

 49

Abstract — This paper presents a novel approach to automatic tag

recommendation for weblogs/blogs. It makes use of collective
intelligence extracted from Web 2.0 collaborative tagging as well as
word semantics to learn how to predict the best set of tags to use, using
a hybrid artificial neural network (ANN). Web 2.0 represents the
“second generation” of Web applications with new technologies that
allow people to work, collaborate and share knowledge in innovative
manners. An important characteristic of Web 2.0 is that it embraces
the power of the web to harness collective intelligence of its users. In
particular, the rise of blogging is one of the most highly touted
phenomena of the Web 2.0 era. Weblog or blog is an important
innovation that makes it easy to publish information, engage
discussion and form communities on the Internet. The use of “tags”
has recently become very popular as a mean of annotating and
organizing everything on the web, from photos, videos and music to
blogs. The use of tags has originally produced a “folksonomy”, a
system in which the meaning of a tag is determined by its use among
the community as a whole. Unfortunately, tagging is a manual process
and limited to the users’ own knowledge and experience. A blog
author might not be aware that there may be more accurate or popular
tags to describe his/her content. Collaborative tagging use collective
intelligence by observing how different users tag similar content. Our
ANN-based algorithm learns this collective intelligence and then
reuses it to automatically generate tag suggestions for blog authors
based on the semantic content of blog entries.

Keywords—Web 2.0, Blog, Collaborative Tagging, Intelligent
Systems, Machine Learning.

1. INTRODUCTION
Web 2.0 represents the “second generation” of Web

applications with new technologies that allow people to work,
collaborate and share knowledge in innovative manners. An
important characteristic of Web 2.0 is that it embraces the
power of the web to harness collective intelligence of its users.
In particular, the rise of blogging is one of the most highly
touted phenomena of the Web 2.0 era. Weblog or blog is an
important innovation that makes it easy to publish information,
engage discussion and form communities on the Internet.
Weblogs or blogs are web sites consisting of content (or
“entries”) that are dated and displayed in reverse chronological
order. Many people think of blogs as online public journals. Its
easy-of-use has made it the leading decentralized publishing
technology in the Web 2.0 world. Basically anyone with access
to the Internet can now publish content, allowing anyone to
quickly and easily disseminate their opinions to a very wide

audience. The contents of blogs may vary from personal
journals, markets or product commentaries, to news and current
affairs. In addition, the number of blogs has also grown
exponentially to estimated tens of millions to over a hundred
million blogs by the end of 2006. Therefore, creating
technologies that allow people to easily and quickly find high
quality blog content that they are interested in is a very
important but difficult task. Our research in automatic tag
recommendation is a way to maximize the chances that blog
contents will reach those potentially interested in it through
more accurate tagging that makes use of collective intelligence
of the billion Internet users.

The tens of millions of blogs in the world are interlinked to

form what is known as the blogosphere. To support this Web
2.0 phenomenon, special technologies such as custom blog
search, analysis engines, and systems that employ specialized
information retrieval techniques were invented, all with the aim
to make finding information in the gigantic blogosphere easier.
In particular, tagging is a popular technique to facilitate the
organization and retrieval of blog entries. Tags can be thought
of as key words or key phrases attached to documents or objects
(blog entries, photos, music, or videos) to help describe those
objects. The use of keywords is of course not new. It has been
used in categorizing or indexing in the traditional library
systems. Keywords provide an easy way to categorize, search,
and browse content. Tagging is a term to describe the new set of
Web 2.0 technologies to support keywords online, such as
collaborative tagging.

One of the characteristics of Web 2.0 collaborative tagging is

the ingenious use of “open vocabularies” instead of a
formalized ontology. Tags are not selected by professional
annotators, but by the average content authors themselves.
Although this may sound counter-intuitive, but tags created
organically without any centralized control is more interesting
that a formalized ontology as it harnesses the collective
intelligence of hundred of millions of people! With a rich pool
of tags, tags can group documents into broad categories [5] that
can solve the problem of synonyms, pluralization and
misspelling by using the shared knowledge of other users. The
use of tags has organically produced a “folksonomy” [17], [8],
short for “folk taxonomy”, a system in which the meaning of a
tag is determined by its use among the community as a whole.
Technorati.com is one of the most popular sites related to the
tagging of blogs, while sites like furl.com and del.icio.us help

A Web 2.0 Tag Recommendation Algorithm
Using Hybrid ANN Semantic Structures

Sigma On Kee Lee and Andy Hon Wai Chun

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

50

users collaborate on tagging webpages. Flickr.com is an
example of using tags to describe photos.

In our research, we describe a novel approach to automatic

tag suggestion that makes use of collective intelligence from
collaborative tagging combined with semantic-driven ANN
learning to produce a set of most relevant tags for the user to
select from. The result of ANN learning is a network that
encodes richness and subtleties in mapping content to tags. The
results produced will be a list of weighted or prioritized tags
that are most relevant to the given blog. In simple terms, our
system basically learns how to tag by observing how other
humans tag their own blog content. This learned knowledge is
then used to automatically generate tag suggestions for new
blog entries.

