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Abstract—In this paper we study minimum flow al-
gorithms for bipartite networks. We present two classes
of algorithms for finding minimum flow in bipartite
networks. The time bounds for several minimum flow
algorithms automatically improve when the algorithms are
applied without modification on bipartite networks. We
obtain further running time improvements by modifying
the algorithms. This modification applies only to preflow
algorithms. In the final part of the paper we present an
example for one of these algorithms.

Index Terms—bipartite networks, minimum flow prob-
lem, network algorithms, network flow

I. I NTRODUCTION

T HE theory of flows is one of the most important
parts of Combinatorial Optimization.

The computation of a maximum flow in a graph has
been an important and well studied problem, both in the
field of computer science and operations research. Many
efficient algorithms have been developed to solve this
problem, see, e.g., [1]. By improving the running times
of Dinic’s [8] and Karzanov’s [12] algorithms, Gusfield,
Martel and Fernandez-Baca [11] have developed the first
specializations of maximum flow algorithms for bipartite
networks. Ahuja, Orlin, Stein and Tarjan [2] provided
further improvements and proved that it is possible to
obtain new time bounds for bipartite networks. The paper
by Gusfield, Martel and Fernandez-Baca [11] describes
several problems which can be solved using network
flow in a bipartite graph.

The computation of a minimum flow in a network
has been investigated by the authors in [3], [4], [5], [6],
[7], [9], [10]. The minimum flow problem in bipartite
network was not treated by other authors.

The brief outline of the paper is as follows: in Section
2 we discuss some basic notions and results used in the
rest of the paper. Section 3 deals with original algorithms
for minimum flow in bipartite networks. In Section 4 we
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present specialization algorithms for minimum flow in
bipartite networks. Section 5 deals with an example for
one of these algorithms.

In the next presentation we assume familiarity with
preflow algorithms and we omit many details, since they
are straightforward modifications of known results. The
reader interested in further details is urged to consult the
book [1] for maximum flow problem and the paper [5]
for minimum flow problem.

II. T ERMINOLOGY AND PRELIMINARIES

In this section we discuss some basic notions and
results used in the rest of the paper.

For the interest of this paper, we consider a capaci-
tated networkG = (N, A, l, c, s, t) with a nonnegative
capacityc(x, y) and with a nonnegative lower bounds
function l(x, y) associated with each arc(x, y) ∈ A. We
distinguish two special nodes in the networkG: a source
nodes and a sink nodet. We further assume, without
loss of generality, that the network contains no parallel
edges.

For a given pair of not necessarily disjoint subsetsX,
Y of the nodes setN of a networkG we use the notation:

(X, Y ) = {(x, y)|(x, y) ∈ A, x ∈ X, y ∈ Y }

and for a given functionf on arcs setA we use the
notation:

f(X, Y ) =
∑

(X,Y )

f(x, y)

A flow is a functionf : A → R+ satisfying the next
conditions:

f(x, N) − f(N, x) =





v, if x = s
0, if x 6= s, t

−v, if x = t
(1.a)

l(x, y) ≤ f(x, y) ≤ c(x, y),∀(x, y) ∈ A, (1.b)

for somev ≥ 0. We refer tov as thevalue of the flow f.
The maximum (minimum) flow problemis to determine

a flow f for which v is maximized (minimized).
A cut is a partition of the nodes setN into two subsets

S and T = N -S. We represent this cut using notation
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[S, T ]. We refer to a cut[S, T ] as ans-t cut if s ∈ S
and t ∈ T . We refer to an arc(x, y) with x ∈ S and
y ∈ T as aforward arc of the cut and an arc(x, y) with
x ∈ T and y ∈ S as abackward arcof the cut. Let
(S, T ) denote the set of forward arcs in the cut and let
(T, S) denote the set of backward arcs.

