The meaning of these executable specifications comes in 
the form of an abstract state machine (ASM), a mathematical 
model of the discrete system’s evolving, runtime state.   

II. GUREVICH ABSTRACT STATE MACHINES 

Gurevich abstract state machines, formerly known as 
evolving algebras or ealgebras, were introduced in [6]. We 
present here a self-contained introduction to ASMs.  

A. States 
The notion of ASM state is a variation of the notion of 

(first-order) structure in mathematical logic. 
A vocabulary is a collection of function symbols and 

relation symbols (or predicates) each with a fixed arity. 
Symbols split into dynamic and static. Every vocabulary 
contains (static) logic symbols: nullary function names true, 
false, undef, the equality symbol, and the standard 
propositional connectives. 

A state S of a given vocabulary V is a non-empty set X (the 
superuniverse of S), together with interpretations of the 
function symbols (the basic functions of S) and the predicates 
(the basic relations of S) in V over X. 

A function (respectively relation) symbol of arity r is 
interpreted as a r-ary operation (respectively relation) over X. 
A nullary function symbol is interpreted as an element of X. 
The logic symbols are interpreted in the obvious way. 

Let f be a relation symbol of arity r. We require that (the 
interpretation of) f is true or false for every r-tuple of elements 
of S. If f is unary, it can be viewed as a universe: the set of 
elements a for which f(a) evaluates to true. 

Let f be an r-ary basic function and U0,…,Ur be universes. 
We say that f has type U1 x…x Ur → U0 in a given state if f(x) 
is in the universe U0 for every x ∈ U1 x…x Ur, and f(x) has the 
value undef otherwise.  

B. Updates 
A state is viewed as a kind of memory. Dynamic functions 

are those that can change during computation. A location of a 
state S is a pair l = (f, (x1,…, xj)) where f is a j-ary dynamic 
function (or relation) symbol in the vocabulary of S and 
(x1,…, xj) is a j-tuple of elements of S. The element y = 
f(x1,…,xj) is the content of that location. 

An update of state S is a pair (l, y'), where l is a location (f, 
(x1,…, xj)) of S and y' is an element of S; of course y' is true or 
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false if f is a predicate. To fire the update (l, y'), replace the 
old value y = f(x1,…, xj) at location l with the new value y' so 
that f(x1,…, xj) = y' in the new state.  

A set Upd = {(l1, y'1), ..., (ln, y'n)} of updates is consistent if 
the locations are distinct. In other words, Upd is inconsistent if 
there are i, j such that li = lj but y'i is distinct from y'j. 
(Example: set-valued variables can be updated partially by 
inserting and removing individual set members; several such 
updates are non-conflicting partial updates if the set of 
updates is consistent, i.e. don't both insert and remove the 
same element).  

C. Transition Rules 
Expressions are defined inductively. If f is a j-ary function 

symbol and e1,...,ej are expressions then f(e1,...,ej) is an 
expression. (The base of induction is obtained when j = 0.) If f 
is a predicate then the expression is Boolean. 

An update rule R has the form: 
f(e1,..., ej) := e0  
where f is a j-ary dynamic function symbol and each ei is an 

expression. (If f is a predicate then e0 should be a Boolean 
expression). To execute R, fire the update (l, a0) where l = (f, 
(a1,..., aj)) and each ai is the value of ei. 

A conditional rule R has the form: 
if e then R1 else R2 
where e is a Boolean expression and R1, R2 are rules. To 

execute R, evaluate the guard e. If e is true, then execute R1; 
otherwise execute R2. 

A do-in-parallel rule R has the form: 
do in-parallel 
R1 
R2 
where R1, R2 are rules. To execute R, execute rules R1, R2 

simultaneously. 
A do-forall rule R has the form: 
forall x ∈ set_expr 
R1(x) 
where set_expr is a set expression, R1(x) is a rule and x does 

not occur freely in the expression set_expr. To execute R, 
execute all subrules R1(x) with x in set_expr at once. 