2. RESEARCH BACKGROUND
Tagging is a way to organize content through labeling. It

tries to associate meaning to online content such as blogs,
photos, videos and music. Tags are keywords or key phrases
that can be associated with content as a simple form of metadata.
To a computer, tags serve as a set of atomic symbols that are
associated with an object. Unlike the keyword systems used in
libraries in which users select keywords from a predefined list,
users can choose any string to use as a tag. The idea of using
tags to annotate content recently become quite popular within
the blogging community. The idea of tagging is not new,
photo-organizing tools have used tagging for ages, and HTML
has had the ability to allow META keywords to describe a
document since HTML 2.0 [4] since 1996.

In a tagging system, an item of content will typically have

one or more “tags” associated with it. Tagging software
automatically provides links to other items that share the same
tag, or even to specified collections of tags (via AI clustering).
This allows multiple "browseable paths" through the content to
facilitate search and retrieval of related items.

While using tags is flexible and easy, tagging is not without

its drawbacks. Tags are just strings without any semantic
meaning. For example, the tag “apple” might refer to the fruit,
or Apple Computer. The lack of semantic distinction in tags can
lead to inappropriate connections between items. In addition,
selection of tags is highly dependent on the individual.
Different people may use drastically different terms to describe
similar content. A case in point, items related to a version of
Apple Computer's operating system might be tagged both
“OSX,” “Tiger,” and possibly many other terms. Users of
tagging systems have to make “intelligent guesses” to
determine the most appropriate tag to use or search for.

Collaborative tagging offers an interesting alternative to

current efforts. Collaborative tagging is portrayed as a kind of
shared knowledge. It allows users to share their tags with other

users. It allows users to publicly tag and share content, so that
they can categorize information for themselves, and also makes
browsing information categorized by others a lot easier.

Tag classification, and the concept of connecting sets of tags

between web/blog servers, has lead to the rise of folksonomy
classification over the internet. These large-scale folksomonies
are formed because knowledgeable or frequent users of tagging
systems will have experience in searching and using “tag
terms” within these systems. These knowledgeable users tend
to find and use “popular” tags so that it will be easier to form
connections with other related items. Through this manner,
folksomonies evolve organically through a process of group
consensus.

In collaborative filtering, patterns in user preferences are

mined to make recommendations based on things like users’
opinions — individuals who have shared taste in past will
continue to do so. Examples include Ringo [16] and
GroupLens [13] as well as e-commerce sites such as
Amazon.com. Fab [2] combined content-based and
collaborative recommendation. However, collaborative
filtering suffers from some well-known limitations [15], such
as, the sparsely of user profiles, the latency associated with
pre-computing similarity information, and the difficulty in
generating predictions about new items. Some of these
limitations will also apply to the system presented here.

3. RELATED WORKS
Although Web 2.0 is emerged in past few years, some of the

researchers have worked with some related research including
blog and tag.

3.1. AutoTag
AutoTag[7] from Gilad Mishne, describe a tool which

suggests tags for blog posts using collaborative filtering
methods. AutoTag generates a small number of tags for a given
weblog post. The blogger then reviews the suggestions,
selecting those which he/she finds useful. AutoTag also
improves its quality. First, by increasing the chance that blog
posts will be tagged in the first place, and second by offering
relevant tags that may have not been applied.

Once the user supplies a blog post, posts which are similar to

it are identified. Next, the tags assigned to these posts are
aggregated, creating a ranked list of likely tags. After that,
AutoTag filters and reranks this tag list; finally, the top-ranked
tags are offered to the user, who selects the tags to attach to the
post.

3.2. TagAssist
Another similar research to AutoTag is TagAssist[18].

TagAssist improve the AutoTag system by increase the quality

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

51

of suggested tags. It performs lossless compression over
existing tag data. AutoTag finds similar tagged posts and
suggests some set of the associated tags to a user for selection.
While TagAssist uses a similar technique, they have improved
on AutoTag’s performance by introducing tag compression and
case evaluation to filter and rank tag suggestions.

After tag compression, a Tag Suggestion Engine (TSE) is

used to suggest a set of tags to a user. TSE operates on the
principal of leveraging existing tagged data to provide
appropriate tag suggestions for new content. The solutions for
new cases are determined by retrieving similar, solved cases
from a large corpus of labeled examples and applying those
solutions (or transformations of those solutions) to the new
problem. Mishne’s AutoTag system takes a very similar
approach to tag recommendation.

3.3. Yahoo! tag suggestion on URL
Yahoo! also has a similar research on tag suggestion [21].

This system generates tag suggestions given a URL. It uses
collaboratively filtering to automatically identify high quality
tags for users, leveraging the collective wisdom of Web users.
Collaborative tagging techniques suggest tags for an object
based on what other users use to tag the object, and a reputation
score for each user based on the quality of the tags contributed
by the user. Introducing the notion of “virtual” users, the tag
suggestion algorithm incorporates not only user-generated tags
but also other sources of tags, such as tags auto-generated via
content-based or context-based analysis.

