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Abstract—This paper’s scope is to describe the back-end 

implementation of the ESPL compiler, precisely the platform for the 
cod’s simulation – a virtual machine – and the virtual code generator 
for this platform. ESPL is an object oriented programming language 
that is used for embedded systems and consequently the virtual 
machine is implemented in a manner that allows the simulation and 
testing of specific features of embedded systems. The virtual code 
generation is strongly dependent on the configuration of the virtual 
machine. Its starting point is the intermediate code produced by the 
front-end of the compiler, and, as final point, a file with machine 
code that will be load and executed by the virtual machine. The 
implementation is based on the OOP principles and every module can 
be replaced and upgraded if the interface rules are followed. The 
interaction with the user is realized trough the ESPL GUI. New 
windows and options were added to the previous GUI to support the 
features offered by virtual machine and the virtual code-generation. 
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I. INTRODUCTION 

HIS paper represents the third step in the project called 
„Programming environment for the development of real-

time distributed applications, designed for embedded systems” 
[1] which proposes a comparative study between real-time 
features of many already existent programming languages, the 
definition of a language based on intensive study and its 
implementation, and finally the construction of a simulation 
and execution environment for the object code. 

An embedded system represents a computing system used 
in the environment of a greater system with the purpose of 
ensuring the computing and command functions.  

A real-time system term refers to a system which 
coordinates a certain number of activities more or less 
simultaneous, with time constraints, and that has to assure the 
continuity, the security and the performance of their execution 
[2]. 

The real-time systems often appear under the form of 
embedded systems, but not all the embedded systems have a 
real-time behavior also like not the all real-time systems are 
embedded systems. 

Although, the two system types do not exclude each other 
and in the area they overlap appears a combination of systems 
known as real-time embedded systems. 

II. THE PROGRAMMING LANGUAGE ESPL 

ESPL acronym comes from “Embedded System 
Programming Language”. 

The primary definition for this language was the standard C 
language grammar. In accordance with the criteria for defining 
a programming language for real-time systems, we kept some 
constructions for it with some modifications [3]. 

ESPL is an imperative language, object oriented after the 
Java model, which offers concepts like: encapsulation, 
inheritance, polymorphism. Also it has elements of concurrent 
languages through the possibility of defining threads and 
mutual exclusions.  

Furthermore the language offers possibility to access the 
resources of the embedded system such as registers and ports. 

The exceptions mechanism in Java has been remodeled in 
order to correspond to an embedded environment. Instead of 
using objects (exceptions) to signal and treat errors, it was 
decided to use the interruption mechanism present in all the 
embedded systems [1]. 

A. Present language constructs 

Classes 
The class is the fundamental building block in most object 

oriented languages. A class is  a type that defines the 
implementation of a particular kind of object. A class 
definition defines instance and class variables and methods, as 
well as specifying the immediate superclass of the class [3]. 

The Java model is the basis of the object-oriented approach 
of the new programming language. Hence, the  private, 
protected and public modifiers, used in a method or variable 
declaration, have the same meaning as in the Java 
programming language. 

Fields and methods 
Two types of elements in are specified when a class is 

defined: fields (sometimes called data members), and methods 
(sometimes called member functions).  

A field is an object of any type that you can communicate 
with via its reference. It can also be one of the primitive types. 
A field is a data item associated with a particular class as a 
whole (not with particular instances of the class) and they are 
defined in class definitions [1].  
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A method represents a function that is invoked without 
reference to a particular object. Class methods affect the class 
as a whole, not a particular instance of the class [1].  

Inheritance 
Objects are defined in terms of classes and one can know a 

lot about an object by knowing its class. Object-oriented 
systems take this a step further and allow classes to be defined 
in terms of other classes. 

Each subclass inherits state (in the form of variable 
declarations) from the superclass. However, subclasses are not 
limited to the states and behaviors provided to them by their 
superclass. Subclasses can add variables and methods to the 
ones they inherit from the superclass. Subclasses can also 
override inherited methods and provide specialized 
implementations for those methods.  