For the maximum flow problem, we define thecapac-
ity c̃[S, T ] of a s-t cut [S, T ] as

c̃[S, T ] = c(S, T ) − l(T, S). (2)

and for the minimum flow problem, we define the
capacity ĉ[S, T ] of a s-t cut [S, T ] as

ĉ[S, T ] = l(S, T ) − c(T, S). (3)

We refer to ans-t cut whose capacitỹc[S, T ] is the
minimum (̂c[S, T ] is the maximum) among alls-t cuts
as aminimum (maximum) cut.

The maximum (minimum) flow problem in a network
G = (N, A, l, c, s, t) can be solved in two phases:

(P1) establish a feasible flowf , if it exists;
(P2) from a given feasible flowf , establish the max-

imum flow f̃ (minimum flow f̂ ).
Theorem 1:Let G = (N, A, l, c, s, t) be a network,

[S, T ] a s-t cut andf a feasible flow with valuev. Then

v = f [S, T ] = f(S, T ) − f(T, S) (4.a)

and therefore, in particular,

ĉ[S, T ] ≤ v ≤ c̃[S, T ] (4.b)

Theorem 2:Let G = (N, A, l, c, s, t) be a network,
[S̃, T̃ ] a minimum s-t cut and [Ŝ, T̂ ] a maximums-t
cut. We denote the values of a maximum flow̃f and
minimum flow f̂ by ṽ and v̂, respectively. Then

ṽ = c̃[S̃, T̃ ] (5.a)

and
v̂ = ĉ[Ŝ, T̂ ] (5.b)

A preflow f is a functionf : A → R+ that satisfies
(1.b) and

f(N, x) − f(x, N) ≥ 0,∀x ∈ N − {s, t} (6.a)

for maximum flow problem and

f(x, N) − f(N, x) ≤ 0,∀x ∈ N − {s, t} (6.b)

for minimum flow problem.
For any preflowf we define theexcess, respectively

deficit of nodex as

ẽ(x) = f(N, x) − f(x, N),∀x ∈ N. (7.a)

respectively

ê(x) = f(x, N) − f(N, x),∀x ∈ N. (7.b)

for maximum and minimum flow problem respectively.
We refer to a nodex with ẽ(x) = 0 (ê(x) = 0) as

a balanced node. A preflowf satisfying the condition
ẽ(x) = 0 (ê(x) = 0), for each nodex ∈ N − {s, t} is a
flow. Thus, a flow is a particular case of preflow.

For the maximum (minimum) flow problem, theresid-
ual capacity r̃(x, y) (r̂(x, y)) of any arc (x, y) ∈ A,
with respect to a given flow/preflowf , is given by
r̃(x, y) = c(x, y)−f(x, y)+f(y, x)− l(y, x) (r̂(x, y) =
c(y, x) − f(y, x) + f(x, y) − l(x, y)). By convention, if
(x, y) ∈ A and(y, x) /∈ A then we add the arc(y, x) to
the set of arcsA and we setl(y, x) = 0 andc(y, x) = 0.

The networkG̃ = (N, Ã) (Ĝ = (N, Â)) consisting
only of the arcs with positive residual capacity is re-
ferred to as theresidual network(with respect to the
flow/preflow f ).

In the residual networkĜ = (N, Â), the distance
functionis a functiond̂ : N → N. We say that a distance
function isvalid if it satisfies the following conditions:

d̂(s) = 0 (8.a)

and
d̂(y) ≤ d̂(x) + 1,∀(x, y) ∈ Â (8.b)

We refer tod̂(x) as thedistance label of nodex and to
an arc(x, y) ∈ Â as anadmissiblearc if d̂(y) = d̂(x)+1;
otherwise it is inadmissible. We refer to a path from
nodes to nodet consisting entirely of admissible arcs
as anadmissible path. We say that the distance labels
are exact if for each nodex, d̂(x) equals the length of
the shortest directed path from nodes to nodex in the
residual networkĜ. We refer to a path inG from the
source nodes to the sink nodet as adecreasing path
if it consists only of arcs with positive residual capacity.
Clearly, there is an one to one correspondence between
set of decreasing paths inG and the set of directed paths
from s to t in Ĝ.

