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Abstract: - In this paper we focused on the daily log returns of 
investment in the Prague stock exchange index, PX-Index. 
Considering an investment trust that takes a „passive“ 
investment strategy and invests its assets in a specified stock-
market index  - the PX Index. We analysed data from January 
1st, 1995 to February 20th, 2014. A popular model for stock 
market returns is that the log investment returns are independent 
and identically distributed (i.i.d.) normal random variables. We 
focused on the daily log returns and analysed the distribution of 
these returns. By means of the well-known Jarque-Bera test we 
reject the i.i.d. normal hypothesis of daily log returns. We 
emphasize this by looking at the data using graphical 
techniques, such as histogram and Q-Q plot. We can see that the 
data has fatter left and right-hand tails than the normal 
distribution. Conclusions of our basic analysis are that the daily 
log returns are leptokurtic and heavy tailed. They are not i.i.d. 
and volatility varies over time. Also we can say that extreme 
daily log returns appear in clusters.  
Further we investigated a simple model which incorporates 
stochastic volatility. We analysed volatility-standardised 
residuals using a GARCH approach. We can see that 
standardised residuals do not show any clusters of high and low 
volatility. 
Plotted standardised residuals also show that there are more 
exceedances of the lower threshold than the upper and that they 
are larger. 
International banking regulations require banks to pay specific 
attention to the probability of large losses over short periods of 
time. 
We were focusing on the tails of the standardised residual. We 
fitted tail data separately using a Pareto distribution. Estimated 
parameters of the Pareto distributions show us that the Pareto 
distribution gives a generally better fit over the tails than t and 
non-central t distribution. 
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I. INTRODUCTION 

Consider an investment trust that takes a “passive“ 
investment strategy and invests its assets in a specified 
stock-market index e.g. PX Index.  
The PX Index is the official index of major stocks that 
trade on the Prague Stock Exchange. The index was 
calculated for the first time on March 20, 2006 when it 
replaced the PX 50 and PX-D indices. The index took 
over the historical values of the PX50. The starting day of 
PX 50 was April 5, 1994 and its opening value was fixed 
at 1 000 points. [5]  
At this time the index included 50 companies on the 
Prague Stock Exchange. 

Figure 1. shows the development of the PX Index 
from its starting day in 1994 to February 20, 2014. From 
the middle of 1994 to about 2004 we can see something 
that looks like business cycles. Business cycles of this 
type might exist but the cycles are all of different lengths, 
the timing of the peaks and the lows are difficult to 
predict. The PX Index reaches its top on October 29, 
2007 with 1936 points. As result of financial crisis 
reached 700 points on October 27, 2008 losing almost 
50% of its value in two months. [6] 
Since data in the year 1994 are irregular, we decided to 
analyse data from January 1, 1995 to February 20, 2014. 
 

 
Fig. 1: PX Index (in CZK) from 5. 4. 1994 to 20. 2. 

2014. Source: www.pse.cz [6] 
 

What is the distribution of the percentage return (no 
dividends) over specified period of time? 
Suppose that we use one day as our unit of time. The 
typical approach is to model the log investment return 
from time 1−t  to time t: which we will denote by )(td . 

That is, 1 CZK invested at time 1−t  will be worth )(tde  
CZK at time t. 
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A popular model for stock market returns is that )1(d , 
)2(d , … are independent and identically distributed 

(i.i.d.) normal, ),( 2σµN , random variables. 
Some questions arise. 

• Is the assumption of normality appropriate? 
• Is the i.i.d. assumption appropriate? 

In this paper we are going to focus on the daily log 
returns (Figure 2.) and analyse the distribution of these 
returns. 

 
Fig. 2: Percentage daily return on the PX Index (4787 
observations). Source: Own calculation 

II. PROBLEM FORMULATION 

In this section we will establish certain stylised facts 
about this returns )(td  series.  
Firstly we will assume that returns are i.i.d.. This implies 
the assumption that volatility is constant. 
Our first aspect is to analyse if the )(td  are i.i.d. 

