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Abstract — This paper presents a novel approach to automatic tag 

recommendation for weblogs/blogs. It makes use of collective 
intelligence extracted from Web 2.0 collaborative tagging as well as 
word semantics to learn how to predict the best set of tags to use, using 
a hybrid artificial neural network (ANN). Web 2.0 represents the 
“second generation” of Web applications with new technologies that 
allow people to work, collaborate and share knowledge in innovative 
manners. An important characteristic of Web 2.0 is that it embraces 
the power of the web to harness collective intelligence of its users. In 
particular, the rise of blogging is one of the most highly touted 
phenomena of the Web 2.0 era. Weblog or blog is an important 
innovation that makes it easy to publish information, engage 
discussion and form communities on the Internet. The use of “tags” 
has recently become very popular as a mean of annotating and 
organizing everything on the web, from photos, videos and music to 
blogs. The use of tags has originally produced a “folksonomy”, a 
system in which the meaning of a tag is determined by its use among 
the community as a whole. Unfortunately, tagging is a manual process 
and limited to the users’ own knowledge and experience. A blog 
author might not be aware that there may be more accurate or popular 
tags to describe his/her content. Collaborative tagging use collective 
intelligence by observing how different users tag similar content. Our 
ANN-based algorithm learns this collective intelligence and then 
reuses it to automatically generate tag suggestions for blog authors 
based on the semantic content of blog entries. 
 

Keywords—Web 2.0, Blog, Collaborative Tagging, Intelligent 
Systems, Machine Learning.  

1. INTRODUCTION 
Web 2.0 represents the “second generation” of Web 

applications with new technologies that allow people to work, 
collaborate and share knowledge in innovative manners. An 
important characteristic of Web 2.0 is that it embraces the 
power of the web to harness collective intelligence of its users. 
In particular, the rise of blogging is one of the most highly 
touted phenomena of the Web 2.0 era. Weblog or blog is an 
important innovation that makes it easy to publish information, 
engage discussion and form communities on the Internet. 
Weblogs or blogs are web sites consisting of content (or 
“entries”) that are dated and displayed in reverse chronological 
order. Many people think of blogs as online public journals. Its 
easy-of-use has made it the leading decentralized publishing 
technology in the Web 2.0 world. Basically anyone with access 
to the Internet can now publish content, allowing anyone to 
quickly and easily disseminate their opinions to a very wide 

 
 

audience. The contents of blogs may vary from personal 
journals, markets or product commentaries, to news and current 
affairs. In addition, the number of blogs has also grown 
exponentially to estimated tens of millions to over a hundred 
million blogs by the end of 2006. Therefore, creating 
technologies that allow people to easily and quickly find high 
quality blog content that they are interested in is a very 
important but difficult task. Our research in automatic tag 
recommendation is a way to maximize the chances that blog 
contents will reach those potentially interested in it through 
more accurate tagging that makes use of collective intelligence 
of the billion Internet users. 

 
The tens of millions of blogs in the world are interlinked to 

form what is known as the blogosphere. To support this Web 
2.0 phenomenon, special technologies such as   custom blog 
search, analysis engines, and systems that employ specialized 
information retrieval techniques were invented, all with the aim 
to make finding information in the gigantic blogosphere easier. 
In particular, tagging is a popular technique to facilitate the 
organization and retrieval of blog entries. Tags can be thought 
of as key words or key phrases attached to documents or objects 
(blog entries, photos, music, or videos) to help describe those 
objects. The use of keywords is of course not new. It has been 
used in categorizing or indexing in the traditional library 
systems. Keywords provide an easy way to categorize, search, 
and browse content. Tagging is a term to describe the new set of 
Web 2.0 technologies to support keywords online, such as 
collaborative tagging. 