We define thelayered networkĜ′ = (N, Â′, r̂) as
follows: the nodes setN is partitioned into layers
N0, . . . , Nk, where layerNi contains the nodesx whose
exact distance labels equali, so thatd̂(x) = i. Further-
more, for each arc(x, y) in the layerd network,x ∈ Ni

and y ∈ Ni+1 for somei. We say thatf̂ ′ is a blocking
flow if the layered networkĜ′ contains no decreasing
directed path.

There are three approaches for solving minimum flow
problem:
(1) using decreasing path algorithms;
(2) using preflow algorithms;
(3) using minmax algorithm, see [5].

In this paper we refer to some algorithms in ap-
proaches(1) and (2).
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The generic algorithm using decreasing path algorithm
for the minimum flow problem is as following:

(1)PROGRAM GADP;
(2)BEGIN
(3) let f be a feasible flow in networkG;
(4) determine the residual network̂G;
(5) WHILE Ĝ contains a directed patĥDs,t DO
(6) BEGIN
(7) identify a directed patĥDs,t;
(8) r̂ := min{r̂(x, y) | (x, y) ∈ D̂s,t};
(9) identify a pathPs,t in G corresponding tôDs,t;
(10) decreasêr units of flow alongPs,t;
(11) update the residual network̂G;
(12) END;
(13)END.

A node x ∈ N − {s, t} with ê(x) < 0 is called an
active node.

The generic preflow algorithm for the minimum flow
problem is as follows:

(1)PROGRAM GAP;
(2)BEGIN
(3) PREPROCESS;
(4) WHILE the network contains an active node DO
(5) BEGIN
(6) select an active nodey;
(7) PULL/RELABEL(y);
(8) END;
(9)END.

(1)PROCEDURE PREPROCESS;
(2)BEGIN
(3) let f be a feasible flow in networkG;
(4) compute the exact distance function̂d

by breadth first searches froms to t

in network Ĝ;
(5) pull r̂(x, t) units of flow on each arc

(x, t) ∈ Ê−(t);
(6) d̂(t) := n;
(7)END;

(1)PROCEDURE PULL/RELABEL(y);
(2)BEGIN
(3) IF network Ĝ contains an admissible arc(x, y)
(4) THEN

pull r̂1 := min{−ê(y), r̂(x, y)} units of flow
from nodey to nodex

(5) ELSE
computed̂(y) :=

min{d̂(x) + 1|(x, y) ∈ Ê−(y), r̂(x, y) > 0};
(6)END;

In this algorithm we have

Ê−(y) = {(x, y)|(x, y) ∈ Â}

for each nodey in N .
A pull of r̂1 units of flow from nodey to nodex

increases botĥe(y) andr̂(y, x) by r̂1 units and decreases
both ê(x) and r̂(x, y) by r̂1 units.

The operation of decreasing the flow on an arc is
called a pull through the arc. We say that a pull of
r̂1 units of flow on arc(x, y) is a saturating pull if
r̂1 = r̂(x, y) and nonsaturating otherwise. A nonsatu-
rating pull at nodey reduceŝe(y) to zero.

We refer to the process of increasing the distance label
of a node as arelabel operation. The purpose of the
relabel operation is to create at least one admissible arc
on which the algorithm can perform further pulls.

Using the residual capacities we evaluate the flow with
the formula:

f(x, y) = l(x, y) + max{̂r(x, y) − c(y, x) + l(y, x), 0}

In Figure 1 we briefly present five algorithms for
minimum flow problem.

Algorithm Features

Dinic 1. A special implementation of the
GADP.
2. The blocking flows in layered net-
works Ĝ′ are determined using decreas-
ing path algorithm.

Karzanov 1. A special implementation of the both
GADP and GAP.
2. The blocking flows in layered net-
works Ĝ′ are determined using preflow
algorithm.

FIFO 1. A special implementation of the GAP.
preflow 2. Examines active nodes in the FIFO

order.