),( 2σµN . We will fit the normal distribution to the data 
and then conduct a variety of test to see if this model is 
appropriate. Suppose that we have T observations, )1(d , 

)2(d , …, )(Td . We can go straight ahead and estimate 
µ and σ using the standard maximum likelihood 
estimates: 

∑
=

=
T

t

td
T 1

)(1µ̂ ,    (1) 

∑
=

−
−

=
T

t
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22 )ˆ)((
1

1ˆ µσ .    (2) 

We have 4787 observations in our dataset and we find 
that =µ̂ 0.0001247978 per trading day (or 

=−+ 1)ˆ1( 252µ 0.03194677 per annum)1 and =σ̂
0.01400127 per trading day (or =⋅ 252σ̂ 0.2222633 
per annum). 
The normality we can verify by the coefficients of 
skewness b  and kurtosis k. The normal distribution 
has skewness 0 and kurtosis 3. 

                                                 
1 There are approximately 252 trading days per year. 

 

The PX Index daily returns data has a skewness of =b
− 0.44 and a kurtosis of k = 14.687. These empirical 
coefficients look quite different from 0 and 3 
respectively, but are they significantly different? 
We can answer this question by means of the Jarque-Bera 
test. 
The Jarque-Bera test gives a test for normality that 
focuses on both the skewness and kurtosis. Specifically, 
if the data are i.i.d. ),( 2σµN  then the Jarque-Bera 
statistic with n observations 







 −+⋅= 2)3(

4
1

6
kbnTn ,      (3) 

should have, approximately, a Chi-squared distribution 
with 2 degree of freedom.  
More precisely, if the null hypothesis is true, then the Tn 
is said to be asymptotically 2

2χ .   
For PX Index daily returns data (n = 4787) the Jarque-
Bera statistic is equal to 27398.43, which is exceedingly 
large. The p-value is effectively 0 and we reject the i.i.d. 
normal hypothesis. 
The R language contains a function called jbtest which 
performs the Jarque-Bera test. So we just type the 
command: 

> jbtest(d)  # Jarque-Bera test of the 
daily returns # 
   Skewness = -0.4403515  
   Kurtosis = 14.68711  
Jarque-Bera = 27398.43  
    p-value = 0 
We can easily carry out a chi-squared test on our data. 
This can be done by the following command in R: 
> chi2test.normal(d) 
Chi-squared statistic is 564.431 with 97 
degrees of freedom. 
The p-value for this is 0. 
 
The chi-squared statistic works out at 564.431 with 97 
degrees of freedom. The p-value for this is 0: that is, 
there is very strong evidence to reject the assumption of 
normality 
 
The data is clearly non-normal from these analyses. We 
add to this by looking at the data using graphical 
techniques, such as histogram and Q-Q plot 
 
We have plotted in Figure 3. the histogram of the daily 
log returns on the PX Index. We have also drawn in the 
density function for the )ˆ,ˆ( 2σµN  distribution. We 
can easily see from this that the data exhibit a 
narrower peak than the best-fitting normal 
distribution. Less obviously, but certainly a feature 
of the data is, that it has a fatter left and right-hand 
tails than the best-fitting normal distribution. In 
other words we are looking at a leptokurtic 
distribution. 
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Fig. 3: Histogram of the percentage daily returns on the 
PX Index. Source: Own calculation 
The solid line shows the density function of the 

)ˆ,ˆ( 2σµN  distribution. 
 
A Q-Q plot is a dot plot that plots the ordered sample 
against the corresponding quantiles of the distribution 
that we are considering to model the data. Suppose that 
we have observations nXXX ,,, 21  . Let 

nXXX ~~~
21 <<<   be the ordered value of 

nXXX ,,, 21  . Now let 
n

iqi
5.0−

= for ni ,,2,1 =  

be theoretical probabilities that are uniformly spread over 
the range 0 to 1.  

 
Fig 4: Q-Q plot of daily returns on the PX Index.  
Source: Own calculations 

Let )(1
ii qY −Φ=  be the corresponding theoretical 

quantile of the standard Normal distribution. 
If the data were genuinely normally distributed then we 
would expect to see the 4787 points much more in a 
straight line. The fact that Figure 4. actually exhibits an 
inverted “S” shape means that the data has fat left and 
right-hand tails. The downturn in the plot at the left-hand 
end means that the left-hand tail is fatter than the normal 
distribution: in other words we should expect rather more 
large losses over time than we would predict using the 
Normal distribution. This inverted “S” shape therefore 
points to the data being leptokurtic. We can use the shape 
of the Q-Q plot to guide our next choice of distribution. 
The formal hypothesis tests and the less-formal 
graphical/diagnostic tests clearly indicate that the 
assumption that returns are normally distributed is not 
valid.  
Additionally Figure 2. also suggests that the daily log 
returns are not i.i.d.. Instead, it looks like there are clear 
clusters of high and low volatility. The PX Index log 

returns have clusters of high volatility (e.g. in 2008) and 
low volatility (e.g. 2013).  
Conclusions of our basis analysis are: 

1) Log returns are leptokurtic and heavy tailed. 
2) Log returns are not i.i.d. 
3) Volatility appears to vary over time. 
4) Extreme log returns appear in clusters. 