4. AUTOMATIC TAG SUGGESTION ALGORITHM
Our AT:tag automatic tag suggestion algorithm, consists of 2

key phases – the Training Phase which involves ANN learning,
and the Execution Phase which is responsible for the tag
suggestion generation.

4.1. Training Phase
In the Training Phase, we first use robots to crawl the web to

collect blogs that have already been manually tagged. Some of
these blogs will become part of the training set while others will
be used for testing. The main objective of the training phase is
to learn how blog content is associated to tags. To keep our
experiments manageable, we will limit our robots to focus on
subsets of the blogosphere. For example, blogs related to
“hiking” only or blogs related to “rock climbing.”

The algorithm for the Training Phase consists of 3 main

stages:
Stage 1: Keyword Extraction
Stage 2: Semantic Processing
Stage 3: ANN Learning

4.2. Stage 1: Keyword Extraction
We use both statistically method and the lexical resources

method to perform keyword extraction. This is further divided
into 3 steps:

Step 1: extract single keywords using TFIDF score.
(statistically based)

Step 2: compute co-occurrence frequency (statistically
based)

Step 3: check bigrams using WordNet (lexical resources
based)

Step1: extract single keywords using TFIDF score. The

TFIDF score [14] is calculated by the following formula:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(
log)()(

wordDocFreq
corpus

xwordtermFreqwordTFIDF

where:
termFreq(word) indicates the number of times that a word

occurs in the blog entry being processed. It is computed using:

∑
=

k
k

i

n
n

wordtermFreq)(

corpus indicates the total number of message in each user.

DocFreq(word) indicates how frequently a word appears in
that corpus.

The TFIDF will score individual words within text

documents in order to select concepts (represented by
keywords) that accurately represent the content of the
document. This will cause commonly used words to have a
very low TFIDF score, and rare words to have a high TFIDF
score. Because the TFIDF score is based purely on how
frequent a single word appears in the text, we will need to
supplement this with information on a word’s relevance in
terms of other words.

Step2: compute co-occurrence frequency in the same

blog. In our AT:tag algorithm, the keyword extraction stage
will also consider bigrams selection where two continuous
words are considered as one item. Co-occurrence frequencies
are computed for the extracted keywords. In our experiments,
we filter out word-pairs that have frequency less than 5. In
particular, we try to extract special bigrams that do not appear
in our dictionary. Higher frequency bigrams will have higher
weightings in our algorithm.

Step3: check bigrams using WordNet. WordNet [11] is a

freely available electronic dictionary developed by the
Cognitive Science Laboratory at Princeton University. It has
been used for text summarization [3] and other natural
language processing tasks. In this project, we use WordNet to
help with our bigram selection [9]. When bigrams are extracted
from the blog, we search WordNet to check if the bigrams are

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

 52

common phrases or not.

The result of “Stage 1: Keyword Extraction” is a set of

keywords or key phrases to represent the blog content. In
“Stage 2: Semantic Processing,” we further enrich this
representation by supplementing the keywords/phrases with
semantics.

4.3. Step 2: Semantic Processing
After generating a set of keywords/phrases for a blog, our

AT:tag algorithm then use WordNet to extract semantic
information. This process helps provide lower-level semantics
to our representation and allow us to relate blog with different
set of keywords but with similar “meanings.”

The design of WordNet was inspired by current

psycholinguistic theories of human lexical memory. Words are
organized into synonyms sets (synsets) each representing one
underlying lexical concept. For example: the set of lexical
items {car, automobile auto, machine, motorcar} constitutes
one synset representing the concept corresponding to the
gloss/definition: “4-wheeled motor vehicle; usually propelled
by an internal combustion engine”. Different semantic relations
link synsets together into different hierarchies (e.g. IS-A and
PART-OF relations).

For each keyword/phrase generated from our Stage 1

processing, we select the first synset produced from WordNet.
The resulting synset information is used as additional semantics
to describe a blog. For example, the keyword “computer” is
related to this synset: {computer, computing machine,
computing device, data processor, electronic computer,
information processing system}. The collection of synset
produced from our keywords/phrases is used to represent the
semantic content of a blog.

Figure 1 Stage 2: Semantic Processing

4.4. Step 3: ANN Learning
Learning in AT:tag is performed using an artificial neural

network (ANN). The structure of the network is shown below:

Figure 2. The structure of the ANN used for learning

There are three layers in our ANN - input layer is the feature

layer with weighting, one hidden layer, and an output layer
which represents the predicted tags. ANN is used to learn the
association of the keywords/phrases and semantic features to
tags. Learning is needed as the selection of tags can be
influenced by several different features. The weights learned
through ANN determine the contribution of each feature to the
selection of a tag. For the learning algorithm, we use the
traditional backpropagation algorithm [19].

The “Stage 3: ANN Learning” is further divided into 4 main

steps:
Step 1: Initialize Network
Step 2: Compute Errors
Step 3: Back propagate the errors
Step 4: Adjust weightings (learning)

Step 1: Initialize Network. The following are the ANN

initialization procedures. The learning algorithm is described
after that.