Highest 1. A special implementation of the GAP.
label pre-
flow

2. Examines active nodes with the high-
est distance label.

Deficit 1. A special implementation of the GAP.
scaling 2. Performs pull/relabel operations at

the nodes with sufficiently large deficits
and, among these nodes, selects a node
with the smallest distance label.

Fig. 1. Five algorithms for minimum flow problem
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A bipartite networkis a networkG = (N, A, l, c, s, t)
with a node setN partitioned into two subsetsN1 and
N2 so that for each arc(x, y) ∈ A, eitherx ∈ N1 andy ∈
N2 or x ∈ N2 andy ∈ N1. We often represent a bipartite
network using the notationG = (N1 ∪ N2, A, l, c, s, t).

Let n1=|N1| andn2=|N2|. Without any loss of gener-
ality, we assume thatn2 ≤ n1. We also assume that
s ∈ N2 and t ∈ N1. A bipartite network is called
unbalancedif n2 << n1 andbalancedotherwise.

III. O RIGINAL ALGORITHMS FOR MINIMUM FLOW IN

BIPARTITE NETWORKS

The time bound for several minimum flow algorithms
automatically improves when the algorithms are applied
without modification to unbalanced networks.

A careful analyse of the running times of these
algorithms reveals that the worst case bound depends
on the number of arcs in the longest vertex simple
path of the network. We denote this length byp. For
general network,p ≤ n − 1 and for a bipartite network
p ≤ 2n2 + 1. Hence, for unbalanced bipartite network
p << n.

We consider Dinic’s algorithm for the minimum flow
problem. This algorithm constructsO(p) layered net-
works and finds a blocking flow in each one. Each block-
ing flow computation performsO(m) decreases and each
decrease takesO(p) time. Therefore, the running time of
Dinic’s algorithm is O(p2m). Consequently, when the
Dinic’s algorithm is applied to unbalanced networks, the
running time improves fromO(n2m) to O(n2

2m).
We show that a slightly modified version of the

generic preflow algorithm requires loss thanO(n2m)
time to solve problems defined on bipartite networks.
To establish this result, we change the PROCEDURE
PREPROCESS by settinĝd(t) = 2n2 + 1 instead of
d̂(t) = n. The modification stems from the observation
that any path in the residual network can have at most
2n2 + 1 arcs since every alternate node in the directed
path must be inN2 (because the residual network is
also bipartite) and no directed path can repeat a node
in N2. Therefore, if we setd̂(t) = 2n2 + 1 then the
residual network will never contain a directed path from
nodes to nodet and the algorithm will terminate with
a minimum flow.

We present the following two theorems (see [1], [2],
[5]).

Theorem 3:The generic preflow algorithm maintains
valid distance at each step. Moreover, each relabeling of
a nodex strictly increaseŝd(x).

Theorem 4:At any time during the generic preflow
algorithm, for each active nodex there is a directed path
from nodet to nodex in the residual network.

We can gain the necessary results for the specific
structure of bipartite networks.

Theorem 5:For each active nodex, d̂(x) < 4n2 + 1.
Proof. When a nodex is relabeled, it has negative

deficit and hence, the residual network has a directed
pathP = (x0, x1, . . . , xk) from nodet = x0 to nodex =
xk. Since the nodes on directed pathP are alternately in
N1 andN2 we havek < 2n2. Becaused̂(t) = 2n2 + 1
and d̂(xk) ≤ d̂(xk−1) + 1 ≤ . . . ≤ d̂(x0) + k it follows
d̂(x) < 4n2 + 1. ⊓⊔

Theorem 6:
(a) The number of relabel operations isO(n2n).
(b) The number of saturating pulls isO(n2m).
Proof.
(a) From Theorem 5 follows that each distance label

increases at mostO(n2) times. Consequently, the num-
ber of relabel operations isO(n2n).