III. PROBLEM SOLUTION 

In Figure 5. we investigate the evidence for non-i.i.d. log 
returns in a more systematic way. Here we look at the 
autocorrelation function. 

 
Fig. 5: Left: Sample autocorrelation function for PX 
Index daily log returns. 
Right: Sample autocorrelation function for squared PX 
Index daily log returns. 
Horizontal dashed lines give the 95% confidence interval. 
Source: Own calculation 
 
In the left-hand plot we have plotted the sample 
autocorrelation function for the daily log returns )(td  for 

nt ,,2,1 = . The values of the )(kρ          (
))(),(()( ktdtdcork +=ρ , where k is referred to as the 

lag are all fairly close to zero (except, a small but 
significant positive correlation at lag 1). This initial 
observation is consistent with log returns being i.i.d. but, 
of course, it does not imply that log returns are i.i.d. 
The fact that the ACF is close to zero implies that a high 
log return one day does not give us any information about 
the expected log return the next day. 
In right-hand plot we have plotted the sample 
autocorrelation function for the squares of the daily log 
returns )(td  for nt ,,2,1 = . This plot is very 
different. There is a moderate, but nevertheless highly 
significant, correlation between the 2)(td  on different 

days. It tells us that if 2)(td  was high on day t (that is, a 
large positive or negative log return) then it is likely that 

2)1( +td  will also be above average. The left-hand plot 
tells us, though, that we cannot be precise in any way 
about the sign of )1( +td  or its conditional expected 

value. The significant autocorrelations in 2)(td  imply 
that the market goes through phases of high and low 
volatility. The fact that the autocorrelation function 
decline very slowly means, that these phases can last for 
some time. 
We now propose a simple model which incorporates 
stochastic volatility of the form: 
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)()()( tZttd ⋅+= σµ ,   (4) 
where µ is constant, σ(t) is some stochastic volatility 
process and ),2(),1( ZZ  are i.i.d. volatility-
standardised residuals.  
 
An important observation about the equation (4) is that 
the value of σ(t) must be known at time 1−t  based on 
information available up to and including time 1−t . It is 
usually assumed that [ ] 1)( =tZVar  which means that 

[ ]1
2 |)()( −ℑ= ttdVartσ  where 1−ℑt  represents the 

market information available up to and including time 
1−t . In other words σ(t) is the conditional standard 

deviation of )(td  given the market information up to 
1−t . Usually we also assume that [ ] 0)( =tZE . 

 
Now define the variance process to be 

2)()( ttv σ=  
and propose the simple model 

2

2

)()()1()(

))(()1()()1(

tZtvtv

tdtvtv

⋅⋅−+⋅

=−⋅−+⋅=+

θθ

µθθ
.    (5) 

It is straightforward to show that this implies that 

)0())(()1()(
1

0

2 vktdtv t
t

k

⋅+−−⋅−= ∑
−

=

θµθ . In fact, 

this process we have defined for v(t) (equation (5)) is a 
special case of what is called a GARCH(1,1) time series 
process.  
Now that we have estimated the volatility process v(t) we 
can calculate the volatility-standardised residuals 

)(ˆ
ˆ)()(ˆ

tv
tdtZ µ−

= ,   (6) 

which we can now analyse. 
 
In Figure 6. we have plotted the volatility-standardised 
residuals. As a reminder, in the upper plot (Figure 2.) 
there are clear clusters of large gains and losses and other 
clusters of small gains and losses. The Figure 6. shows 
the standardised residuals, and we see nothing of the 
clustering. We can conclude that the standardisation has 
passed our first visual diagnostic test.  

 
Fig. 6: Volatility-standardised residuals.  
Source: Own calculation 

Our next plot, Figure 7, shows the autocorrelation 

functions for )(ˆ tZ  and 2)(ˆ tZ . The right-hand plot for 
2)(ˆ tZ  shows a dramatic improvement over Figure 5.  