 
One of the characteristics of Web 2.0 collaborative tagging is 

the ingenious use of “open vocabularies” instead of a 
formalized ontology. Tags are not selected by professional 
annotators, but by the average content authors themselves. 
Although this may sound counter-intuitive, but tags created 
organically without any centralized control is more interesting 
that a formalized ontology as it harnesses the collective 
intelligence of hundred of millions of people! With a rich pool 
of tags, tags can group documents into broad categories [5] that 
can solve the problem of synonyms, pluralization and 
misspelling by using the shared knowledge of other users. The 
use of tags has organically produced a “folksonomy” [17], [8], 
short for “folk taxonomy”, a system in which the meaning of a 
tag is determined by its use among the community as a whole. 
Technorati.com is one of the most popular sites related to the 
tagging of blogs, while sites like furl.com and del.icio.us help 
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users collaborate on tagging webpages. Flickr.com is an 
example of using tags to describe photos. 

 
In our research, we describe a novel approach to automatic 

tag suggestion that makes use of collective intelligence from 
collaborative tagging combined with semantic-driven ANN 
learning to produce a set of most relevant tags for the user to 
select from. The result of ANN learning is a network that 
encodes richness and subtleties in mapping content to tags. The 
results produced will be a list of weighted or prioritized tags 
that are most relevant to the given blog. In simple terms, our 
system basically learns how to tag by observing how other 
humans tag their own blog content. This learned knowledge is 
then used to automatically generate tag suggestions for new 
blog entries.  

 

2. RESEARCH BACKGROUND 
Tagging is a way to organize content through labeling. It 

tries to associate meaning to online content such as blogs, 
photos, videos and music. Tags are keywords or key phrases 
that can be associated with content as a simple form of metadata. 
To a computer, tags serve as a set of atomic symbols that are 
associated with an object. Unlike the keyword systems used in 
libraries in which users select keywords from a predefined list, 
users can choose any string to use as a tag. The idea of using 
tags to annotate content recently become quite popular within 
the blogging community. The idea of tagging is not new, 
photo-organizing tools have used tagging for ages, and HTML 
has had the ability to allow META keywords to describe a 
document since HTML 2.0 [4] since 1996. 

 
In a tagging system, an item of content will typically have 

one or more “tags” associated with it. Tagging software 
automatically provides links to other items that share the same 
tag, or even to specified collections of tags (via AI clustering). 
This allows multiple "browseable paths" through the content to 
facilitate search and retrieval of related items.  

 
While using tags is flexible and easy, tagging is not without 

its drawbacks. Tags are just strings without any semantic 
meaning. For example, the tag “apple” might refer to the fruit, 
or Apple Computer. The lack of semantic distinction in tags can 
lead to inappropriate connections between items. In addition, 
selection of tags is highly dependent on the individual. 
Different people may use drastically different terms to describe 
similar content. A case in point, items related to a version of 
Apple Computer's operating system might be tagged both 
“OSX,”  “Tiger,” and possibly many other terms. Users of 
tagging systems have to make “intelligent guesses” to 
determine the most appropriate tag to use or search for.  

 
Collaborative tagging offers an interesting alternative to 

current efforts. Collaborative tagging is portrayed as a kind of 
shared knowledge. It allows users to share their tags with other 

users. It allows users to publicly tag and share content, so that 
they can categorize information for themselves, and also makes 
browsing information categorized by others a lot easier. 

 
Tag classification, and the concept of connecting sets of tags 

between web/blog servers, has lead to the rise of folksonomy 
classification over the internet.  These large-scale folksomonies 
are formed because knowledgeable or frequent users of tagging 
systems will have experience in searching and using “tag 
terms” within these systems. These knowledgeable users tend 
to find and use “popular” tags so that it will be easier to form 
connections with other related items. Through this manner, 
folksomonies evolve organically through a process of group 
consensus. 

 
In collaborative filtering, patterns in user preferences are 

mined to make recommendations based on things like users’ 
opinions — individuals who have shared taste in past will 
continue to do so.  Examples include Ringo [16] and 
GroupLens [13] as well as e-commerce sites such as 
Amazon.com. Fab [2] combined content-based and 
collaborative recommendation. However, collaborative 
filtering suffers from some well-known limitations [15], such 
as, the sparsely of user profiles, the latency associated with 
pre-computing similarity information, and the difficulty in 
generating predictions about new items. Some of these 
limitations will also apply to the system presented here. 