(b) Between two consecutive saturating pulls on an
arc (x, y), both d̂(x) and d̂(y) must increase by at least
2 units (see [1]). By Theorem 5, onlyO(n2) saturating
pulls can be on an arc(x, y). Therefore, summing over
all m arcs the number of saturating pulls isO(n2m). ⊓⊔

Theorem 7:The generic preflow algorithm performs
O(n2

1m) nonsaturating pulls.
Proof. Let Na denote the set of active nodes. We

consider the potential functionF =
∑

Na

d̂(x). Since we
allow only the nodes inN2 to be active and̂d(x) ≤ 4n2

for all x in N2, the initial value ofF is at most4n2
2. At

the end of the algorithm,F is zero.
During the pull/relabel(y) operation, one of the fol-

lowing two cases must apply.
(1) The algorithm is unable to find an admissible arc

along which it can pull flow. In this case the distance
label of nodey increases byk ≥ 1 units. This operation
increasesF by at mostk units. Since the total increase
in d̂(y) for each nodey throughout the execution of the
algorithm is bounded by4n2, the total increase inF due
to increases in distance labels is bounded by4n2

2.
(2) The algorithm is able to identify an arc on which

it can pull flow, so it performs a saturating pull or
a nonsaturating pull. A saturating pull on arc(x, y)
might create a new deficit at nodex, thereby increasing
the number of active nodes by1 and increasingF by
d̂(x), which could be as much as4n2 per saturating
pull, and so4n2

2m over all saturating pulls. Note that a
nonsaturating pull on arc(x, y) does not increase|Na|.
The nonsaturating pull will decreaseF by d̂(y) sincey
becomes inactive, but it simultaneously increasesF by
d̂(x) = d̂(y) − 1 if the pull causes nodex to become
active, the total decrease inF being of value1. If node
x was active before the pull,F decreases by an amount
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d̂(y). Consequently, net decrease inF is at least1 unit
per nonsaturating pull.

We summarize these facts. The initial value ofF
is at most4n2

2 and the maximum possible increase in
F is 4n2

2 + 4n2
2m. Each nonsaturating pull decrease

F by at least1 unit and F always remains nonnega-
tive. Consequently, the algorithm can perform at most
4n2

2 + 4n2
2 + 4n2

2m = O(n2
2m) nonsaturating pulls,

proving the theorem. ⊓⊔

Figure 2 summarizes the improvements obtained for
the next algorithms using this approach, where the value
c̄ = max{c(x, y)|(x, y) ∈ A}.

Algorithm Running
time, general
network

Running time,
bipartite net-
work

Dinic n2m n2
2m

Karzanov n3 n2
2n

FIFO preflow n3 n2
2n

Highest label
preflow

n2m1/2 n2nm1/2

Deficit scaling nm + n2 log c̄ n2m+n2n log c̄

Fig. 2. The running time for five algorithms

IV. SPECIALIZATION ALGORITHMS FOR MINIMUM

FLOW IN BIPARTITE NETWORKS

All minimum flow algorithms described in this section
are preflow algorithms, i.e. algorithms that maintain a
preflow at every stage. They work by examining active
nodes and pulling deficit from these nodes to nodes
estimated to be closer to source nodes. If the source
node s is not reachable, however, an attempt is made
to pull the deficit back to the sink nodet. Eventually,
there will be no deficit on any nodex ∈ N − {s, t}.
At this point the preflow is a flow and, moreover, it is
a minimum flow [5]. The algorithms use exact distance
labels to measure the closeness of a node to the source
nodes or the sink nodet.

Specialization algorithm for minimum flow in bipartite
network is calledbipartite preflow algorithm. The basic
idea behind the bipartite preflow algorithm is to perform
bipull from nodesN2. A bipull is a pull over two
consecutive admissible arcs. It moves deficit from a node
in N2 to another node inN2. This approach ensures that
no node inN1 ever has any deficit.