Procedure 1: iw initial value: normalized feature
occurrence frequency

keyword/key phrase node:

⎩
⎨
⎧

featurethathaveb
featurehavenotdoesb

__log_:1
___log_:0

()
⎩
⎨
⎧

==
featurehavew

featureno
wgy

i
ii _:

_:0

Procedure 2: jw
initial value: random number value [0, 1]

()∑= ijj ywfy

Procedure 3: kw initial value: random number value [0, 1]
()∑= jkk ywfy

ky

kw
jy

jw
iy

iw

Blog

Input: Keywords /

Semantic Features

Hidden Layer

Output: Tags

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

 53

where f(x) = Sigmoid function = xe−+1
1

In our AT:tag algorithm, the output of our ANN will

generate a set of suggested tags, each with a priority weighting.
Since there are more than one output nodes, we modify the
standard backpropagation algorithm using a hybrid approach.

To produce a prioritized list of tags to suggest, the output is

not only a single node. After evaluating the activation function,
each output node (each representing one tag) will have an
activation value. The higher the value, the higher the ranking
will be for a tag in our prioritized suggestion list. Since there
are multiple outputs, the backpropagation error calculation will
be different. We map the multiple errors to a single error using
a regression function. The number of actual tags present in a
blog is of course fixed. However, the predicted outputs from
the ANN consist of the entire set of tags stored in AT:tag.
Therefore, we need to select the same amount of outputs for
both the predicted output and actual output. We select the
highest N predicted outputs for the N actual outputs for
comparison. We then normalize using the highest activation
value node in the predicted output, because when there is single
actual output, no weighting need to be changed. For multiple
outputs, except the highest value node, other nodes must below
the activation level of 1. Therefore, although the number of
predicted outputs is same as the actual, an error may still exist
since the activation level may be too low. If so, the network will
continue with its training cycle.

Figure 3. Compare the same number of node with the input tag.

Therefore, we have some basis for matching predicted output
versus actual. If the predicted output exists in the actual output,
then the error is positive. Otherwise, if the predicted output
does not exist in the actual output, then the error is negative.
The reason for having different sign of error is to adjust the
learning point to move to a more reasonable direction. We then
add up all the N error to produce the overall error. Using this
regression function, if all tags matched, the error will be small.
We will skip the learning progress if the error is below a
pre-defined threshold. Only significant errors will trigger
learning and the changing of link weights.

Step 2: Compute Errors. The following are the procedures
involved in computing the errors during back propagation:

Procedure 1: top xv predicted outputs nearest to 1 (highest
ranking nodes).

Procedure 2: compare to original zv tags for that blog

Procedure 3: select same number (N) of output nodes xv as
actual zv .

Procedure 4: normalize output node value (using highest value
as 1)
 to avoid changing weighting if only have 1 actual output, i.e.

N = 1

Procedure 5: actual output of the tag

 ⎩
⎨
⎧

=
existsnottagif

existstagif
___:0

__:1

Procedure 6: error is then calculated by: ()zxk
vvv −= γδ

 where ⎩
⎨
⎧

−
+

=
tagactualmatchnottagdeaireif

tagactualmatchtagdesireif
______:1

_____:1
γ

Procedure 7: if error is less than a threshold T, learning
procedure will be skipped.

Step 3: Back propagate the error. Based on the above the
learning parameters are computed as:

 ∑= jji w δδ

Step 4: Adjust weightings (learning). The weights of the links
are then adjusted according to these formulae for each layer of
the ANN:

i

i

i
iii x

w
w

ww
∑∂
∂

+= ηδ'

 () i
ij

j
jjj y

yw
y

ww
∑∂

∂
+= ηδ'

4.5. Execution Phase
After the Training Phase has been completed, our AT:tag

algorithm then makes use of the resulting ANN to
automatically suggest tags during the Execution Phase. During
this phase, the user submits a completed blog entry to AT:tag
and gets a list of prioritized tag suggestions in return. When a
blog entry is received by AT:tag, it first extracts
keywords/phrases and semantic features to represent that blog
entry. The extraction method is the same as the knowledge
extraction in the Training Phase. After that, AT:tag uses the
extracted features to activate the ANN. Results from the ANN
are presented to the user as prioritized tag suggestion.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

54

5. RESULTS AND COMPARISONS

5.1. Experiments
In our experiment, we first using Technorati API [20]

(http://www.technorati.com/) for searching the following
keywords:
• {ai, ajax, alone, appletag, apple, art, baby, book, bush, car,

card, cat, christmas, comedy, computer, crazy, dairy, dog,
dressing, education, environment, fire, fish, friends, games,
google, government, happy, health, hiking, home, house,
idol, internet, job, kiss, law, life, lonely, love, mobile,
money, mountain, mp3, music, nature, news, play, pop,
popular, robot, rock, sad, school, science, sleepy, snow,
song, sport, star, sweet, tag, tagging, technology, telephone,
tools, universe, web2.0, web tag, web, weblog, windows,
word, world, youtube}.