A choose rule R has the form: 
choose x ∈ set_expr 
R1(x) 
where R1(x) is a rule and x does not occur freely in the set 

expression set_expr. To execute R, choose any element x of 
set_expr and execute the subrule R1(x). 

The behaviour of a machine (its run) can always be 
depicted as a sequence of states linked by state transitions. 
The run starts form initial state and can be seen as what 
happens when the control logic is applied to each state in turn: 

S1 ⇒ S2 ⇒ S3 ⇒ … 
 The machine’s control logic behaves like a fix set of 

transition rules that say how state may evolve. 

III. STOCHASTIC LEARNING AUTOMATA 
An automaton is a machine or control mechanism designed 

to automatically follow a predetermined sequence of 
operations or respond to encoded instructions. The term 
stochastic emphasizes the adaptive nature of the automaton 
we describe here. The automaton described here does not 
follow predetermined rules, but adapts to changes in its 
environment. This adaptation is the result of the learning 
process. Learning is defined as any permanent change in 
behavior as a result of past experience, and a learning system 
should therefore have the ability to improve its behavior with 
time, toward a final goal. 

The stochastic automaton attempts a solution of the 
problem without any information on the optimal action 
(initially, equal probabilities are attached to all the actions). 
One action is selected at random, the response from the 
environment is observed, action probabilities are updated 
based on that response, and the procedure is repeated. A 
stochastic automaton acting as described to improve its 
performance is called a learning automaton. The algorithm 
that guarantees the desired learning process is called a 
reinforcement scheme [5]. 

Mathematically, the environment is defined by a triple 
},,{ βα c  where },...,,{ 21 rαααα =  represents a finite set 

of actions being the input to the environment, },{ 21 βββ =  

represents a binary response set, and },...,,{ 21 rcccc =  is a 

set of penalty probabilities, where ic  is the probability that 

action iα  will result in an unfavourable response. Given that 
0)( =nβ  is a favourable outcome and 1)( =nβ  is an 

unfavourable outcome at time instant ...),2,1,0( =nn , the 

element ic  of c  is defined mathematically by: 

rinnPc ii ...,,2,1))(|1)(( ==== ααβ  
The response values can be represented in three different 

models. In the P-model (described above), the response values 
are either 0 or 1, in the S-model the response values are 
continuous in the range (0, 1) and in the Q-model the values 
belong to a finite set of discrete values in the range (0, 1). 

The environment can further be split up in two types, 
stationary and nonstationary. In a stationary environment the 
penalty probabilities will never change. In a nonstationary 
environment the penalties will change over time. 

In order to describe the reinforcement schemes, is defined 
)(np , a vector of action probabilities:  

rinPnp ii ,1),)(()( === αα  
Updating action probabilities can be represented as follows:  

)](),(),([)1( nnnpTnp βα=+  
where T is a mapping. This formula says the next action 
probability )1( +np  is updated based on the current 
probability )(np , the input from the environment and the 
resulting action. If )1( +np  is a linear function of )(np , the 
reinforcement scheme is said to be linear; otherwise it is 

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 1, 2007

326



 

 

termed nonlinear.  

IV. REINFORCEMENT SCHEMES 

A. Performance Evaluation 
A learning automaton generates a sequence of actions on 

the basis of its interaction with the environment. If the 
automaton is “learning” in the process, its performance must 
be superior to “intuitive” methods. In the following we will 
consider the simplest case, the P-model and stationary random 
environments. 

Consider a stationary random environment with penalty 
probabilities  

},...,,{ 21 rccc  where ))(|1)(( ii nnPc ααβ === .  
We define a quantity )(nM  as the average penalty for a 

given action probability vector: 
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An automaton is absolutely expedient if the expected value 

of the average penalty at one iteration step is less than it was 
at the previous step for all steps: )()1( nMnM <+  for all n  
[10]. 