Inheritance is one of the cornerstones of object-oriented 
programming. The concept of inheritance is also based on the 
Java model, so the extends keyword is used for inheritance. A 
class extends another class to add functionality, either by 
adding fields or methods or by overriding methods of that 
class [1]. We will also use the keyword this to represent an 
instance of the class in which it appears and the keyword 
super to access members of a class inherited by the class in 
which it appears. 

Constructors 
The concept of a constructor, introduced in C++, is a 

special method automatically called when an object is created. 
The language will also adopt constructors. A constructor is a 
pseudo-method that creates an object. Constructors are 
instance methods with the same name as their class and they 
are invoked using the new  keyword [1], [3]. 

Allocation and deallocation of memory 
The new keyword is used to create an instance of a class. 

C++ is using destructors to free memory. Using destructors is 
no longer needed because the system will automatically free 
unused memory. 

Exception handling mechanism 
C and other earlier languages often had multiple error-

handling schemes, and these were generally established by 
convention and not as part of the programming language. 
Typically, you returned a special value or set a flag, and the 
recipient was supposed to look at the value or the flag and 
determine that something was amiss. However, as the years 
passed, it was discovered that programmers wouldn’t check 
for the error conditions. If you were thorough enough to check 
for an error every time you called a method, your code could 
turn into an unreadable nightmare.  

The solution is to take the casual nature out of error 
handling and to enforce formality. C++ exception handling 
was based on Ada, and Java’s is based primarily on C++ . 

When an error occurs within a method, the method creates 
an object and hands it off to the runtime system. The object, 
called an exception object, contains information about the 
error, including its type and the state of the program when the 

error occurred. Creating an exception object and handing it to 
the runtime system is called throwing an exception [1]. 

After a method throws an exception, the runtime system 
attempts to find something to handle it. The runtime system 
searches the call stack for a method that contains a block of 
code that can handle the exception. This block of code is 
called an exception handler [3].  When an appropriate handler 
is found, the runtime system passes the exception to the 
handler. An exception handler is considered appropriate if the 
type of the exception object thrown matches the type that can 
be handled by the handler.  

The exception handler chosen is said to catch the exception 
[3]. If the runtime system exhaustively searches all the 
methods on the call stack without finding an appropriate 
exception handler, the runtime system (and, consequently, the 
program) terminates.  

The synchronized keyword 
The language will be distributed. Separate, concurrently 

running threads share data and must consider the state and 
activities of other threads. The synchronized keyword, when 
applied to a method or code block, guarantees that at most one 
thread at a time executes that code [1], [3]. 

B.   Removed Language Constructs 

Pointers 
Although pointers represent an element which confers the 

programmer a great deal of flexibility, memory errors are the 
worst kind of errors in C and C++. They are hard to reproduce 
and thus hard to debug. Most developers agree that the misuse 
of pointers causes the majority of bugs in C/C++ 
programming. This is the main reason why the new language 
will not tolerate the use of any kind of pointers [1].  

The new language will not have pointer variables, but it will 
have reference variables which are equivalent in concept, but 
use a simpler syntax. All variables that refer to objects (values 
of a class type) are reference variables. They refer to the 
object indirectly and are implemented with something like a 
machine address  

Pointer and reference variables give the programmer great 
flexibility, but they can lead to difficult to find and correct 
errors in programs.  

Global variables 
Global variables are variables that are within the scope of 

all code. This usually means that references to these variables 
can be made in direct mode, and thus are faster than references 
to variables passed via parameter lists.  

Global variables are dangerous because references to them 
can be made by unauthorized code, thus introducing subtle 
faults [3]. For this and other reasons, unwarranted use of 
global variables is to be avoided. Global parameter passing is 
only recommended when timing warrants, or if the use of 
parameter passing leads to convoluted code. In any case, the 
use of global variables must be clearly documented.  
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Data types 
In C and C++, the sizeof( ) operator satisfies a specific need: 

it returns the  number of bytes allocated for data items. The 
most compelling need for sizeof( ) in C and C++ is portability. 
Different data types might be different sizes on different 
machines, so the programmer must find out how big those 
types are when performing operations that are sensitive to 
size. For example, one computer might store integers in 32 
bits, whereas another might store integers as 16 bits. Programs 
could store larger values in integers on the first machine [3].  