 
Fig. 7: Left: Sample autocorrelation function for the 
volatility-standardised residuals. 
Right: Sample autocorrelation function for squared 
volatility-standardised residuals. 
Source: Own calculation 
 
The model (equation (5)) for stochastic volatility using 
exponential weighting is a special case of a GARCH 
process. A GARCH process (Generalized Auto-
Regressive Conditionally Heteroscedastic) is defined as 
follows: 
• Let µ−= )()( tdtX . 
• Let ),2(),1( ZZ  be a sequences of i.i.d. random 

variables with mean 0 and variance 1. 
• For integers 1, ≥qp , the GARCH(p,q) model is 

governed by the equations 
)()()( tZttX ⋅= σ ,   (7) 

∑∑
==

−⋅+−⋅+=
q

j
j

p

i
i jtitXt

1

2

1

2
0

2 )()()( σβαασ , 

(8) 
where 00 >α , 0≥iα  for pi ,,2,1 =  and 0≥jβ  

for qj ,,2,1 = . 
If p = q = 1, 00 =α , θα −=11  and θβ =1  then we 
have our original model (equation (5)). 
 
The GARCH(1,1) is perhaps the most widely used of all 
the GARCH models, being relatively simple as well as 
providing a statistically good model for stochastic 
volatility. 
We can note the following when  p = q = 1: 

• From equation (8), it follows that  
2

1
2

10
2 )1())1(()( −⋅+−⋅+= ttZt σβαασ . (9) 

• If 0)])1([log( 1
2

1 <+−⋅ βα tZE  then the 
model for X(t) is strictly stationary. 

• If 111 <+ βα  then the model for X(t) is 

covariance stationary, with unconditional 

variance 
11

0

1
)]([

βα
α
−−

=tXVar . 

Estimation of parameters is dealt with in McNeil, Frey 
and Embrechts [2]. 
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Suppose that we wish to fit the GARCH(1,1) model. One 
approach to parameter estimation is to use maximum 
likelihood. We have a set of observations
{ }nttd ,,2,1:)( = , with parameter vector

)),1(,,,( 110 µσβααθ = .  
Construction of the likelihood function proceeds as 
follows: 

• Let ),( φzh  be the density function of the i.i.d. 
Z(t). Recall that 0)]([ =tZE  and 

1)]([ =tZVar , so the parameter vector φ 
defined the remaining parameters of the 
distribution. For example, for t distribution, φ is 
simply the number of degrees of freedom. For 
the non-central t distribution φ has two elements: 
the number of degrees of freedom and the non-
centrality parameter. 

• 
)1(

))1((

θσ
µ−d

 has density ),( φzh . 

• For t = 2, 3, …, n: 

− Let 
)1(

))1(()1(
−
−−

=−
t

tdtZ
σ

µ
. 

− Define 
2

1
2

10
2 )1())1(()( −⋅+−⋅+= ttZt σβαασθ . 

− µ−)(td conditional on )1(θσ  and 
)1(,),2(),1( −tddd   has the same density as 

µ−)(td  conditional on )(tθσ : that is, 
knowledge of )(tθσ  is sufficient. Thus, 

)(
)(

t
td

θσ
µ−

 has density ),( φzh . 

The observations are obviously not independent, so we 
need to build up the likelihood sequentially.  
 
Thus, 

( ) =−⋅

=

∏
=

n

t

tddtdfdf

dL

2

)1(,),1(),1(|)())1(|)1((

);,(

θθ σσ

φθ

 

∏
=








 −
⋅

n

t t
tdh

t1

;
)(

)(
)(

1 φ
σ

µ
σ θθ

.  (10) 

Full maximum likelihood (MLE) is implemented by 
simultaneously maximizing );,( dL φθ  over all elements 
of θ and φ. 
As an alternative to full MLE we will take an 
approximate 2-stage procedure which generally delivers 
good results and indeed makes the process of finding a 
good distribution for the Z(t) easier. This procedure is 
called quasi maximum likelihood (QML). 
• Stage 1: Assume that the Z(t) are i.i.d. N(0,1), so 

that φ is empty. Maximize the likelihood 
);,( dL φθ , over all elements of θ. 

This stage outputs not just the quasi maximum likelihood 
estimate for θ but it also outputs a set of standardised 
residuals )(ˆ,),2(ˆ),1(ˆ nZZZ  . 