Absolutely expedient learning schemes are presently the 
only class of schemes for which necessary and sufficient 
conditions of design are available. The algorithm we will 
present in this paper is derived from a nonlinear absolutely 
expedient reinforcement scheme presented by [7]. 

B. Absolutely expedient reinforcement schemes 
The reinforcement scheme is the basis of the learning 

process for learning automata. The general solution for 
absolutely expedient schemes was found by Lakshmivarahan 
and Thathachar [5].  

A learning automaton may send its action to multiple 
environments at the same time. In that case, the action of the 
automaton results in a vector of responses from environments 
(or “teachers”). In a stationary N-teacher P-model 
environment, if an automaton produced the action iα  and the 

environment responses are Njj
i ,...,1=β  at time instant n , 

then the vector of action probabilities )(np  is updated as 
follows [7]: 

 

∑∑
≠
==

−∗⎥
⎦

⎤
⎢
⎣

⎡
+=+

r

ij
j

j

N

k

k
iii np

N
npnp

11

))((1)()1( φβ

∑∑
≠
==

∗⎥
⎦

⎤
⎢
⎣

⎡
−−

r

ij
j

j

N

k

k
i np

N 11

))((11 ψβ

))((11

))((1)()1(

1

1

np
N

np
N

npnp

j

N

k

k
i

j

N

k

k
ijj

ψβ

φβ

∗⎥
⎦

⎤
⎢
⎣

⎡
−+

+∗⎥
⎦

⎤
⎢
⎣

⎡
−=+

∑

∑

=

=
    (1) 

for all ij ≠  where the functions iφ  and iψ  satisfy the 
following conditions: 
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for all }{\},...,1{ irj ∈   

The conditions (3)-(6) ensure that rkpk ,1,10 =<< . 
 
Theorem If the functions ))(( npλ  and ))(( npμ  satisfy 

the following conditions: 
0))(( ≤npλ  
0))(( ≤npμ                (7) 

0))(())(( <+ npnp μλ   
then the automaton with the reinforcement scheme in (1) is 
absolutely expedient in a stationary environment.  

The proof of this theorem can be found in [9] 

V. A NEW NONLINEAR REINFORCEMENT SCHEME 
Because the above theorem is also valid for a single-teacher 

model, we can define a single environment response that is a 
function f  of many teacher outputs. 

Thus, we can update the above algorithm as 
follows:

)](1[)()1(
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for all ij ≠ , i.e.: 

)())(( npnp kk ∗−= θψ  
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)()())(( npnHnp kk ∗∗−= θφ  
where the learning parameter θ  is a real value which satisfy: 

10 << θ . 
The function H  is defined as: 
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Parameter ε  is an arbitrarily small positive real number. 
Our reinforcement scheme differs from the one given in [7] 

by the definition of these two functions: H and kφ . 
We will show that are satisfied all the conditions of the 

reinforcement scheme (1). 
From (2) we have: 
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The rest of the conditions translate to the following: 
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This condition is satisfied by the definition of the function 
)(nH . 

Condition (4): 
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But 1)(1)())(1()( =−+<−∗+ npnpnpnp iiii θ  since 
10 << θ  

Condition (5):  
0)()(0))(()( >∗−⇔>+ npnpnpnp jjjj θψ  for all 

}{\},...,1{ irj ∈   
But 0)1()()()( >−∗=∗− θθ npnpnp jjj  since 

10 <<θ  and 1)(0 << np j  for all }{\},...,1{ irj ∈  

Condition (6): 
1)()()(1))(()( <∗∗+⇔<− npnHnpnpnp jjjj θφ  for 

all }{\},...,1{ irj ∈  
We have: 
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j
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θ
θ  for 

all }{\},...,1{ irj ∈ . 
This condition is satisfied by the definition of the function 

)(nH . 
With all conditions of the equations (1) satisfied, we 

conclude that the reinforcement scheme is a candidate for 
absolute expediency. 