Portability is a huge headache for C and C++ programmers. 
The new language does not need a sizeof( ) operator for this 
purpose, because all the data types will be the same size on all 
machines.  

All data types will be signed so the keywords signed and 
unsigned from the C language are not necessary anymore. 

The goal is to define a language with a minimal set of 
language constructors. Hence, the short, long and double data 
types can be eliminated. The functionality of the struct and 
union structures are provided by classes, so there is no need to 
include them in the language definition.  

Type qualifiers 
C recognizes three type qualifiers, const, volatile, and 

restrict. For the same reason (defining a grammar as simple as 
possible) all three type qualifiers were removed. The const 
type qualifier declares an object to be non-modifiable. The 
volatile type qualifier declares an item whose value can 
legitimately be changed by something beyond the control of 
the program in which it appears, such as a concurrently 
executing thread. Another reason for eliminating the restrict 
type qualifier is that it may only be applied to pointers (and 
the new language doesn’t offer support for pointers) [1]. 

Type modifiers 
As the local lifetime is the only possible way for local 

variables (there will be no global variables in the new 
language), the auto keyword is extremely rarely used.  The 
register type modifier tells the compiler to store the variable 
being declared in a CPU register (if possible), to optimize 
access [1]. 

Iterative statements 
The only control-flow statements for iterative execution 

will be constructed with the reserved keyword for. The other 
two iterative statements, do and do while were not included 
because for loop can be used to replace both of them. 

Labeld statements 
The switch statement is a construct that is used when many 

conditions are being tested for. Nested if/else statements arise 
when there are multiple alternative paths of execution based 
on some condition that is being tested for. 

It is well structured, but can only be used in certain cases 
where only one variable is tested and all branches must 
depend on the value of that variable. The variable must be an 
integral type. Another case is when each possible value of the 
variable can control a single branch. A final, catch all, default 

branch may optionally be used to trap all unspecified cases. 
The switch statement can be implemented using nested if/else 
statements, when there are multiple alternative paths of 
execution based on some condition that is being tested for. 

The goto statement 
Most programming languages allow the programmer to 

trasfer program control unconditionally, usualy using the goto 
function. Modern software design practice avoids goto 
constructs as their use can result in badly-structured programs 
[1]. 

C.  The Compilation Process 
The compiler  is a translator which reads a program written 

in a high level language (source language) and it translates it 
in equivalent language, another language, of lower level 
(object or destination language ) [4]. 

The main functions of the compiler are: the analysis of the 
source program and the synthesis of the destination program 
(object code). As an important part of the translation process 
the compiler signals the user of to the presents of errors in the 
source program. 

The compilation process breaks in more phases; each phase 
changes the source program from a representation to another 
[5]. 

The first phases of the compiler, until the intermediate code 
generation, were implemented in the former step of the 
project.  

Also, the code optimization, an optional phase, can be 
implemented in a future step of the project. 

The generation of virtual code represents the final state of 
the compilation process and is also implements modifications 
of the intermediary code instructions (perhaps optimized) in 
machine instructions  (or assembly code) for the designated 
computer [4]. 

 The generator of virtual code presents more main 
functions: 

• Instruction selection 
• Ordering instructions 
• Registry allocation 

In this project, because of the object oriented nature of the 
ESPL language, the generator of virtual code also implements 
functions for loading the classes into memory and generation 
of routines for object allocation, and their linking with the 
source program. 

Therefore, this step of compilation is strongly dependent on 
the target system architecture, in this case, the virtual machine, 
that is going to be described in the following paragraph.   

D.  Simulation of the Virtual Code 
In the microcontroller domain [6], because the real-time 

systems are in general only execution platforms, in the 
development phase, their emulation is a great help for testing, 
analysis and debugging the resulted code.  

Based on these considerations, for simulating the execution 
of the virtual code, the solution of defining a virtual machine 
represents a good choice. In this thesis, the VM is designed to 
be very customizable and can emulate, if necessary, at a 
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generic level, the architecture and functionality of some types 
of real embedded systems.  

• Functionality of the virtual machine should be easy to 
emulate with the help of executives for each object 
language. In essence, a virtual machine is equipped with a virtual 

language (code) and also with an executive routine, which is 
the interpreter for this virtual language. The role of the 
executive is to pass through all the virtual code and execute 
each instruction in terms of machine code of the desired 
computer. 