 

3. RELATED WORKS 
Although Web 2.0 is emerged in past few years, some of the 

researchers have worked with some related research including 
blog and tag. 

 

3.1. AutoTag 
AutoTag[7] from Gilad Mishne, describe a tool which 

suggests tags for blog posts using collaborative filtering 
methods. AutoTag generates a small number of tags for a given 
weblog post. The blogger then reviews the suggestions, 
selecting those which he/she finds useful. AutoTag also 
improves its quality. First, by increasing the chance that blog 
posts will be tagged in the first place, and second by offering 
relevant tags that may have not been applied. 

 
Once the user supplies a blog post, posts which are similar to 

it are identified. Next, the tags assigned to these posts are 
aggregated, creating a ranked list of likely tags. After that, 
AutoTag filters and reranks this tag list; finally, the top-ranked 
tags are offered to the user, who selects the tags to attach to the 
post. 

 

3.2. TagAssist 
Another similar research to AutoTag is TagAssist[18]. 

TagAssist improve the AutoTag system by increase the quality 
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of suggested tags. It performs lossless compression over 
existing tag data. AutoTag finds similar tagged posts and 
suggests some set of the associated tags to a user for selection. 
While TagAssist uses a similar technique, they have improved 
on AutoTag’s performance by introducing tag compression and 
case evaluation to filter and rank tag suggestions. 

 
After tag compression, a Tag Suggestion Engine (TSE) is 

used to suggest a set of tags to a user. TSE operates on the 
principal of leveraging existing tagged data to provide 
appropriate tag suggestions for new content. The solutions for 
new cases are determined by retrieving similar, solved cases 
from a large corpus of labeled examples and applying those 
solutions (or transformations of those solutions) to the new 
problem. Mishne’s AutoTag system takes a very similar 
approach to tag recommendation. 

 

3.3. Yahoo! tag suggestion on URL 
Yahoo! also has a similar research on tag suggestion [21]. 

This system generates tag suggestions given a URL. It uses 
collaboratively filtering to automatically identify high quality 
tags for users, leveraging the collective wisdom of Web users. 
Collaborative tagging techniques suggest tags for an object 
based on what other users use to tag the object, and a reputation 
score for each user based on the quality of the tags contributed 
by the user. Introducing the notion of “virtual” users, the tag 
suggestion algorithm incorporates not only user-generated tags 
but also other sources of tags, such as tags auto-generated via 
content-based or context-based analysis. 

 

4.  AUTOMATIC TAG SUGGESTION ALGORITHM 
Our AT:tag automatic tag suggestion algorithm, consists of 2 

key phases – the Training Phase which involves ANN learning, 
and the Execution Phase which is responsible for the tag 
suggestion generation. 

 

4.1. Training Phase 
In the Training Phase, we first use robots to crawl the web to 

collect blogs that have already been manually tagged. Some of 
these blogs will become part of the training set while others will 
be used for testing. The main objective of the training phase is 
to learn how blog content is associated to tags. To keep our 
experiments manageable, we will limit our robots to focus on 
subsets of the blogosphere. For example, blogs related to 
“hiking” only or blogs related to “rock climbing.”  

 
The algorithm for the Training Phase consists of 3 main 

stages:  
Stage 1: Keyword Extraction 
Stage 2: Semantic Processing  
Stage 3: ANN Learning 
 

4.2. Stage 1: Keyword Extraction  
We use both statistically method and the lexical resources 

method to perform keyword extraction. This is further divided 
into 3 steps: 

Step 1: extract single keywords using TFIDF score. 
(statistically based) 

Step 2: compute co-occurrence frequency (statistically 
based) 

Step 3: check bigrams using WordNet (lexical resources 
based) 

 
Step1: extract single keywords using TFIDF score. The 

TFIDF score [14] is calculated by the following formula: 
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where:  
termFreq(word) indicates the number of times that a word 

occurs in the blog entry being processed. It is computed using: 
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corpus  indicates the total number of message in each user. 

DocFreq(word) indicates how frequently a word appears in 
that corpus. 