The bipartite preflow algorithm is a simple general-
ization of the generic preflow algorithm given in Sec-
tion II. We change the preprocess operation by setting
d̂(t) := 2n2 + 1 instead ofd̂(t) := n. The modification
stems from the observation that any directed path in
the residual network can have at most2n2 arcs since
every alternate node in the directed path must be in
N2 (because the residual network is also bipartite) and
no directed path can repeat a node inN2. Therefore,
if we set d̂(t) := 2n2 + 1, the residual network will
never contain a directed path from the source nodes
to the sink nodet and the algorithm will terminate
with a minimum flow. Consequently, the PROCEDURE
PULL/RELABEL is replaced with the PROCEDURE
BIPULL/RELABEL, as follows.

(1)PROCEDURE BIPULL/RELABEL(y);
(2)BEGIN
(3) IF network Ĝ contains an admissible arc(x, y)
(4) THEN

IF network Ĝ contains an admissible arc(u, x)
(5) THEN pull r̂1 := min{−ê(y), r̂(x, y), r̂(u, x)}

units of flow over back path(y, x, u)
(6) ELSE

computed̂(x) :=

min{d̂(u) + 1|(u, x) ∈ Ê−(x), r̂(u, x) > 0}
(7) ELSE

computed̂(y) :=

min{d̂(x) + 1|(x, y) ∈ Ê−(y), r̂(x, y) > 0};
(8)END;

We call a pull of r̂1 units on the back path(y, x, u)
a bipull. The bipull is saturated if r̂1 = r̂(x, y) or
r̂1 = r̂(u, x) and unsaturatedotherwise. Note that an
unsaturated bipull reduces the deficit at vertexy to zero.

As in the generic preflow algorithm, the bipartite
preflow algorithm always pulls flow on admissible arcs
and relabels a node only if there are no admissible arcs.
Hence, Theorem 3 holds for this algorithm too. Theorem
4, Theorem 5, Theorem 6 also hold.

Theorem 8:During the execution of the bipartite pre-
flow algorithm all active nodes remain inN2.

Proof. First of all, the algorithm has to saturate all
arcs (x, t) ∈ Ê−(t). Since the nodet ∈ N1, the
claim is true immediately after this step. All the other
pulls in the algorithm are done using the PROCEDURE
BIPULL/RELABEL, which pulls from a node inN2

through a node inN1 to another node inN2, never
leaving any deficit on a node inN1. No other operations
create deficit at any node. ⊓⊔

Theorem 9:The bipartite preflow algorithm runs in
O(n2

2m) time.
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Proof. Let Na denote the set of active nodes. We
consider the potential functionF =

∑
Na

d̂(x). Since we
allow only the nodes inN2 to be active and̂d(x) ≤ 4n2

for all x in N2, the initial value ofF is at most4n2
2. The

procedure bipull/relabel(y) yields one of the following
four cases:

(1) it increases the distance label of nodex;
(2) it increases the distance label of nodey in N2;
(3) it pulls flow over the arcs(x, y) and (u, x),

saturating one of these two arcs;
(4) it performs a nonsaturating pull.
In case (1) the potential functionF increases, but the

total increase over all such iterations is onlyO(n2
2).

In case (2) the functionF remains unchanged.
In case (3) the functionF can increase by as much

as4n2 +1 units since a new node might become active.
Theorem 6 shows that the total increase over all iterations
is O(n2

2m).
In case (4) a nonsaturating pull decreases the potential

function F by at least2 units since it makes nodey
inactive and it can make nodeu newly active node with
d̂(u) = d̂(y) − 2.

This fact, in view of the preceding arguments, implies
that the algorithm performsO(n2

2m) nonsaturating pulls.
Since all the other operations, such as the relabel oper-
ations and finding admissible arcs require onlyO(n2m)
time, we have established the theorem. ⊓⊔

We also consider the ideas of the bipartite preflow
algorithm beeing applied in a straightforward manner to
the Karzanov, FIFO preflow, highest label preflow and
deficit scaling algorithms. It yields that the algorithm
improved worst case complexity.