Generally, the virtual language is inspired from other 
assembly languages; however it’s showing a greater abstract 
level [5]. 

III.  THE SCANNER GENERATOR 
The virtual language and the structure of the virtual 

machine are settled after the following criteria [7]: 
For the development of the compiler we decided to use 

scanner and parser generators that we developed as part of this 
project.    • Virtual commands should be sufficient to allow the 

correct translation of the instructions from the source 
language; 

 
 

Fig. 1 The structure of the scanner generator 
 

 
IV.  THE PARSER GENERATOR The input of the scanner generator is represented by a text 

file that contains a set of regular expressions which describes 
the source language atoms and generates the corresponding 
transitions table and the C++ code of the scanner. 

The input  of the parser generator is represented by a text 
file that contains the productions of the grammar and 
generates C++ code corresponding to the syntactic analysis as 
well as to the construction of the complete syntax tree. The steps of generation follow below (fig.1): 

• the generator creates first an explicit abstract syntax 
tree corresponding to the regular expressions set from 
the input file; 

We have chosen recursive descent parsing because it is best 
suited for an object oriented design. The syntax tree is 
complete because for each type of non-terminal in the 
grammar it is generated a new class of nodes. • then it creates the corresponding non-determinist 

finite state machine (NFSM) based on the abstract 
syntax tree from above; 

 Each of the functions that are produced by the generator 
return a certain type of node. The children of the node created 
inside a function are constructed through recursive calls to 
other functions of the parser. 

• finally, the generator transforms the above NFSM 
into the equivalent determinist finite state machine 
(DFSM) represented by a transitions table and 
generates the C++ code of the scanner. 

Source program

Scanner
(generated
with the scanner
generator)

Parser
(generated
with the parser
generator)

Syntax tree

Exception
(in case of error)

+
Contextual checker,
code generator
(visitors of the syntax
tree)

Object code

 
 

Fig. 2 The phases of a compiler developed using the generators 
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The parser generator produces C++ code that can be used 
together with the C++ code produced by the scanner 
generator. 

The user of these tools will be working with the complete 
syntax tree constructed by the automatically generated parser 
to realize the other phases of a compiler. Fig. 2 shows the 
phases of a compiler developed using the two generators. 

The generators were used at the developing of the Object 
Pascal compiler, but also at the developing of an assembler for 
the virtual object code. 

V.  THE DESIGN OF THE COMPILER 
In fig. 3 we present the structure of the compiler. 
The abstract syntax tree corresponding to a program 

includes two types of nodes: internal nodes, corresponding to 
the non-terminal symbols of the grammar; and leaf nodes, 
corresponding to the terminal symbols [8]. 

Both contextual analysis and code generation are realized 
through sequential traversals of the abstract syntax tree. The 
two complex operations are represented through the visitor 

design pattern. The two visitors are the contextual checker and 
the code generator. This pattern makes the abstract syntax tree 
structure independent of its operations. 

The symbols table is the main structure of the compiler. It is 
implemented like a hash table. The table contains objects of 
different classes, each object corresponds to each kind of 
identifier (variables, constants, etc.). The symbols table is 
constructed during the contextual analysis [9]. Both contextual 
analysis and code generation use the information about 
identifiers contained by this table. 

The errors reported by all phases of the compilation are 
treated through the exception mechanism from C++. The way 
of treating errors doesn’t allow the recovery in case of errors, 
meaning that the compiler stops its execution when the first 
error is detected.    

 
 

Fig. 3 The structure of the compiler 
 

VI.  THE VIRTUAL MACHINE - VMPC 

The solution of a virtual machine [4] was taken based on 
initial purpose of a virtual machine – a hardware emulator for 
real-time systems.  

Nowadays, virtual machines have acquired new roles and 
developed new uses and two big branches have emerged:  
• System Virtual Machines, with the purpose of 

providing a complete execution platform within 
another one. 

• Process Virtual Machines, with the purpose of 
introducing a new level of abstraction and the 
possibility of creating platform independent 
applications. 