 
The TFIDF will score individual words within text 

documents in order to select concepts (represented by 
keywords) that accurately represent the content of the 
document. This will cause commonly used words to have a 
very low TFIDF score, and rare words to have a high TFIDF 
score. Because the TFIDF score is based purely on how 
frequent a single word appears in the text, we will need to 
supplement this with information on a word’s relevance in 
terms of other words. 

 
Step2: compute co-occurrence frequency in the same 

blog. In our AT:tag algorithm, the keyword extraction stage 
will also consider bigrams selection where two continuous 
words are considered as one item. Co-occurrence frequencies 
are computed for the extracted keywords. In our experiments, 
we filter out word-pairs that have frequency less than 5. In 
particular, we try to extract special bigrams that do not appear 
in our dictionary. Higher frequency bigrams will have higher 
weightings in our algorithm. 

 
Step3: check bigrams using WordNet. WordNet [11] is a 

freely available electronic dictionary developed by the 
Cognitive Science Laboratory at Princeton University. It has 
been used for text summarization [3] and other natural 
language processing tasks. In this project, we use WordNet to 
help with our bigram selection [9]. When bigrams are extracted 
from the blog, we search WordNet to check if the bigrams are 
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common phrases or not. 
 
The result of “Stage 1: Keyword Extraction” is a set of 

keywords or key phrases to represent the blog content. In 
“Stage 2: Semantic Processing,” we further enrich this 
representation by supplementing the keywords/phrases with 
semantics. 

 

4.3. Step 2: Semantic Processing 
After generating a set of keywords/phrases for a blog, our 

AT:tag algorithm then use WordNet to extract semantic 
information. This process helps provide lower-level semantics 
to our representation and allow us to relate blog with different 
set of keywords but with similar “meanings.” 

 
The design of WordNet was inspired by current 

psycholinguistic theories of human lexical memory. Words are 
organized into synonyms sets (synsets) each representing one 
underlying lexical concept. For example: the set of lexical 
items {car, automobile auto, machine, motorcar} constitutes 
one synset representing the concept corresponding to the 
gloss/definition: “4-wheeled motor vehicle; usually propelled 
by an internal combustion engine”. Different semantic relations 
link synsets together into different hierarchies (e.g. IS-A and 
PART-OF relations). 

 
For each keyword/phrase generated from our Stage 1 

processing, we select the first synset produced from WordNet. 
The resulting synset information is used as additional semantics 
to describe a blog. For example, the keyword “computer” is 
related to this synset: {computer, computing machine, 
computing device, data processor, electronic computer, 
information processing system}. The collection of synset 
produced from our keywords/phrases is used to represent the 
semantic content of a blog. 

 

 
Figure 1 Stage 2: Semantic Processing 

 

4.4. Step 3: ANN Learning 
Learning in AT:tag is performed using an artificial neural 

network (ANN). The structure of the network is shown below: 
 

 
Figure 2. The structure of the ANN used for learning 

 
There are three layers in our ANN - input layer is the feature 

layer with weighting, one hidden layer, and an output layer 
which represents the predicted tags. ANN is used to learn the 
association of the keywords/phrases and semantic features to 
tags. Learning is needed as the selection of tags can be 
influenced by several different features. The weights learned 
through ANN determine the contribution of each feature to the 
selection of a tag. For the learning algorithm, we use the 
traditional backpropagation algorithm [19]. 

 
The “Stage 3: ANN Learning” is further divided into 4 main 

steps: 
Step 1: Initialize Network 
Step 2: Compute Errors 
Step 3: Back propagate the errors 
Step 4: Adjust weightings (learning) 
 
Step 1: Initialize Network. The following are the ANN 

initialization procedures. The learning algorithm is described 
after that. 

 

Procedure 1: iw  initial value: normalized feature 
occurrence frequency 

keyword/key phrase node:  

⎩
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Procedure 2: jw
initial value: random number value [0, 1] 

( )∑= ijj ywfy  
 

Procedure 3: kw initial value: random number value [0, 1] 
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where f(x) = Sigmoid function =  xe−+1
1

 
  
In our AT:tag algorithm, the output of our ANN will 

generate a set of suggested tags, each with a priority weighting. 
Since there are more than one output nodes, we modify the 
standard backpropagation algorithm using a hybrid approach.  