Furthermore, the functions λ  and μ  for our nonlinear 
scheme satisfy the following: 

0)())(( ≤∗−= nHnp θλ  
0))(( ≤−= θμ np  

0))(1())(())(( <+∗−=+ nHnpnp θμλ  
because 10 << θ  and 1)(0 ≤≤ nH  
In conclusion, we state the algorithm given in equations (8) 

is absolutely expedient in a stationary environment.  

VI. SIMULATION RESULTS 

A. Problem formulation 
Reinforcement learning is justified if it is easier to 

implement the reinforcement function than the desired 
behavior, or if the behavior generated presents desirable 
emergent properties (like generalization, robustness, 
redundancy, adaptability) which cannot be directly built. This 
last reason is certainly the best motivation for the use of 
reinforcement learning in autonomous robotics. 

To show that our algorithm converges to a solution faster 
than the one given in [7], let us consider a simple example. 
Figure 1 illustrates a grid world in which a robot navigates. 
Shaded cells represent barriers. The current position of the 
robot is marked by a circle. 

 
   
   
   

Fig. 1 A grid world for robot navigation 
 

Navigation is done using four actions },,,{ WESN=α , 
the actions denoting the four possible movements along the 
coordinate directions [8].  

 
B. Comparative results 
We compared two reinforcement schemes using these four 

actions and two different initial conditions. The data shown in 
Table 1 are the results of two different initial conditions where 
in first case all probabilities are initially the same and in 
second case the optimal action initially has a small probability 
value (0.0005), with only one action receiving reward (i.e., 
optimal action). 
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 Average number of steps to reach popt=0.9999 
 4 actions with 

4,1,4/1)0( == ipi  
4 actions with 

3/9995.0

,0005.0)0(

=

=

≠opti

opt

p

p
 

θ  Alg. From [7] New alg. Alg. From [7] New alg. 
0.01 644.84 633.96 921.20 905.18 
0.03 222.45 216.69 332.89 324.59 
0.05 136.99 130.41 202.96 198.25 
0.1 70.81 63.09 105.12 99.20 
0.2 34.73 30.90 53.35 50.93 
0.5  11.06 9.75 22.50 19.43 

Table 1 Convergence rates for a single optimal action of a 
4-action automaton in a stationary environment (200 runs for 

each parameter set) 
 

Comparing values from corresponding columns, we 
conclude that our algorithm converges to a solution faster than 
the one given in [7]. 

VII. USING STOCHASTIC LEARNING AUTOMATA FOR 
INTELLIGENT VEHICLE CONTROL 

The task of creating intelligent systems that we can rely on 
is not trivial. In this section, we present a method for 
intelligent vehicle control, having as theoretical background 
Stochastic Learning Automata. We visualize the planning 
layer of an intelligent vehicle as an automaton (or automata 
group) in a nonstationary environment.  We attempt to find a 
way to make intelligent decisions here, having as objectives 
conformance with traffic parameters imposed by the highway 
infrastructure (management system and global control), and 
improved safety by minimizing crash risk. The aim here is to 
design an automata system that can learn the best possible 
action based on the data received from on-board sensors, of 
from roadside-to-vehicle communications. For our model, we 
assume that an intelligent vehicle is capable of two sets of 
lateral and longitudinal actions. Lateral actions are LEFT 
(shift to left lane), RIGHT (shift to right lane) and LINE_OK 
(stay in current lane). Longitudinal actions are ACC 
(accelerate), DEC (decelerate) and SPEED_OK (keep current 
speed). An autonomous vehicle must be able to “sense” the 
environment around itself. Therefore, we assume that there are 
four different sensors modules on board the vehicle (the 
headway module, two side modules and a speed module), in 
order to detect the presence of a vehicle traveling in front of 
the vehicle or in the immediately adjacent lane and to know 
the current speed of the vehicle. These sensor modules 
evaluate the information received from the on-board sensors 
or from the highway infrastructure in the light of the current 
automata actions, and send a response to the automata.  