VMPC – Virtual Machine for Personal Computer – is 
designed as a hybrid virtual machine, but with the balance in 

favor for the System Virtual Machine class. It introduces the 
level of abstraction and the code can be run on any platform if 
the virtual machine is implemented. But, in the current 
implementation, the virtual machine is very complex, because 
it includes a series of customizations, and, strong debugging 
and testing facilities. This is why it represents more a System 
VM, than a Process VM. Still, with a simpler implementation 
of the default VM, other platforms than the PC could be 
targeted (even real-time platforms) and a good portability 
could be assured [9]. 

A. The Virtual Machine’s Architecture 
As stated before, the virtual machine VMPC is designed to 

offer strong customization capabilities. In order to accomplish 
this, the VM was build upon components that can be replaced 
or extended at any moment. In addition, each component has 
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its own customizable characteristics, as shown in the 
following paragraphs.  

The main components are [7]: 
• the instruction set 
• the register set 
• the data memory 
• the code memory 
• the port set 
• the bus controller  
These components, like a real system, can be interchanged 

– modified or extended – to create different configurations 
because they have a high level of independency.  

To ensure the independence and substitution capabilities, 
the components are designed independently based on 
interfaces, in concordance with the OOP principles, 
encapsulating almost completely the actual implementation 
[7].  

Still, because it emulates a real system and the components 
are working together, the components have to obey certain 
design conventions that are documented for every type of 
component. Good examples are the constants used in the 
instruction or register modules so that other modules can 
access a certain entity without knowing the internal structure 
or implementation.  

Also, some functions from a component might depend on a 
specific implementation from another component. For 
example: the usage of the retrieval command for the current 
value of the timer register (GTM), without having the specific 
register defined in the associated set of registers. Although the 
current implementation has some protection measures against 

inadequate uses (by treating the exceptions that may appear), 
the behavior would still be incomplete and should be avoided. 
In the case of the above example, VMPC generates an 
interrupt with the default action of ignoring the instruction. 

To minimize the cases of incorrect configurations, the 
MVPC instantiation is realized trough an abstract factory 
which registers the valid configurations for the available VM 
modules. 

The valid and the user defined (preferred) configurations 
are stored in external files, so they can be saved and loaded 
directly from the UI. 

To ensure a simple substitution between different virtual 
machine modules, all the virtual machine implementations 
available to ESPL are stored in the package emulators.  
 

 
Fig .4 The virtual machines package structure 

 
As it can be deduced from fig. 4, the default VMPC is in 

mvpc package. The other packages that appear in the figure 
correspond to some of the VMPC’s components and will be 
described along with the parent component (fig. 5). 

 
Fig. 5 MVPC diagram classes 
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B.  The data representation 
To bring a new layer of abstraction bound with the 

representation of data, an interface “Value” is used. Value 
classes include management and conversion functions for the r                           
epresentation of data in the virtual machine’s components. 

                                                                                                   The fetch (and decode) is only made by the Instruction 
Fetch Unit (considered without latency), so in case of a 
balanced instruction load and/or small latencies for the 
execution units, a throughput of 1 instruction / clock cycle is 
obtain at best.  

For the default implementation of VMPC have been defined 
3 sets of data, for 8, 16 and 32 bit data. All the available 
datasets for VMPC are stored in the package values from 
package mvpc. 

For every dataset, three fundamental types of data are 
supported in the current implementation: integer, real, address 
(unsigned integer). The dataset’s length gives also the type’s 
length.  

The real type is based on the floating point standard IEEE 
754 and is only available for 32 bit data. Implementing real 
values for less than 32-bit is possible, but it will introduce a 
number resolution, that makes them almost unusable. So, for 8 
and 16 bit data, float data are truncated and stored as integers.  

As support for these types, the value classes include 
functions for conversion (between data type) and comparison 
(between values of the same dataset). 

Regarding data storage, the virtual machine is equipped 
with both registers and stack. This way the global variables are 
statically allocated and local variables are allocated in stack 
frames. 

There is no direct support for the heap in the default 
implementation, so heap variables and dynamic arrays require 
manager modules, written in virtual code, that are going to be 
linked with the application’s virtual code (in virtual code 
generation phase, described in the following chapter). 