 
To produce a prioritized list of tags to suggest, the output is 

not only a single node. After evaluating the activation function, 
each output node (each representing one tag) will have an 
activation value. The higher the value, the higher the ranking 
will be for a tag in our prioritized suggestion list. Since there 
are multiple outputs, the backpropagation error calculation will 
be different. We map the multiple errors to a single error using 
a regression function. The number of actual tags present in a 
blog is of course fixed. However, the predicted outputs from 
the ANN consist of the entire set of tags stored in AT:tag. 
Therefore, we need to select the same amount of outputs for 
both the predicted output and actual output. We select the 
highest N predicted outputs for the N actual outputs for 
comparison. We then normalize using the highest activation 
value node in the predicted output, because when there is single 
actual output, no weighting need to be changed. For multiple 
outputs, except the highest value node, other nodes must below 
the activation level of 1. Therefore, although the number of 
predicted outputs is same as the actual, an error may still exist 
since the activation level may be too low. If so, the network will 
continue with its training cycle. 

 

 
Figure 3. Compare the same number of node with the input tag. 

 
Therefore, we have some basis for matching predicted output 
versus actual. If the predicted output exists in the actual output, 
then the error is positive. Otherwise, if the predicted output 
does not exist in the actual output, then the error is negative.  
The reason for having different sign of error is to adjust the 
learning point to move to a more reasonable direction. We then 
add up all the N error to produce the overall error. Using this 
regression function, if all tags matched, the error will be small. 
We will skip the learning progress if the error is below a 
pre-defined threshold. Only significant errors will trigger 
learning and the changing of link weights. 
 
Step 2: Compute Errors. The following are the procedures 
involved in computing the errors during back propagation: 
 

Procedure 1: top xv predicted outputs nearest to 1 (highest 
ranking nodes). 
 
Procedure 2: compare to original zv tags for that blog 
 
Procedure 3: select same number (N) of output nodes xv as 
actual zv . 
 
Procedure 4: normalize output node value (using highest value 
as 1) 
 to avoid changing weighting if only have 1 actual output, i.e. 

N = 1 
 
Procedure 5: actual output of the tag 
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Procedure 7: if error is less than a threshold T, learning 
procedure will be skipped. 
 
Step 3: Back propagate the error. Based on the above the 
learning parameters are computed as: 
  

 ∑= jji w δδ  
 
Step 4: Adjust weightings (learning). The weights of the links 
are then adjusted according to these formulae for each layer of 
the ANN: 
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4.5. Execution Phase 
After the Training Phase has been completed, our AT:tag 

algorithm then makes use of the resulting ANN to 
automatically suggest tags during the Execution Phase. During 
this phase, the user submits a completed blog entry to AT:tag 
and gets a list of prioritized tag suggestions in return. When a 
blog entry is received by AT:tag, it first extracts 
keywords/phrases and semantic features to represent that blog 
entry. The extraction method is the same as the knowledge 
extraction in the Training Phase.  After that, AT:tag uses the 
extracted features to activate the ANN. Results from the ANN 
are presented to the user as prioritized tag suggestion. 
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5. RESULTS AND COMPARISONS 

5.1. Experiments 
In our experiment, we first using Technorati API [20] 

(http://www.technorati.com/) for searching the following 
keywords:  
• {ai, ajax, alone, appletag, apple, art, baby, book, bush, car, 

card, cat, christmas, comedy, computer, crazy, dairy, dog, 
dressing, education, environment, fire, fish, friends, games, 
google, government, happy, health, hiking, home, house, 
idol, internet, job, kiss, law, life, lonely, love, mobile, 
money, mountain, mp3, music, nature, news, play, pop, 
popular, robot, rock, sad, school, science, sleepy, snow, 
song, sport, star, sweet, tag, tagging, technology, telephone, 
tools, universe, web2.0, web tag, web, weblog, windows, 
word, world, youtube}.  