• Stage 2: Analyse the )(ˆ tZ  and determine what is 
the best distribution for them. 

We know that the distribution of the daily log returns 
d(t), when treated as being a sequence of i.i.d. random 
variables, exhibited fatter tails than the normal 
distribution. These apparent fat tails can be caused by a 
combination of two features: 
• stochastic volatility; 
• a fat-tailed distribution for Z(t). 

Note that the inclusion of stochastic volatility means that 
the observed distribution of the d(t) will have fatter tails 
than the underlying i.i.d. Z(t). 
 
Under QML the estimated GARCH(1,1) parameters are 
(using R commands):  

> res1<-fit.garch11.normal(d) 
14561.43  # maximum likelihood # 
> res1$par    # The vector of parameters # 
sigma(1)      alpha0       alpha1        
beta1           mu 
1.253475e-02 3.464359e-06 1.303942e-01 
8.552684e-01 5.963464e-04 
 
This results in an unconditional standard deviation   (

10.985662611 <=+ βα ) for d(t) equals to 

)(1 11

0

βα
α
+−

 = 0.0155445 per trading day or 24.67% 

per annum (252 trading days). 
 
Standardised residuals, Z(t) are plotted in Figure 8., 
where we cannot see any obvious clusters of high and 
low volatility. The horizontal dashed lines give the 1% 
and 99% quantiles of standard normal. There seems to be 
more exceedances of the lower threshold than the upper, 
and these seem to be larger.  

 
Fig. 8: Daily standardised residuals, Z(t), for the 
stochastic volatility model. Source: Own calculation 
 
We now proceed onto an analysis of the Z(t) on the 
assumption that they are i.i.d.. 
First we are looking at the possibility that Z(t) are 
normally distributed. Two graphical diagnostics are 
provided in Figure 9. 
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Fig. 9: Left: Empirical histogram of the Z(t) (bars) with a 
fitted Normal overlaid (solid line). Right: Q-Q plot of 
standard normal quantiles vs. empirical quantiles. Source: 
Own calculation 
 
We can compare the histogram of the Z(t) (left-hand plot) 
with Figure 3., and conclude that the Z(t) appear to be 
closer to a normal distribution than the original d(t). The 
kurtosis of the d(t) is 14.687 reducing to 4.862 for the 
Z(t). However, the histogram still provides evidence that 
the data have a narrower peak and (by inference) fatter 
tails than the standard normal.  
The Q-Q plot (right-hand plot) leads us to a similar 
conclusion, that the Normal distribution is better than 
before, but that it still does a bad job in modelling the 
tails of the data. Specifically both tails in the data are 
fatter than the Normal, especially the left-hand tail. The 
Q-Q plot also shows some skewness in the data, and, 
indeed, the coefficient of skewness is − 0.27, suggesting a 
long left-hand tail.  
These graphical diagnostics can be backed up by formal 
hypothesis tests. 

> jbtest(ZQ) # ZQ is the vector of 
standardized residuals Z(t) 

   Skewness = -0.2725932  
   Kurtosis = 4.862287  
Jarque-Bera = 751.0284  
    p-value = 0 
> chi2test.normal(ZQ) 
Chi-squared statistic is 181.686 with 97 
degrees of freedom. 
The p-value for this is 4.221595e-07. 
 
The Jarque-Bera test results in rejection of the i.i.d. 
normal hypothesis. The Chi-squared test compares the 
number of observations in 100 bands, each with 
probability 0.01 under H0. The test statistic of 181.686 is 
not disastrously high, but it is big enough to result in a 
very low p-value, so again H0 is rejected. 
 
The well-known alternative distribution on the real line to 
the normal is the t distribution. 
Suppose that 

• Z and Y are independent random variables, 
• Z ~ N(0,1) has a standard normal distribution, 
• Y ~ 2

νχ  has a standard chi-squared distribution 
with ν degrees of freedom, 

• The random variable X is defined as 

ν
Y

ZX = , 

then the random variable X has a standard t distribution 
with ν degrees of freedom, and its probability density 
function equals 

2
1

2

1

2
1

)1(
2
1

)(

+
−
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


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


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
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
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

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=

ν

ννπν

ν
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By the method of moments we can estimate parameters 
of the t distribution by matching specified moments of 
the distribution to the sample moments. Our model is that 
the volatility standardised residuals, Z(t), are given by   