The FIFO preflow algorithm examines active nodes in
first-in, first-out (FIFO) order. The algorithm maintains
a queueQ of nodes. It selects a nodey from the front of
Q, performs pulls from this node and adds newly active
nodes to the rear ofQ. The algorithm examines nodey
until either it becomes inactive or it is relabeled. In the
latter case we add nodey to the rear ofQ. The algorithm
terminates when the queueQ of active nodes is empty.

To analyze the complexity of bipartite FIFO preflow
algorithm, we partition the total number of node exami-
nations into different phases. The first phase consists of
node examinations for those nodes that become active
during the preprocess operation. Fork ≥ 2, thekth phase
consists of examining all nodes that have been added to
Q during the(k − 1)th phase.

Theorem 10:The number of phases overQ is O(n2
2).

Proof. We consider the total change in the potential
functionF = max{d̂(x)|x is active node}over an entire
phase. The initial value ofF is at most4n2. We consider
two cases:

(1) The algorithm performs no relabel operation dur-
ing a phase. In this case the deficit of every node in
N2 that was active at the beginning of the phase moves
to nodes with smaller distance labels. Consequently,F
decreases by at least2 units.

(2) The algorithm performs at least one relabel oper-
ation during a phase. In this case the potential function
F can increase or remain the same. In such a case the
increase inF , then F might increase by as much as
the maximum increase in any distance label. Hence, by
Theorem 5, the total increase inF over all the phases is
at most4n2

2.
Combining cases (1) and (2), we find that the total

number of phases isO(n2
2). ⊓⊔

Theorem 11:The bipartite FIFO preflow algorithm
runs inO(n2m + n2

2) time.
Proof. This theorem is a direct consequence of Theo-

rem 10. ⊓⊔
We note that bound is also achieved by Karzanov’s

algorithm if it is implemented using the two-arcs pull
rule.

The highest label preflow algorithm always pulls from
an active node with highest distance label. The nonsatu-
rating bipulls performed by the algorithm can be divided
into phases. A phase consists of all bipulls that occur
between two consecutive relabel steps of nodes inN2.
Within a phase, nodes inN1 can possibly be relabeled
several times.

We remark that, in this algorithm, the deficits that are
most distant from the source are pulled down two levels
at a time. Consequently, if the algorithm does not relabel
any node duringn2 consecutive node examinations,
the total deficit reaches the source and the algorithm
terminates. Since the algorithm performsO(n2

2) relabel
operations on nodes inN2, we immediately obtain a
bound ofO(n3

2) on the number of node examinations. As
each node examination entails at most one nonsaturating
bipull, this gives a bound ofO(n3

2) on the number of
nonsaturating bipulls and a bound ofO(n1m + n3

1) on
the running time of the algorithm.

The bound ofO(n3
2) on the number of nonsaturating

bipulls performed by the algorithm is rather loose and
can be improved by a more clever analysis.

Theorem 12:The bipartite highest label preflow algo-
rithm performsO(n2m) nonsaturating bipulls and runs
in the same time.

Proof. The proof is long, complex and we omitted it
here. ⊓⊔

The deficit scaling preflow algorithm incorporates
scaling of the deficit into the generic preflow algorithm.

Theorem 13:The deficit scaling preflow algorithm
performesO(n2

2 log c̄) nonsaturating bipulls and runs
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O(n2m + n2
2 log c̄) time.

Proof. The proof is long, complex and we omitted it
here. ⊓⊔

Figure 3 summarizes the improvements obtained using
this approach.

Algorithm Running
time, general
network

Running time,
modified ver-
sion

Karzanov n3 n2m + n3
2

FIFO preflow n3 n2m + n3
2

Highest label
preflow

n2m1/2 n2m

Deficit scaling nm + n2 log c̄ n2m + n2
2 log c̄

Fig. 3. The running time for four algorithms

V. EXAMPLE

We represent in Figure 4 the initial bipartite network
G′ = (N ′

1 ∪N ′

2, A
′, l′, c′) with N ′

1 = {2, 3, 4} andN ′

2 =
{5, 6}.