The results are filtered so that only blogs written in English are 
returned. The result is analyzed and the first 500 permalinks 
from each of the target keywords are selected. Our experiments 
require full content of the blogs and their corresponding tags. 
For each of the permalinks, we extract the content part of the 
blog and its corresponding tags by analysis their HTML code. 
Out of 35417 links, we found 4401 pages that contained blogs 
with tags. We further divide the 4401 pages into training 
dataset and testing dataset with 2187 and 2214 data items 
respectively. The data files are processed to reduce the “noise” 
of the dataset. For example, we remove special characters and 
HTML tag comment from the HTML code.  The blog content is 
then split into a series of keywords. For each of the training and 
testing data items, we extract keywords using our keyword 
extraction method. The frequencies of these keywords are 
computed to prepare them for use as inputs to our ANN. The 
following is an example of the resulting data item that 
represents a blog: 

 

 
Figure 4. Sample of the data extracted from blog 

 

 
Figure 5. Class flow of the ANN method 

 
To reduce the number of inputs to the ANN, we only select 

the top 10 keywords represented to each blog for training: 
 

 
Figure 5. Some of the training data input to the ANN 

 
For our ANN experiments, after analyzing results from 

initial testing, we finalized the ANN design to have 100 hidden 
nodes and a learning factor of 2.0 as the training parameter. We 
use one input layer, one hidden layer and one output layer for 
the ANN architecture. The training stops when the accuracy is 
0.5 or better. In our experiments, all the intermediate data are 
stored so that we can keep track of any part of the intermediate 
progress. 

 

5.2. Results 
In the training, the weighting between each layer are stored 

and automatically backup. Since the ANN training progress is 
time consuming and uses a lot of computational power, this 
approach allows us to restart the experiment at any point.  

 

##Contents: 
love 
hunter 
documenting 
happiness 
happy 
perceived 
autonomy 
trumps 
determining 
helpful 
##Tags: happiness 
 
##Contents: 
built 
pregnancy 
tester 
iphone 
steve 
coupled 
ibaby 
software 
functional 
03 
##Tags: [technology],[software],[news],[apple],apple,news,software,technology 
 
##Contents: 
phone 
cell 
phones 
codes 
news 
mobile 
eu 
ceil 
roaming 
charges 
mobile phone 
##Tags: uncategorized 

1.BlogTagRobot 
2.HtmlParserContent 
3.ProcessDataFile 
4.SplitData 
 --> Training set, testing set 
5.TFIDFList 
 --> step1KeywordFile.txt 
6.BigramList 
 --> wordNetFile.txt 
7.TermFreqList 
 --> termFreqFile.txt 
8.MergeList 
 step1KeywordFile.txt + wordNetFile.txt --> keywordFile.txt 
9.CalculateFrequency 
10.WordNetProcess 
11.NormalizeFreq 
12.AttagLearning 

##Contents: 
directx 
3d 
graphics 
apis 
madison 
lockwood 
designed 
microsoft 
highest 
versions 
introduction 
vista 
operating 
direct3d 
developers 
hardware 
introduced 
windows 
games 
development 
version 
sophisticated 
video 
cards 
ati 
card 
produce 
makers 
compatibility 
computer 
processing 
unit 
apollo 
hosting 
##Tags: 3d graphics,apis,directx,directx version 
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Figure 6. Sample of the file storing ANN weighting 

 
The following is an example of tags suggested from the 

ANN method. We use a blog about “iPhone” as the input to the 
system. 

 

 
Figure 7. Sample blog data input to ANN 

 
The tags suggested by the system are: 
 

 
Figure 8. Sample tag generated for the blog 

 

5.3. Analyze 
We believe the main reason that the AT:tag algorithm works 

is that it makes use of collective intelligence provided in Web 
2.0 collaborative tagging. Tags suggested are learned from this 
collective intelligence and will be more acceptable to the user. 
In addition, we capture subtleties and richness in blog content 
using semantic information provided in WordNet. The same 
mechanism allows us to handle differences in how people tag 
similar blogs as well as how people express similar ideas with 
different wordings. The collective intelligence of millions of 
blogs also allows us to reduce the chance of human errors in 
tagging. 