C.  The Instruction Set 
The instruction set is the one that stores and manages all the 

instructions known by the virtual machine. The default 
implementation contains a number of 88 instructions. 

Each type of instruction contains its own characteristics, 
coding (used for virtual / assembler code generation) and 
decoding methods, and its execution method. 

The instructions are registered in the set of instructions and 
in this way subsets of the implicit set can be defined, or the set 
can be extended with new instructions, therefore leading to the 
construction of simpler or more complex virtual machines. 

Besides the instructions, the instruction set contains also the 
executive. This represents the execution engine of the virtual 
machine. It simulates clock cycles and the processing unit of a 
real system. The routine polls the machine status and takes 
corresponding action if required, manages the internal timer, 
and decodes and executes instructions.  

The default execution engine is equipped with a simple 
pipeline, with the following functional units: 

• Instruction Fetch Unit  
• Arithmetic Logic Unit (ALU) 
• Floating Point Unit (FPU) 
• Memory Access Unit 
• Port Access Unit 

Each of the functional units can have a customizable 
latency. 

The instructions are broken into 2 phases, the fetch and the 
execution.  

The execution is done by the other 4 units based on the 
instruction type. [6] 

No “hardware” workload balancing is done in the current 
implementation, so this task has to be done by the compiler, 
most probably at the optimization phase (currently not 
available). In these conditions, the balanced load is not 
guaranteed by the virtual machine. 

D. The Register Set  
The register set contains all the available registers of the 

virtual machine. 
Registers are of three types: administrative registers, 

general use registers, specific registers.  
The administrative registers (like IC – Instruction Count) 

are hidden from the user, by being used and managed 
internally by the instructions to assure the base functionality of 
the machine. 

The general use registers have associated a specific code 
and can be referenced by the user as parameters of 
instructions. There are two types of general use registers: for 
integers and for floating point operations. The numbers of 
these registers are among the selectable characteristics of the 
register set, the two values can differ. 

The specific registers are associated with embedded special 
features, like timers, convectors etc. These registers are 
optional and their presence is also among the selectable 
features of the register set. 

The registers, as in the case of instruction sets, are recorded 
in the register sets, allowing the extension or reduction of the 
set in use. 

The dimension of the data in the registers is set by giving a 
prototype value (from the available datasets) at the 
initialization of the set. 

The size of the integer registers in the default 
implementation determines the maximum addressable 
memory, because they are used for address resolution. 

The floating point registers, in the current implementation, 
are locked to 32-bit, because of the data constraint presented 
in paragraph B.  

E.  The Memory 
The memory is implemented using an array of values, with 

the data size specified by a prototype value, just like in case of 
the register set.  

Besides this, the memory has the following characteristics: 
memory size (in number of cells), latency and its 
representation policy.  
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The latency represents the number of clock cycles needed 
for data access. A latency of 0 is also accepted and it means 
that any kind of memory access from a certain instruction is 
done within’ a clock cycle (even if multiple accesses are 
necessary). 

The representation policy can be big-endian or small-endian 
and it’s used by the memory controller to make a correct 
transfer between data from memory and other components 
with different data size or bus.  

In VMPC there are two types of memories used, a data 
memory and a code memory, but they can be set to be the 
same, in case the system doesn’t have separate code and data 
memories. In this case the base segments have to be set 
correctly so that the two areas won’t overlap. 

The maximum size of the memory that can be used in the 
current implementation is 4GB, but in practice only about 16 
MB are accepted because of the memory issues from the host 
system. To overcome this problem, a swapping system has to 
be designed for testing a system with more than 16MB of 
memory. At this point this module wasn’t created. 

F. The Port Set 
The port set contains and manipulates all the ports that the 

virtual machine has. The ports, like the other components, 
have several properties that can be set when the set is 
instantiated.  

First of all it’s the type. There can be input ports, output 
ports and bidirectional ports. Incorrect actions on a 
inappropriate type of port (a read from an output port) will 
lead to an interrupt for I/O errors. To prevent I/O errors like 
this, pooling functions are included that tells the system the 
type of a certain port.  

Like in case of the memory, the port set has the possibility 
to set the data size and the latency.  