The response from physical environment is a combination 
of outputs from the sensor modules. Because an input 
parameter for the decision blocks is the action chosen by the 
stochastic automaton, is necessary to use two distinct 
functions 1F  and 2F  for mapping the outputs of decision 

blocks in inputs for the two learning automata, namely the 
longitudinal automaton and respectively the lateral automaton.   

After updating the action probability vectors in both 
learning automata, using the nonlinear reinforcement scheme 
presented in section 5, the outputs from stochastic automata 
are transmitted to the regulation layer.  The regulation layer 
handles the actions received from the two automata in a 
distinct manner, using for each of them a regulation buffer. If 
an action received was rewarded, it will be introduced in the 
regulation buffer of the corresponding automaton, else in 
buffer will be introduced a certain value which denotes a 
penalized action by the physical environment. The regulation 
layer does not carry out the action chosen immediately; 
instead, it carries out an action only if it is recommended k  
times consecutively by the automaton, where k  is the length 
of the regulation buffer. After an action is executed, the action 

probability vector is initialized to 
r
1

, where r  is the number 

of actions. When an action is executed, regulation buffer is 
initialized also. 

VIII. SENSOR MODULES 
The four teacher modules mentioned above are decision 

blocks that calculate the response (reward/penalty), based on 
the last chosen action of automaton. Table 2 describes the 
output of decision blocks for side sensors. 

As seen in Table 2, a penalty response is received from the 
left sensor module when the action is LEFT and there is a 
vehicle in the left or the vehicle is already traveling on the 
leftmost lane. There is a similar situation for the right sensor 
module. 

The Headway (Frontal) Module is defined as shown in 
Table 3. If there is a vehicle at a close distance (< admissible 
distance), a penalty response is sent to the automaton for 
actions LINE_OK, SPEED_OK and ACC. All other actions 
(LEFT, RIGHT, DEC) are encouraged, because they may 
serve to avoid a collision. 

The Speed Module compares the actual speed with the 
desired speed, and based on the action chosen send a feedback 
to the longitudinal automaton. 

The reward response indicated by 0* (from the Headway 
Sensor Module) is different than the normal reward response, 
indicated by 0: this reward response has a higher priority and 
must override a possible penalty from other modules. 

 
 Left/Right Sensor Module  

Actions 
Vehicle in sensor 

range or no 
adjacent lane 

No vehicle in 
sensor range and 

adjacent lane exists 
LINE_OK 0/0 0/0 

LEFT 1/0 0/0 
RIGHT 0/1 0/0 
Table 2 Outputs from the Left/Right Sensor Module 

 
 Headway Sensor Module  
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Actions 
Vehicle in range 
(at a close frontal 

distance) 

No vehicle in 
range  

LINE_OK 1 0 
LEFT 0 0 

RIGHT 0 0 
SPEED_OK 1 0 

ACC 1 0 
DEC 0* 0 

Table 3 Outputs from the Headway Module 
 

 Speed Sensor Module  

Actions Speed: 
too slow 

Acceptable 
speed 

Speed: 
too fast 

SPEED_OK 1 0 1 
ACC 0 0 1 
DEC 1 0 0 

Table 4 Outputs from the Speed Module 

IX. AN ASML MODEL FOR INTELLIGENT VEHICLE CONTROL 
In this section is described an AsmL program-model for 

Intelligent Vehicle Control. In Figure 2 is showed the class 
diagram of our AsmL model. 

 
Fig. 2 The class diagram of the AsmL model 

From this model are given detailed descriptions of the 
sensor modules and their outputs, definitions of functions for 
mapping the outputs of decision blocks in inputs for the two 
learning automata, namely the longitudinal automaton and 
respectively the lateral automaton, the learning process which 
are using the reinforcement scheme from section 5 and the 
selection of the action to be executed, according to the policy 
imposed through the regulation buffers. 