Fig. 4. The initial bipartite network

The extended network isG = (N1 ∪ N2, A, l, c, s, t)
with the source nodes = 1, the sink nodet = 7,
N1 = {2, 3, 4, 7} and N2 = {1, 5, 6}. This network is
represented in Figure 5.

The network flow is in Figure 6 and the value of the
admissible flow isv = 15.

The residual network̂G(f) is in Figure 7.

Fig. 5. The extended network

Fig. 6. The network flow

Fig. 7. The initial residual network
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Fig. 8. The residual network after the PREPROCESS

By applying the PREPROCESS procedure we obtain
the network represented in Figure 8.

We apply the BIPULL/RELABEL procedure. We se-
lect y = 5, (x, y) = (2, 5), (u, x) = (1, 2), r̂1 =
min{6,2, 7} = 2 and (y, x, u) = (5, 2, 1). We obtain
the residual network represented in Figure 9.

Fig. 9. The residual network

For the next step we havey = 5, (x, y) = (3, 5),
(u, x) = (1, 3), r̂1 = min{4,1, 3} = 1 and (y, x, u) =
(5, 3, 1). Now, the residual network is represented in
Figure 10.

For the next step we havey = 5, (x, y) = (4, 5),
(u, x) = (1, 4), r̂1 = min{3,2, 5} = 2 and (y, x, u) =
(5, 4, 1). Now, the residual network is represented in
Figure 11.

It follows that y = 5 and there is no admissible arc
(x, 5). Hence,d̂(5) = min{5+1} = 6. We selecty = 6,
(x, y) = (3, 6), (u, x) = (1, 3), r̂1 = min{9,1, 2} = 1

Fig. 10. The residual network

Fig. 11. The residual network

and (y, x, u) = (6, 3, 1). Now, the residual network is
represented in Figure 12.

Fig. 12. The residual network

For the next step we havey = 6, (x, y) = (4, 5),
(u, x) = (1, 4), r̂1 = min{8,1, 3} = 1 and (y, x, u) =
(6, 4, 1).

Now, the residual network is represented in Figure 13.
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Fig. 13. The residual network

It follows thaty = 6 and there is no admissible arc
(x, 6). Hence,d̂(6) = min{5 + 1} = 6.

Obviously, the source nodes = 1 cannot be reached
from the active nodesy = 5, y = 6 using reverse paths
from y to s. In this case the deficite of these nodes will
be sent back to the nodey = 7. The residual network is
now represented in Figure 14.

Fig. 14. The residual network

There areno anymore active nodes and the algorithm
stops. It pulls7 units of flow from the sink nodet = 7
to the source nodes = 1. The minimum flow in the
extended network is in Figure 15.

The value of minimum flow isv̂ = 8 and the
maximum cut is [Ŝ, T̂ ] = (Ŝ, T̂ ) ∪ (T̂ , Ŝ) =
{(2, 5), (2, 6), (3, 6), (4, 5), (4, 6)} ∪ {(5, 3)} with
l(Ŝ, T̂ ) − c(T̂ , Ŝ) = 3 + 2 + 4 + 1 + 1 − 3 = 8.
Obviously, v̂ = l(Ŝ, T̂ ) − c(T̂ , Ŝ).

The minimum flow in the initial bipartite network
from N ′

1 to N ′

2 is represented in Figure 16.

Fig. 15. The minimum flow network

Fig. 16. The final network flow
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[3] L. Ciupală and E. Ciurea, A highest-label preflow algorithm for
the minimum flow problem,Proceedings of the11

th WSEAS
International Conference on Computers, Crete, Greece, 2007,
pp. 167–170.
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20.

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 4, Volume 2, 2008

359



[7] E. Ciurea, O. Georgescu and M. Iolu, Minimum Flow Al-
gorithms. Dynamic Tree Implementations,Studia Univ. Babeş
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