The results are filtered so that only blogs written in English are
returned. The result is analyzed and the first 500 permalinks
from each of the target keywords are selected. Our experiments
require full content of the blogs and their corresponding tags.
For each of the permalinks, we extract the content part of the
blog and its corresponding tags by analysis their HTML code.
Out of 35417 links, we found 4401 pages that contained blogs
with tags. We further divide the 4401 pages into training
dataset and testing dataset with 2187 and 2214 data items
respectively. The data files are processed to reduce the “noise”
of the dataset. For example, we remove special characters and
HTML tag comment from the HTML code. The blog content is
then split into a series of keywords. For each of the training and
testing data items, we extract keywords using our keyword
extraction method. The frequencies of these keywords are
computed to prepare them for use as inputs to our ANN. The
following is an example of the resulting data item that
represents a blog:

Figure 4. Sample of the data extracted from blog

Figure 5. Class flow of the ANN method

To reduce the number of inputs to the ANN, we only select

the top 10 keywords represented to each blog for training:

Figure 5. Some of the training data input to the ANN

For our ANN experiments, after analyzing results from

initial testing, we finalized the ANN design to have 100 hidden
nodes and a learning factor of 2.0 as the training parameter. We
use one input layer, one hidden layer and one output layer for
the ANN architecture. The training stops when the accuracy is
0.5 or better. In our experiments, all the intermediate data are
stored so that we can keep track of any part of the intermediate
progress.

5.2. Results
In the training, the weighting between each layer are stored

and automatically backup. Since the ANN training progress is
time consuming and uses a lot of computational power, this
approach allows us to restart the experiment at any point.

##Contents:
love
hunter
documenting
happiness
happy
perceived
autonomy
trumps
determining
helpful
##Tags: happiness

##Contents:
built
pregnancy
tester
iphone
steve
coupled
ibaby
software
functional
03
##Tags: [technology],[software],[news],[apple],apple,news,software,technology

##Contents:
phone
cell
phones
codes
news
mobile
eu
ceil
roaming
charges
mobile phone
##Tags: uncategorized

1.BlogTagRobot
2.HtmlParserContent
3.ProcessDataFile
4.SplitData
 --> Training set, testing set
5.TFIDFList
 --> step1KeywordFile.txt
6.BigramList
 --> wordNetFile.txt
7.TermFreqList
 --> termFreqFile.txt
8.MergeList
 step1KeywordFile.txt + wordNetFile.txt --> keywordFile.txt
9.CalculateFrequency
10.WordNetProcess
11.NormalizeFreq
12.AttagLearning

##Contents:
directx
3d
graphics
apis
madison
lockwood
designed
microsoft
highest
versions
introduction
vista
operating
direct3d
developers
hardware
introduced
windows
games
development
version
sophisticated
video
cards
ati
card
produce
makers
compatibility
computer
processing
unit
apollo
hosting
##Tags: 3d graphics,apis,directx,directx version

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

55

Figure 6. Sample of the file storing ANN weighting

The following is an example of tags suggested from the

ANN method. We use a blog about “iPhone” as the input to the
system.

Figure 7. Sample blog data input to ANN

The tags suggested by the system are:

Figure 8. Sample tag generated for the blog

5.3. Analyze
We believe the main reason that the AT:tag algorithm works

is that it makes use of collective intelligence provided in Web
2.0 collaborative tagging. Tags suggested are learned from this
collective intelligence and will be more acceptable to the user.
In addition, we capture subtleties and richness in blog content
using semantic information provided in WordNet. The same
mechanism allows us to handle differences in how people tag
similar blogs as well as how people express similar ideas with
different wordings. The collective intelligence of millions of
blogs also allows us to reduce the chance of human errors in
tagging.

To compare the accuracy of the AT:tag algorithm, we ran

some accuracy measurements. The accuracy is computed by

comparing original manually created tags for a blog with our
automatically generated tags. Quite surprisingly, we found the
accuracy in the training phrase to be lower than expected. The
calculation of the accuracy is by:

datatrainingoneintagsofnumbertotal
tagsboriginalthematchestagsofnumber

_log'______

We believe there may be several reasons for this discrepancy.

Firstly, some blogs may talk about a mixture of several topics at
the same time and will confuse the ANN. Another reason is in
the keyword extraction process. Spam and advertisements
further degrades the ANN learning process. The following
explores these issues further.

5.3.1. Mixture of subtopics in data file

By understanding the efficient of the algorithm, we have
been analysis the data file that is generated by the robot crawler.
Our robot crawler uses the Technorati API
(http://technorati.com/) to search for blog contents. The search
is restricted to English blogs. The results were analyzed to
retrieve the first repeated permalinks for each of the target
keywords. It is because our experiment requires full content of
the blogs and their corresponding tags. Thus, for each of the
permalinks, we extract blog contents and tags by others
methods. First, the excerpt and permalink of each blog are
given from the Technorati API. Then, we explore the HTML
from the permalink and using the excerpt to search the correct
starting point of the real content. The search will stop when
seeking some cases of the keyword string (e.g. Post Comment,
This entry was posted … etc). We extract the content between
the starting point and the ending point of the HTML for our real
content. Unfortunately, different blog users, different blog
server/domain have different style in writing their content. It is
very difficult for filtering the noise that affect the true real
content. The noises are including the advertisement, HTML
coding, JavaScript … etc. This can be partly solved by
increasing the number of cases. However, noise from incorrect
content identification leads to wrong ANN input and will affect
learning quality.