A special feature is that they are equipped with data buffers 
to prevent stalls due to poor synchronization, communication 
failures or other connection problems. The size of this buffer 
is also a selectable property. But even with buffers, the port 
could become busy and so, pooling functions are implemented 
in this case too, so that the system knows when the port will 
be accessible. 

G.  The Bus Controller 
This is a support component that takes care of the 

communication between the other components.  
It has conversion functions for the data types used by the 

virtual machine and special functions for component -> 
component communication [10]. So, it is responsible to 
correctly transfer (copy) data of different type and size among 
the virtual machine’s components.  

It is recommended that all the new components use the bus 
controller for communicating with other components, so that 
the conversion and representation standards will be followed. 

H. The Interrupt System 
The interrupt system is responsible for managing the 

interrupts and errors of the VM.  

The interrupt system status is polled at the beginning of 
each virtual clock cycle and if an active request is waiting, the 
corresponding handling routine is called.  

Interrupts can be originated from the system – system 
interrupts – or from the user (from the running application) – 
user interrupts.  

The interrupt system of the default implementation of 
VMPC treats the system interrupts and the user interrupts the 
same. The system interrupts are defined through constants and 
depend on the implementation (they have to be respected by 
the application developer).  

The interrupts are prioritized. The priority of a certain 
interrupt as well as the interrupt handler routine can be 
changed by the user. A running interrupt handler can be 
interrupted only by an interrupt with higher priority. 

The number of interrupts of VMPC corresponds with the 
size of the integer registers (16 interrupts for a 16-bit integer 
register set). 

I. The Machine Observers 
Observers, like stated in the corresponding design patter, 

are objects that are attached to the virtual machine, have 
access to the machine’s state and internal operations and are 
notified every time the machine’s status changes.  

This way they can react in various ways and can be used to 
implement other functions, like polling functions, debugging 
modules etc. without the need of rebuilding the VM. 

These observers can be dynamically registered and removed 
from the VM at runtime.  

VII.  VIRTUAL CODE GENERATION 

A.  The Code Generator’s Architecture 
The code generator [4] is implemented using the data 

structure generated by the compiler’s front end modules, with 
some small improvements. The changes were necessary but 
were omitted in the code generation phase because they 
weren’t of interest at that time. For example the access 
modifiers volatile and static were omitted because the 
intermediate code doesn’t use registers. But these changes can 
prove useful for that stage too, making the intermediate code 
more powerful, consolidating its role as generic assembly 
language.  

The code generation is highly dependent on the target VM 
and that’s why this module uses the virtual machine 
configuration and components in order to provide specific 
code for that machine type. 

The result of the virtual code generation is an object file 
written in machine code. The code generator has the 
possibility to write user friendly code using the description of 
the instructions, and thus, being able to generate assembly 
language code. This feature is also useful for debugging, 
verification and validation and, possibly for profiling.  

In this implementation, the code generator also takes care of 
the class loading and the generation of the heap and dynamic 
arrays manager’s codes.   
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Code generation modules are located in the codgen 
package, each with its own package – the default code 
generator for VMPC has mvpc package. 

 

 
Fig. 6 The virtual code generator’s packages 

 
The module components are: 

• The code selector 
• The register allocator 
• The class loader 
• The link editor  

The address resolution is done by all the components, so a 
library of functions is created for this purpose. But, because 
it’s only for support, it is not considered a separate 
component. 

B. The Data Storage 
In the current implementation, because in ESPL there are no 

global variables, statically allocated will be only the data 
resulted from class loading and the variables needed by the 
specific managers.  

The local variables will be allocated in the stack frames, so 
addressed relative to the SB register. 

The dynamic tables and objects will be allocated in the heap 
by the corresponding manager routines.  

The heap and the stack will start at opposites ends for better 
memory utilization. The heap will start immediately after the 
statically allocated data and grow ascendant, while the stack 
will start at the end of the program’s memory and grow 
descendant. This way the system will be out of memory only 
when the two areas collide.  

Dynamic arrays are used instead of static arrays because 
ESPL doesn’t provide a mechanism for setting the array 
lengths, so they have to be allocated dynamically. This way 
they will have a manager that along with the heap manager 
will manage them similar to objects. 