)()( tXsmtZ ⋅+= , where the X(t) are i.i.d. standard t 
random variables with ν degrees of freedom. From the 
moments of the standard t distribution we can infer that 

[ ] mtZE =)( ,            (11) 

[ ]
2

)( 2

−
⋅=
ν
νstZVar , (for ν  > 2) (12) 

[ ]
4

)2(3)(
−
−⋅

=
ν
νtZKurtosis , (for ν  > 4).    (13) 

Thus we use the sample mean, variance and kurtosis to 
estimate m, s and ν. 
We have the following statistics: 
[ ])(tZE = − 0.0300086, [ ])(tZVar = 0.999772,  

 k = 4.862287. 
Matching these three moments we get:  
ν̂  = 7.221846, ŝ  = 0.850145, m̂  = − 0.0300086. 
Under maximum likelihood the estimated t distribution 
parameters are (using R command mle.t): 

> mle.t(ZQ) 
mu    = -0.01648076  
sigma = 0.8535201  
nu    = 7.442079  
log-likelihood = -6696.788  
[1] -0.01648076  0.85352007  7.44207945 
 
The summary Table 1. contains the log-likelihood for 
three methods we have investigated. 
 
It is clear that the t distribution fits much better than the 
normal. Additionally, we can see that the method of 
moments produces a worse fit using log-likelihood as a 
measure. 
 
Previously, in the Jarque-Bera test, we saw that the 
empirical coefficient of skewness is − 0. 2725932, so it 
makes sense to investigate some skewed, fat tailed 
distributions. There are many such distributions to 
choose. The one we will investigate is called the non-
central t distribution (NCT). 
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Suppose that 
• D ∈ R is some constant 
• Z and Y are independent random variables, 
• Z ~ N(0,1) has a standard normal distribution, 
• Y ~ 2

νχ  has a standard chi-squared distribution 
with ν degrees of freedom, 

• The random variable X is defined as 

ν
Y

DZX +
= , 

then the random variable X has a non-central t 
distribution with ν degrees of freedom and non-centrality 
parameter, D. 
 
The NCT distribution is now fitted to the volatility 
standardised residuals (using R command mle.nct): 

> pv3<-mle.nct(ZQ)    
mu    = 0.2815168  
sigma = 0.8533425  
nu    = 7.637477  
ncp   = -0.3267568  
log-likelihood = -6692.568 
 
Maximum likelihood estimates for the parameter 
estimates of the normal and t distributions are repeated in 
the Table 2. along with those for the non-central t. 

The normal distribution is a special case of the t which in 
turn is a special case of the NCT, so we can see an 
increase each time in the log-likelihood. 

IV. FITTING EXTREME VALUES 

International banking regulations require banks to pay 
specific attention to the probability of large losses over 
short periods of time (typically 1 or 10 trading days). 
More generally we may wish to pay specific attention to 
the possibility of large gains or losses for general risk 
management purposes.2 
We focus here on analysis of the tails of the Z(t) resulting 
from the QML estimation used in fitting a GARCH(1,1) 
model to the daily log returns data. 
In Figures 11. to 13. we take the Z(t) output by the QML 
approach, plot the empirical CDF for the data and 
compare this with the fitted CDF’s for normal, t and NCT 
distributions.  
 
In Figures 12. and 13. we have zoomed in on the 5% and 
1% left and right hand tails of the cumulative distribution. 
The left-hand plots give us information about the 
probability of large losses and the right-hand plots about 
the probability of large gains on the index. 
In general, the t and NCT look rather better than the 
normal. The NCT generally seems better than the t, but 
by a smaller margin. Skewness in the empirical data 

                                                 
2 Large gains in a stock-market index can cause losses, e.g. for banks 
that have sold call options on that index.  

shows up in fatter left-hand tails, and this means that the t 
and NCT are better.  

Fig. 11: Normal, t and NCT distributions fitted to QML 
Z(t). Source: Own Processing 

Fig. 12:. Detail of Figure 11. Source: Own Processing 
 
To avoid problems with the tails a good compromise is to 
use the above mentioned distributions within the main 
body of the data (say between 5% and 95% quantiles) and 
to fit each tail data separately using a standard 
distribution. We will refer to this as the hybrid approach. 
[4] 
 
Above the 95% quantile and below the 5% quantile we 
will fit a Pareto distribution to the excess returns over the 
95% quantile and below the 5% quantile, respectively. 
 