Moreover, blogs are really a mixture of subtopics [10]. The

content of weblogs often includes personal experiences,
thoughts and concerns. As a result, blog document often
contains a mixture of distinct subtopics or themes. In addition,
some blog content is spam and not real content. For future
research, we plan to investigate algorithms to detect and
remove these spam blogs [12]. For example, when we
download the content by using Technorati API from the
“keyword search” function, we may have the following result
returns.

Iphone, news, atheism, apple, theology, advertising, insurance, personal,…

We've already covered iPhoneDrive in the past. The new version is out and it also has a new name -
MegaPhone. Some cool new features are there as well. First and foremost, now you can access, edit and
create new notes right from your Mac. You can even drag an HTML into the window with other notes, or
even change the font of your notes — only iPhone fonts are accepted, though (Helvetica, Courier, Arial,
etc).

In addition, the new version of iPhoneDrive MegaPhone adds batch delete for text messages and phone
call logs, allowing you to free up some memory if you're running against the iPhone's log limits.
Other/older features remain intact and you can still use your iPhone as a disk; access all your audio, image
and video files; view and export SMS.

Demo version is available for free, while the full version costs $19.95. Here's the link with more details.

##InputHiddenWeight:

0.5400711077263421,0.16841996227318534,0.6624991792863458,0.8313858665986418,0.13814181538002507,0.073633013063
3453,0.8751576942083685,0.6809079511865381,0.6354948462391676,0.061418619630400996,0.7275563561368399,0.4869072
3999347707,0.6120863530188273,0.1598939163954839,0.09639813595933817,0.8060102236180088,0.23750403477466864,0.5
836385609392418,0.7086832168349088,0.6490665502356577,0.4575132508320645,0.566596654826967,0.01299756884418241,
0.15268219483148274,0.8173686602464857,0.17498314020975167,0.7622893255714437,0.3656597462301201,0.512986208542
913,0.3682911897596682,0.786434814953435,0.8251814332145396,0.1057972450271706,0.7727871129080556,0.54324812406
4007,0.6844836154361471,0.9630825466656098,0.8594172736523329,0.4281888849625149,0.7719364918059669,0.892811165
1793772,0.4768414589251798,0.4958753797727914,0.11085625471264844,0.6304853681269564,0.980345975139207,0.200611
11274403617,0.11004113734133825,0.8052190188446378,0.5186782760028434,0.9984842826717512,0.8469368962671175,0.7
632542907559408,0.393384811785626,0.17020227906282548,0.608501341657315,0.1593473417478097,0.7890223645286871,0
.021673375206801727,0.1292513469290991,0.5399303412460474,0.5876521800466633,0.6984506348054335,0.7716406123323
156,0.2366841196404812,0.427315512948009,0.21050383398262557,0.23082902990832263,0.765131794850511,0.6417280191
079494,0.9053871954630541,0.21407052520314618,0.5800907907845563,0.22721975893452515,0.5507219675798061,0.94435
83186858506,0.47829673260544725,0.5229862932935434,0.39101465614426395,0.26863231730179005,0.15823963918926842,
0.8620058582368901,0.029183399368683666,0.612766106114163,0.44822915380855405,0.052516073794503085,0.7497660101
668429,0.018715968670195985,0.495932416215674,0.18373342098576673,0.9486354027530491,0.023627915407777044,0.776
1042865266483,0.9145371291668093,0.6631492902878404,0.19636293496356463,0.11795662313200134,0.1001286048919337
7,0.8070129055523676,0.7338148365193655,
0.07958971814972064,0.33921639797598846,0.6057344649829912,0.6375588928181315,0.9041354906660231,0.783065909096
778,0.9014055074823691,0.6407836303381993,0.9807385627103093,0.33779172629910825,0.4496390531184767,0.236122564
69862844,0.20322826328940485,0.21256030824457106,0.06685064955089266,0.8669159179159762,0.8703106913018072,0.61
89087839049379,0.502668359876659,0.5875971704113202,0.8033367408124649,0.31017568855751376,0.21010998914189205,
0.2733132101926109,0.1711786763549653,0.5650777271604799,0.765266789288667,0.7645503398855414,0.106474295318668
6,0.1657562153245933,0.5485847970275135,0.16945350743397908,0.5734741381844729,0.8981557531517168,0.44143650077
536967,0.9146890914698388,0.10495397353993213,0.11138661550874335,0.7145268678519121,0.035116236589155615,0.964
1313727142918,0.9127617221188173,0.9887795841732366,0.6231960685721346,0.0072514819998420335,0.646487742787261
4,0.1347009507618728,0.32098117110071495,0.02348400758993603,0.40652919575143054,0.2428199197524679,0.230693061
90266634,0.6109996663063412,0.46795358619893923,0.3456552400162551,0.6443082344940054,0.7115712164665146,0.6861
040745354815,0.40076120029448103,0.5482383530746154,0.770770516645422,0.10923621103887843,0.15475596454826035,0
.9461038633431337,0.11680963768454493,0.2777931954376583,0.8998372258510596,0.6607639376405048,0.55830101621194
56,0.9422844455051226,0.8071423383036376,0.42618071215966985,0.3896872361898712,0.22176990616320177,0.475410613
1210214,0.7603588943924257,0.962819105424308,0.5462430246822377,0.5687582299443623,0.3225163445439718,0.7341354
077764985,0.07874317014089696,0.9339764274262946,0.20080530034961633,0.22912607252193945,0.696818162364881,0.38
56167187860332,0.8513177507015601,0.6792356196144818,0.027996254100909373,0.42622679680131603,0.21477281371365
994,0.18109136535884174,0.4802158867157088,0.52945386103339,0.8741976539320311,0.10391661172699757,0.6857011950
123932,0.25533273457214317,0.9850781132910382,
…
…
…
…