C . The Code Selector 
The code selector is in charge of translating the instructions 

from the intermediate form, provided by the front-end, in 
corresponding virtual code. This module works closely with 
the address resolver, the class loader and the register allocator 
to generate de instruction’s parameters.  

The translation is done upon code templates that are applied 
to an intermediate form instruction or a set of intermediate 
form instructions, so the generated object code is as good as 
possible [4]. 

In the current implementation, the translation is done almost 
directly, because the two instruction sets are pretty similar. 

There are only loading and data transfer functions added to the 
virtual instruction set, that don’t have a corresponding 
instruction in the intermediate instruction set.  

This module also takes care of the address calculation of the 
instruction destination used in jumps and calls.  

D. The Register Allocator 
This module manages the allocation of registers needed for 

storing variables and intermediate results in expression 
calculation.  

It has to select the best fit data to be stored in specific 
registers and which to be spilled in the stack. It also has to 
take in account the variable’s access modifiers, volatile and 
static.  

The selection is based on the constraints and a usage 
frequency indicator (LFU – least frequently used – 
replacement technique) in the current implementation.  [4]  

E. The Class Loader 
In the default implementation, inspired by Java’s class 

loader, the code generator’s class loader is the main 
component. It starts and manages the code generation process. 

Functionally, the class loader crosses the intermediate type 
structure and allocates the memory necessary for class objects 
and object prototypes (that will be used by the heap manager 
to instantiate objects of a specific class).  

It’s roles are: 
• parsing the input data and identifying classes and 

methods; 
• calculating the real addresses for every class object 

(descriptor); 
• calculating relative addresses for  static and instance 

attributes; and methods; 
• calling the code selector and link-editor components 

when needed; 
• building the output data; 
• writing the output files. 

F. The Link-Editor 
This component is responsible for loading and adding the 

code for the heap and dynamic arrays managers. It will also 
collaborate with the class loader to allocate the necessary data 
and variables used by the managers. 

The corresponding routines are written in object code and 
they are read from a file and then link-edited with the current 
program.  

Because the object code for the manager required data for 
address resolution, in the external object code file for the 
managers, standardized constants are used, that will be 
replaced by the link-editor with the required value. This way 
the managers can be “upgraded” in a very simple manner. 

This module is also responsible for adding the default 
interrupt handling routines. In the current implementation, 
these routines will ignore external interrupt requests and halt 
the system in case of internal error interrupts. 

G. The object file 
The object file is composed out of 3 main areas:  
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• the memory data area, that is composed of the data 
generated by the class loader; 

• the program code generated by the code selector 
component; 

• a general information area, that is generated to identify 
the virtual machine configuration that the file is 
destined to. 

The areas are entered in a TLV format (Tag-Length-Value), 
where the Tag is 1 byte long, identifying the area, the Length 
is 4 bytes long and gives the total length of the area and the 
Value contains the area data with the specified length.  

The information area can be missing, but running a file on a 
machine even with slight configuration differences, rather the 
one destined to, could bring a defective execution. 

VIII. CONCLUSIONS 
The added modules are substitutable, because of the 

combinations of the concepts of inheritance and composition, 
and because of the use of several creational design patterns 
like Prototype and Abstract Factory. 

An important role is played by the Observer pattern that 
offers many external actions like analyses, measurements, 
debugging etc. 

The components are not only substitutable, but also very 
customizable because of the many attributes that can be set, 
and so, even the default implementation of the virtual 
machine, offers many usage approaches, by decently 
simulating specific classes of embedded systems.  

An important aspect is that, through its complex structure, 
the virtual machine is not suitable to be used as a virtual 
machine on a specific platform, although the Java environment 
offers great portability. This is because it was designed 
especially for simulation and testing on development 
platforms.  

Also with the possibility of generating assembly code, with 
the correct configuration of the instruction set and the usage of 
a cross-compiler on the resulting code, real machine code can 
be generated.  

As a testing strategy, most black-box testing was used. Unit 
tests were created for the most important components and 
scenario testing for the whole system. 

A minus in the current implementation is the error reporting 
in the virtual machine. Improving this module would be a 
good direction for future developing. 
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