 
To compare the accuracy of the AT:tag algorithm, we ran 

some accuracy measurements. The accuracy is computed by 

comparing original manually created tags for a blog with our 
automatically generated tags. Quite surprisingly, we found the 
accuracy in the training phrase to be lower than expected. The 
calculation of the accuracy is by: 

 

datatrainingoneintagsofnumbertotal
tagsboriginalthematchestagsofnumber

_______
_log'______

 
 
We believe there may be several reasons for this discrepancy. 

Firstly, some blogs may talk about a mixture of several topics at 
the same time and will confuse the ANN. Another reason is in 
the keyword extraction process. Spam and advertisements 
further degrades the ANN learning process. The following 
explores these issues further.  

 
5.3.1. Mixture of subtopics in data file 

By understanding the efficient of the algorithm, we have 
been analysis the data file that is generated by the robot crawler. 
Our robot crawler uses the Technorati API 
(http://technorati.com/) to search for blog contents. The search 
is restricted to English blogs. The results were analyzed to 
retrieve the first repeated permalinks for each of the target 
keywords. It is because our experiment requires full content of 
the blogs and their corresponding tags. Thus, for each of the 
permalinks, we extract blog contents and tags by others 
methods. First, the excerpt and permalink of each blog are 
given from the Technorati API. Then, we explore the HTML 
from the permalink and using the excerpt to search the correct 
starting point of the real content. The search will stop when 
seeking some cases of the keyword string (e.g. Post Comment, 
This entry was posted … etc). We extract the content between 
the starting point and the ending point of the HTML for our real 
content. Unfortunately, different blog users, different blog 
server/domain have different style in writing their content. It is 
very difficult for filtering the noise that affect the true real 
content. The noises are including the advertisement, HTML 
coding, JavaScript … etc. This can be partly solved by 
increasing the number of cases. However, noise from incorrect 
content identification leads to wrong ANN input and will affect 
learning quality. 

 
Moreover, blogs are really a mixture of subtopics [10]. The 

content of weblogs often includes personal experiences, 
thoughts and concerns. As a result, blog document often 
contains a mixture of distinct subtopics or themes. In addition, 
some blog content is spam and not real content. For future 
research, we plan to investigate algorithms to detect and 
remove these spam blogs [12]. For example, when we 
download the content by using Technorati API from the 
“keyword search” function, we may have the following result 
returns. 

 
 

Iphone, news, atheism, apple, theology, advertising, insurance, personal,… 

We've already covered iPhoneDrive in the past. The new version is out and it also has a new name - 
MegaPhone. Some cool new features are there as well. First and foremost, now you can access, edit and 
create new notes right from your Mac. You can even drag an HTML into the window with other notes, or 
even change the font of your notes — only iPhone fonts are accepted, though (Helvetica, Courier, Arial, 
etc). 
 
In addition, the new version of iPhoneDrive MegaPhone adds batch delete for text messages and phone 
call logs, allowing you to free up some memory if you're running against the iPhone's log limits. 
Other/older features remain intact and you can still use your iPhone as a disk; access all your audio, image 
and video files; view and export SMS. 
 
Demo version is available for free, while the full version costs $19.95. Here's the link with more details. 
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Figure 9. Advertisements and Spamming 

 

 
Figure 10. Lots of special characters 

 

 
Figure 11. Unrelated materials 

 
The above examples show that there are many noises that 

affecting the quality of data files – advertisement and spam, 
special characters, and unrelated materials … etc. 
Unfortunately, these noises appeared frequently in the 
blogosphere.  