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

56

Figure 9. Advertisements and Spamming

Figure 10. Lots of special characters

Figure 11. Unrelated materials

The above examples show that there are many noises that

affecting the quality of data files – advertisement and spam,
special characters, and unrelated materials … etc.
Unfortunately, these noises appeared frequently in the
blogosphere.

5.3.2. Failure in keyword extraction

AT:tag uses TFIDF score for keyword extraction. TFIDF
will score individual words within text documents in order to
select concepts (represented by keywords) that accurately
represent the content of the document. This will cause
commonly used words to have a very low TFIDF score, and
rare words to have a high TFIDF score. The TFIDF score is
based purely on how frequent a single word appears in the text.
However, TFIDF might not work that well for blogs with
similar topics. In our experiments, blogs are retrieved using the
same keywords. With the same keywords, similar wordings
may appear in different blogs. For example, with keyword
“computer,” the blog may include other frequently associated
keywords such as “program”. In the data file set, all blogs are
downloaded using the same keywords “computer”. Therefore,
“program”, “computer” are very important keywords and
appeared in every blog entry. From the formula for calculating

TFIDF:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

)(
log)()(

wordDocFreq
corpus

wordtermFreqwordTFIDF
, these

important keywords will have a very low score, since they will
be treated as unimportant words like: “is”, “am”, “a”, “were”.
As a result, keywords extracted by TFIDF from different blogs
will be unique and not related to other blogs.

5.3.3. Enormous input/output in the ANN

Because of the TFIDF scores, inputs to the ANN are mostly
different unique keywords. As a result, accuracy and quality of
learning will be affected.

Besides TFIDF, the ANN is affected by synonyms - multiple

tags having the same meaning. This occurs often in the
blogosphere. In addition, tags themselves may contain spam
words. All these noises affect the resulting generated tags.

Figure 12. Advertisements and Spamming occur in both blog

content and corresponding tags

Figure 13. Same Tags with Special Characters

Figure 14. Tags not related to content

All the challenges mentioned above provide new directions

to further extend this research.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

57

5.4. Comparisons
In comparison, there is an existing weblog tagging systems

called AutoTag [7] which finds the most similar blogs and then
collect all the tags in those blogs for ranking and filtering. The
disadvantage of this approach is that tags which are not in
similar blog entries will not be considered. It cannot suggest
new tags if the tags are not already used in one of the similar
blogs. In our ANN method, all tags related to the semantic
content of the blog will be proposed regardless of whether that
set of tags have been used in another blog before or not.

Another related work that analyzes blogs and give tag

suggestion is TagAssist [18]. TagAssist improves the AutoTag
system by increasing the quality of suggested tags. It performs
lossless compression over existing tag data. It is because it uses
similar technology for the tag suggestion engine. Their system
has the same disadvantage as AutoTag; tags that are not in the
similar blog entries will not be considered. However, it
improves the quality of tags and eliminates the unnecessary and
duplicate tags to user.

Moreover, more related work that parsing each post content

for tags are (C H. Brooks and N. Montanez) [6] and Bumpzee
[1]. They try to parse for tags by analyzing blog content. In our
ANN method, we try to relate blog content to their
corresponding tags.

Furthermore, Yahoo! [21] also has a different approach for

collaborative tag suggestions. In their method, they are using
greedy heuristic approach while we are using an ANN learning
approach for the tag suggestion. The algorithm emphasizes the
correlation of tags and the “reputation” of the user. While our
method uses online dictionary and neighbor documents to
enrich the information extracted from blog content. Our AT:tag
system will adjust the weighting within the ANN and do not
need to store the score of every tag with each object. ANN
provides a proven approach for collaborative tag suggestion.