For the longitudinal automaton, the environment response 
has the following form: 
function reward(action as Integer) as Double 
  var combine as Integer 
  step 
     combine :=  (max x | x in  
     {speedModule(action),frontModule(action)}) 
  step 
     if (combine = 2) combine := 0 

  step 
     return combine as Double 

The speed module and the headway (frontal) module are 
specified as follows: 
function frontModule(action as Integer) as Integer 
        match action 
            SPEED_OK: 
                return auto.frontSensor() 
            ACC: 
                return auto.frontSensor() 
            DEC: 
                if (auto.frontSensor()=1) 
                    return 2 
                else 
                    return 0 
            _: 
                return 0 
function speedModule(action as Integer) as Integer 
         match action 
             SPEED_OK: 
                 if (auto.speedSensor() <> 0) 
                     return 1 
                 else 
                     return 0 
             DEC: 
                 if (auto.speedSensor() = -1) 
                     return 1 
                 else 
                     return 0 
             ACC: 
                 if (auto.speedSensor() = 1) 
                     return 1 
                 else 
                     return 0 
             _: 
                return 0 

The frontSensor() method of the class Automobile are using 
the highway infrastructure in order to obtain the current 
position of headway vehicle, and return 1 (penalty) if there is 
such a vehicle at a lower distance than the minimum 
admissible distance, respectively 0 (reward) in other case. 
function frontSensor() as Integer 
    if (h.inFront(me)) 
        return 1 
    else 
        return 0 
where h is the Highway object which are supervising the 
traffic. The inFront() method of class Highway must detect if 
there is an vehicle in front of the driven vehicle, at a distance 
lower than the minimum admissible distance: 
function inFront(auto as Automobile) as Boolean 
        if exists a in cars where  
           (a.getLane() = auto.getLane()) 
           and (a.getX() - auto.getX() < front_dist) 
           and (a.getX() - auto.getX() > 0.0) 
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               return true 
        else 
               return false 
where cars represents the set of all vehicles which are running 
on the highway.  
The learning process of the longitudinal automaton is 
described by the following method: 
procedure learning() 
        var i as Integer = 0 
        var f as Double = 0.0 
        var h as Double = 0.0 
        var doIt as Boolean = false 
        // choose an action 
        step 
            i := getAction() 
        // compute environment response 
        step 
            f := reward(i) 
        step for k = 1 to HISTORY-1 
            regulation_layer(k-1):=regulation_layer(k) 
        step  
            if (f = 0) 
                regulation_layer(HISTORY-1) := i 
            else 
                // ignore the action 
                regulation_layer(HISTORY-1) := -1 
            doIt:=true 
        step for k = 0 to HISTORY - 1 
            if (regulation_layer(k)<>i) 
                doIt:=false 
        step 
            if (doIt) 
                init() 
                match i 
                    ACC: 
                        auto.setCurrentSpeed( 
                        auto.getCurrentSpeed()+delta) 
                    DEC: 
                        if (auto.getCurrentSpeed() > delta) 
                              auto.setCurrentSpeed( 
                              auto.getCurrentSpeed()-delta) 
        step 
            h := H(i) 
        // update action probabilities 
        // according to the our reinforcement scheme 
        step        
            p(i):=p(i)+f*(-t*h)*(1.0-p(i))- 
                     (1.0-f)*(-t)*(1.0-p(i)) 
        step for j=0 to ACTIONS-1 
            if (j <> i) 
                p(j):=p(j)-f*(-t*h)*p(j)+(1.0-f)*(-t)*p(j) 

The function H of the nonlinear reinforcement scheme is 
specified as follows:  
function H(i as Integer) as Double 
    var h as Double = 0.0 

    step 
            h := p(i)/(t*(1.0-p(i)))-eps 
    step for j=0 to ACTIONS-1 
            if (j <> i) 
                h := (min x | x in {h, (1.0-p(j))/(t*p(j))-eps }) 
    step 
            h := (max x | x in {h, 0.0}) 
    step 
            h := (min x | x in {h, 1.0}) 
    step 
           return h 

X. SIMULATION USING SCENARIOS 
Spec Explorer is a software development tool for model-

based specification and testing. Spec Explorer can help 
software development teams to detect errors in the design, 
specification and implementation of their systems [14].  