 
5.3.2. Failure in keyword extraction 

AT:tag uses TFIDF score for keyword extraction. TFIDF 
will score individual words within text documents in order to 
select concepts (represented by keywords) that accurately 
represent the content of the document. This will cause 
commonly used words to have a very low TFIDF score, and 
rare words to have a high TFIDF score. The TFIDF score is 
based purely on how frequent a single word appears in the text. 
However, TFIDF might not work that well for blogs with 
similar topics. In our experiments, blogs are retrieved using the 
same keywords. With the same keywords, similar wordings 
may appear in different blogs. For example, with keyword 
“computer,” the blog may include other frequently associated 
keywords such as “program”. In the data file set, all blogs are 
downloaded using the same keywords “computer”. Therefore, 
“program”, “computer” are very important keywords and 
appeared in every blog entry. From the formula for calculating 

TFIDF:  

⎟⎟
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⎜⎜
⎝

⎛
×=

)(
log)()(

wordDocFreq
corpus

wordtermFreqwordTFIDF
, these 

important keywords will have a very low score, since they will 
be treated as unimportant words like: “is”, “am”, “a”, “were”. 
As a result, keywords extracted by TFIDF from different blogs 
will be unique and not related to other blogs. 

 
5.3.3. Enormous input/output in the ANN 

Because of the TFIDF scores, inputs to the ANN are mostly 
different unique keywords. As a result, accuracy and quality of 
learning will be affected.  

 
Besides TFIDF, the ANN is affected by synonyms - multiple 

tags having the same meaning. This occurs often in the 
blogosphere. In addition, tags themselves may contain spam 
words. All these noises affect the resulting generated tags.  

 

 
Figure 12. Advertisements and Spamming occur in both blog 

content and corresponding tags 
 

 
Figure 13. Same Tags with Special Characters 

 

 
Figure 14. Tags not related to content 

 
All the challenges mentioned above provide new directions 

to further extend this research.  
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5.4. Comparisons 
In comparison, there is an existing weblog tagging systems 

called AutoTag [7] which finds the most similar blogs and then 
collect all the tags in those blogs for ranking and filtering. The 
disadvantage of this approach is that tags which are not in 
similar blog entries will not be considered. It cannot suggest 
new tags if the tags are not already used in one of the similar 
blogs. In our ANN method, all tags related to the semantic 
content of the blog will be proposed regardless of whether that 
set of tags have been used in another blog before or not. 

 
Another related work that analyzes blogs and give tag 

suggestion is TagAssist [18]. TagAssist improves the AutoTag 
system by increasing the quality of suggested tags. It performs 
lossless compression over existing tag data. It is because it uses 
similar technology for the tag suggestion engine. Their system 
has the same disadvantage as AutoTag; tags that are not in the 
similar blog entries will not be considered. However, it 
improves the quality of tags and eliminates the unnecessary and 
duplicate tags to user. 

 
Moreover, more related work that parsing each post content 

for tags are (C H. Brooks and N. Montanez) [6] and Bumpzee 
[1].  They try to parse for tags by analyzing blog content. In our 
ANN method, we try to relate blog content to their 
corresponding tags. 

 
Furthermore, Yahoo! [21] also has a different approach for 

collaborative tag suggestions. In their method, they are using 
greedy heuristic approach while we are using an ANN learning 
approach for the tag suggestion. The algorithm emphasizes the 
correlation of tags and the “reputation” of the user. While our 
method uses online dictionary and neighbor documents to 
enrich the information extracted from blog content. Our AT:tag 
system will adjust the weighting within the ANN and do not 
need to store the score of every tag with each object. ANN 
provides a proven approach for collaborative tag suggestion. 

 

6. CONCLUSION 
We believe our research is insightful because it explores how 

we leverage on Web 2.0 to create a new feature that benefits the 
blogosphere – automatic tag suggestion generation. Our novel 
AT:tag algorithm uses a hybrid ANN to learn subtle mappings 
between rich semantic features and tags. Our algorithm 
leverages on the vast amount of collective intelligence that is 
available in Web 2.0 collaborative tagging to produce results 
that are in resonance with other users. 

 
The current accuracy rate of AT:tag is affected by many 

sources of noise. As future research, we plan to add additional 
filters to reduce the amount of noise as well as enhance the 
TFIDF computation.  

 
We believe our AT:tag algorithm can also be used in other 

situations where tags or metadata need to be generated. For 
example, our technology can also be used to automatically 
generate metadata for HTML files by analyzing the semantic 
content of a webpage.  
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