6. CONCLUSION
We believe our research is insightful because it explores how

we leverage on Web 2.0 to create a new feature that benefits the
blogosphere – automatic tag suggestion generation. Our novel
AT:tag algorithm uses a hybrid ANN to learn subtle mappings
between rich semantic features and tags. Our algorithm
leverages on the vast amount of collective intelligence that is
available in Web 2.0 collaborative tagging to produce results
that are in resonance with other users.

The current accuracy rate of AT:tag is affected by many

sources of noise. As future research, we plan to add additional
filters to reduce the amount of noise as well as enhance the
TFIDF computation.

We believe our AT:tag algorithm can also be used in other

situations where tags or metadata need to be generated. For
example, our technology can also be used to automatically
generate metadata for HTML files by analyzing the semantic
content of a webpage.

REFERENCES
[1] A. Beard, “Bumpzee Adds Amazing Feature – Autotagging.” Available at

http://andybeard.eu/2007/02/bumpzee-adds-amazing-feature-autotagging
.html, 2007

[2] Balabanovic, M., and Shoham, Y. “Content-based, collaborative
recommendation.” Comm. ACM 40(3):67-72, 1997.

[3] Barzilay R., Elhadad M. “Using lexical chains for test summarization.”, In
Proceedings of Intelligent Scalable Text Summarization Workshop
(ISTS), 1997.

[4] Berners-Lee, T., and Connolly, D. “Hypertext markup language
specification – 2.0.” Technical Report RFC 1866, MIT/W3C, 1996

[5] Christopher H. Brooks and Nancy Montanez. “An Analysis of the
Effectiveness of Tagging in Blogs.”, American Association for Artificial
Intelligence Conference, 2006

[6] Christopher H. Brooks and Nancy Montanez. “Improved Annotation of
the Blogosphere via Autotagging and Hierarchical Clustering.”, Proc. of
the 15th International World Wide Web Conference, Edinburgh,
Scotland, 2006

[7] Gilad Mishne, “AutoTag: a collaborative approach to automated tag
assignment for weblog posts”, Proceedings of the 15th international
conference on World Wide Web, 2006

[8] Emanuele Quintarelli, “Folksonomies: power to people.”, paper presented
at ISKO Italy-UniMIB Meeting, Mi, June 2005

[9] L. Bentivogli and E.Pianta. “Beyond lexical units: Enriching wordnets
with phrasets.”, In Proceedings of the Research Note Sessions of the 10th
Conference of the European Chapter of the Association for
Computational Linguistics (EACL’03), pages 67-70, Budapest, Hungary,
April 2003

[10] Mei, Q., Liu, C., Su, H., and Zhai, C. “A probabilistic approach to
spatiotemporal theme pattern mining on weblogs”. In Proceedings of the
15th International Conference on World Wide Web (Edinburgh, Scotland,
May 23 - 26, 2006). WWW '06. ACM Press, New York, NY, 533-542,
2006

[11] Miller, George A., Richard Beckwith, Christiane Fellbaum, Derek Gross,
& Katherine J. Miller, “Wordnet: An on-line lexical database. Int’l
Journal of Lexicography”, 3(4):235–312, 1990.

[12] Pranam Kolari, Akshay Java, Tim Finin, Tim Oates, and Anupam Joshi,
“Detecting Spam Blogs: A Machine Learning Approach”, In Proceedings
of the 21st National Conference on Artificial Intelligence (AAAI 2006),
2006

[13] Resnick, P.; Iacovou, N.; Suchak, M,; Bergstorm, P.; and Riedl, J.
“GroupLens: An Open Architecture for Collaborative Filtering of
Netnews.”, In Proc. ACM Conf. on Computer Supported Cooperative
Work, 175-186., 1994.

[14] Salton, G., and McGill, M. J. “An Introduction to Modern Information
Retrieval.” New York: McGraw-Hill, Inc., 1983

[15] Sarwar, B. M.; Karypis, G.: Konstan, J.; and Ridel, J. “Analysis of
recommender algorithms for e-commerce.”, In Proc. 2nd ACM
E-Commerce Conf. (EC’00), 2000.

[16] Shardanand, U., and Maes, P. “Social Information Filtering: Algorithms
for Automating “Word of Mouth”.”, In Proc. ACM CHI’95 Conf.,
210-217, 1995.

[17] Shirky, C. “Folksonomy” Available at
http://www.corante.com/many/archives/2004/08/25/folksonomy.php ,
2004.

[18] Sood, S., Owsley, S., Hammond, K., and Burnbaum, L. "TagAssist:
Automatic Tag Suggestion for Blog Posts". ICWSM, 2007

[19] Tariq Samad. “Back-propagation is significantly faster if the expected
value of the source unit is used for update.”, In International Neural
Network Society Conference Abstracts, 1988.

[20] Technorati, www.technorati.com, 2006
[21] Xu, Z., Fu, Y., Mao, J., Su, D., “Towards the Semantic Web:

Collaborative Tag Suggestions”, Proceedings of Collaborative Web

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

58

Tagging Workshop at 15th International World Wide Web Conference
(WWW 2006), 2006.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