The core idea behind Spec Explorer is to encode a system's 
intended behavior (its specification) in machine-executable 
form (as an AsmL "model program" [13]) which capture the 
relevant states of the system and show the constraints that a 
correct implementation must follow. The goal is to specify 
from a chosen viewpoint what the system must do, what it 
may do and what it must not do. 

Also, Spec Explorer is used to explore the possible runs of 
the specification-program to validate designs, in other words, 
to see that no incorrect scenarios arise as a consequence of the 
design and that required scenarios are possible. 

Discrepancies between actual and expected results are 
called conformance failures and may indicate any of the 
following: implementation bug, modeling error, specification 
error or design error. 

The output of the exploration feature consists of possible 
runs of the model program that it discovers. Spec Explorer 
represents this data as a finite-state machine (FSM). The 
nodes of the FSM are the states of the model program before 
and after the invocation of a top-level method (an action). 
Actions are the top-level methods that cause transition of the 
system from one state to another. Scenario actions represent 
sequences of subactions given programmatically. In the 
typical case, we use a scenario action to drive the system into 
a desired initial state. 

In our model, there is a scenario action Main(): 
[Action(Kind=ActionAttributeKind.Scenario)] 
Main() 
  require init = false 
  step 
      h := new Highway()  
  step 
      a1 := new Automobile(“auto1”, 0, 95, 100, h) 
      a2 := new Automobile(“auto2”, 0, 110, 80, h) 
      // …       
step 
      // partial update 
      h.addCar(a1) 
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      h.addCar(a2) 
      // … 
  step 
      init := true 

The object Highway represents the highway infrastructure, 
namely the localization system of the vehicles. After objects 
instantiations, the AsmL model is simulated in SpecExplorer 
through the execution of the Run() action, within all vehicles 
included in the scenario are driving in parallel, in an 
intelligent fashion. 
[Action] 
procedure Run() 
    require init = true  
    step forall a in h.cars 
            a.Driving() 

Using SpecExplorer, we can detect error states (having the 
red color in the FSM generated by the exploration algorithm), 
and then, using the information provided by the SpecExplorer 
related to the error discovered, we can correct our model or 
design.  

By example, an error can occur from a postcondition 
violation (in method setLane()). 

 
Fig. 3 An error state in SpecExplorer 

procedure setLane(lane as Integer) 
    step 
        me.lane := lane 
        me.y := lane * Highway.laneWidth +  
                Highway.laneWidth/2 
    step 
        require not (exists a in h.cars  
        where lane = a.getLane()  
        and (a.getX()-me.getX()) < h.front_dist and 
        (a.getX()-me.getX()) > -h.front_dist) 

XI. CONCLUSION  
Reinforcement learning has attracted rapidly increasing 

interest in the machine learning and artificial intelligence 
communities. Its promise is beguiling - a way of programming 
agents by reward and punishment without needing to specify 
how the task (i.e., behavior) is to be achieved. Reinforcement 
learning allows, at least in principle, to bypass the problems of 
building an explicit model of the behavior to be synthesized 
and its counterpart, a meaningful learning base (supervised 
learning).  

The reinforcement scheme presented in this paper satisfies 
all necessary and sufficient conditions for absolute expediency 
in a stationary environment. Used within a simulator of an 
Intelligent Vehicle Control System, this new reinforcement 
scheme has proved its efficiency. 

An AsmL model program typically does much less than the 
implementation; it does just enough to capture the relevant 
states of the system and show the constraints that a correct 
implementation must follow. The goal is to specify from a 
chosen viewpoint what the system must do, what it may do 
and what it must not do. 

Exploration of the the possible runs of the specification-
program using SpecExplorer was used to validate the model, 
in other words, to see that no incorrect scenarios arise as a 
consequence of the design and that required scenarios are 
possible. 
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