Fig. 13: Detail of Figure 11. Source: Own Processing 
 
Random variable X has a Pareto distribution [3] with 
parameters λ > 0 and α > 0 if it has the pdf 

1)(
)(

++
= α

α

λ
αλ

x
xf , for  x > 0.          (14) 

Its cumulative function is 
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α

λ
λ









+
−=

x
xF 1)( , for  x > 0.  (15) 

 
Now suppose that we have n observations in total. The 
95% quantile will be denoted by q. Further suppose that 
there are m observations out of the n that exceed q, and 
that these take the values mxxx ,,, 21  . 
Now fit a Pareto distribution using the method of 
moments or maximum likelihood to the excess returns 

qxy ii −= , returning the parameter estimates α̂  and 

λ̂ . [1] 
For qx >  the cumulative distribution function is then: 

α

λ
λ

ˆ

)(ˆ
ˆ

05.01)( 










−+
⋅−=

qx
xF . (16) 

For the data below the 5% quantile we will follow 
similarly, but for qx <  the cumulative distribution 

function is 

α

λ
λ

ˆ

)(ˆ
ˆ

05.0)( 










−+
⋅=

xq
xF . 

Figure 14. shows results for fitting a Pareto distribution to 
the lower 5% and 1% of the data, and to the upper 5% 
and 1% of the data. 
 
Estimated values for λ and α are given in Table 3. For the 
lower 1% we saw that the estimated value of α is 19.84, 
while the upper 1% tail has α̂ = 155.55. This means that 
the left-hand tail is fatter, contrasting with a relatively 
thin right-hand tail. This means that the right-hand tail of 
the data we can smoothly fit by NCT distribution. 
 

Fig. 14: Upper and lower tail characteristics of the 
empirical and fitted CDF’s. Source: Own Processing 
 

V. CONCLUSION 

For our analysis we proposed a model which incorporates 
stochastic volatility. One of the most used model for daily 

return series is the GARCH model. Under QML we 
estimated GARCH(1,1) parameters and obtained 
standardised residuals. Standardised residuals do not 
show any clusters of high and low volatility. We took 
them as i.i.d. 
 
The GARCH(1,1) model is the first and foremost a model 
for short-term risk assessment. Longer-term predictions 
will be less reliable. 
Analysis of the standardised residuals showed that the 
non-central t distribution (NCT) fits them much better 
than the t distribution or the normal distribution. 
 
After all we analysed the tails of the standardised 
residuals. Above 95% quantile and below the 5% quantile 
we used Pareto distribution for fitting. 
We can see that Pareto distribution provides a generally 
better fit over the tails than t and non-central t 
distribution. 
 
We conclude this paper by looking at Q-Q plots of the 
tails of the data versus the theoretical Pareto distribution. 
These are plotted in Figure 15. for both the 5% and 1% 
tails. In all cases the Q-Q plot looks reasonably linear 
suggesting that the Pareto is an appropriate choice for 
modelling excess gains and losses. 

Fig. 15: Q-Q plot for the excess losses and gains for the 
1%, 5%, 95% and 99% quantiles versus theoretical Pareto 
quantiles. Source: Own Processing 
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Estimate m s ν log-likelihood 

Normal: MLE − 0.0300086 0.999886 ∞ − 6791.914 

t: Method of moments − 0.0300086 0.850145 7.221846 − 6706.331 

t: MLE − 0.0164807  0.853520   7.442079 − 6696.788 

Table 1: Log-likelihood of normal and t distribution. Source Own calculation 
 

Estimate m s ν NCP log-likelihood 

Normal: MLE − 0.0300086 0.999886 ∞  − 6791.914 

t: MLE − 0.0164807 0.853520   7.442079  − 6696.788 

NCT: MLE 0.2815168 0.8533425 7.637477 − 0.3267 − 6692.568 

Table 2: Log-likelihood of normal, t distribution and non-central t distribution. Source: Own calculation 

 

Tail 

Volatility-standardised residuals, Z(t) 

Quantile cut-off λ̂  α̂  

5% worst losses − 1.631937 8.140316 12.95973 

1% worst losses − 2.673547 14.88173 19.84448 

5% top gains 1.511473 81.37704 153.8542 

1% top gains 2.319732 90.08061 155.5489 

Table 3: Estimated values for λ and α for the Pareto tail distributions. Source: Own calculation 
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