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On the Existence of Maximum Likelihood
Estimates in Modulated Gamma Process
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Abstract— The problem of existence of maximum likeli-
hood estimates (MLE’s) of unknown parameters in a modu-
lated gamma process (MGP) is considered. It is shown that the
MLE’s do not always exist. A theorem is established which
gives the conditions under which the MLE’s can be deter-
mined. A simulation study was conducted for some chosen
values of the process model parameters for small numbers of
the process events observed. The aim of the simulation was:
1) to provide frequency of appearing the respective conditions
formulated under which the MLE’s do exist, 2) to demonstrate
the frequency of appearing the condition formulated under
which the MLE’s do not exist and 3) in the case when the
MLE’s do exist to give their values and accuracy. The MGP
considered is a member of the rich class of the trend renewal
processes which were considered among others in the fields
of reliability, economics and medicine.

Keywords— Modulated gamma process, inhomogeneous
gamma process, trend-renewal process, maximum likelihood
estimation.

I. INTRODUCTION

A modulated gamma process (MGP) is a special case of
the inhomogeneous gamma process (IGP) defined in [2]. As
the class of trend renewal processes (TRP’s) introduced in
[8] includes IGP, the MGP is also the special case of TRP.
The MGP, so others TRP models, are a compromise between
the renewal process (RP) and the nonhomogeneous Poisson
process (NHPP), since its failure probability at a given time ¢
depends both on the age ¢ of the system and on the distance of
t from the last failure time. Thus it seems to be quite realistic
model in many practical situations.

In the paper we consider the problem of existence of MLE’s
of the parameters of the MGP. We show that the MLE’s in the
model considered do not always exist and we give conditions
under which the MLE’s can be determined.

Statistical inference for the MGP was considered in [2]
and for modulated Poisson process (a special case of mod-
ulated gamma process) in [3]. Both papers only seriously
addressed questions of hypothesis testing (via the likelihood
ratio test), but did not satisfactorily solve the problem of
parameter estimation. Inferential and testing procedures for
log-linear nonhomogeneous Poisson process (a special case of
the modulated Poisson process) can be found in [1], [4], [6],
(71, [12].
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The article is organized as follows. In Section II we recall
the definition of the IGP and its special case — the MGP. In
Section III we establish a theorem which gives the conditions
under which the MLE’s in the models considered can be
determined. In Section IV a simulation study was conducted
for some chosen values of the process model parameters to
demonstrate the frequency of appearing the condition formu-
lated under which the MLE’s do not exist, and to provide
frequency of appearing the respective conditions formulated
under which the MLE’s do exist, and to give the values and
accuracies of the MLE’s in the cases when the MLE’s exist.
Section V contains conclusions and some prospects.

II. DEFINITIONS AND PRELIMINARIES

The IGP was defined in [2] in the following manner. Con-
sider a Poisson process with intensity function A(t). Suppose
that an event occurs at the origin, and that thereafter only
every k-th event of the Poisson process is observed. Then, if
Ty, ...,T, are the times of the first n events observed after
the origin, their joint density is the following

falts,oota) = { TTAGOIAG) = Atts))"" |
i=1

~exp[=A(t)]/[T(8)]", ey

where

t
At) = / Alu)du (2)
0
and tgp = 0. If x is any positive number, not necessarily an
integer, then (1) is still a joint density function. A point process
{T;,i = 1,2,...} with the joint density (1) for all positive
integers n is called the IGP with rate function A(¢) and shape
parameter .
The MGP is the IGP with rate function of the form

A(t) = pexp{Bz(t)}, 3)

where 3 = (f1,...,0p) and 2(t) = (21(t),..., 2,(t))". When
K = 1, this reduces to Cox’s modulated Poisson process (see
[3D.

An alternative method of deriving the IGP is the following
one. Suppose that the random variables

Wi = A(Ti)—A(Tifl), 1= 1,27...7 (4)

for = 1,...,n are independently and identically distributed
according to the gamma distribution G(k,1) with unit scale
parameter and shape parameter . It then follows that (1) is
the joint distribution of ¢1,...,%,.
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It follows from Definition 1 given below that the IGP can be
regarded as a special case of a TRP introduced and investigated
first in [8] and [11] (see also [9] and [10]).

Definition 1: The TRP is defined as follows. Let A(t),t >
0, be a nonnegative function, and let A(¢) be given by (2).
The point process {T;,4 = 1,2,...} is called a TRP with a
renewal distribution function F'(t) and a trend function A(t)
if the time-transformed process {A(T;),i = 1,2,...} is an
RP(F) with the renewal distribution function F, i.e. if the
random variables W;, given by (4), are i.i.d. with cumulative
distribution function F'. The TRP is denoted by TRP(F, A(+)).

Parametric inference in the TRP model was studied in [10].
In [5] the problem of estimating unknown trend parameters of
a TRP in the case when its renewal distribution function F is
completely unknown was considered.

Definition 2: The MGP is the TRP(F,pexp{Bz(t)}),
B = (BiyeosByp) 2(t) = (21(8),...,2p(t)7, where F
corresponds to the gamma distribution G(x, 1).

It follows from the definition of the MGP that o > 0 and
k > 0. In the sequel the MGP with p = 1 and z;(¢) = ¢ is
considered. We will denote it by MGP(p, 3, k). We suppose
that the MGP(p, 3, ) is observed up to the nth event (failure)
appears for the first time, and the values ¢4, . .., ¢, of the jump
times 17, ..., T, are recorded. In other words, we consider the
so called failure truncation (or inverse sequential) procedure.
Denote t (t1,...,tn). The likelihood function of the
MGP(p, 8, k), observed until the nth failure occurs is

Ln(0, B, kit) = [Fﬁzf;)} n exp (5 zn: ti)
i=1
exp QJ€ exp(fz)dz fi ljjilexp(ﬁx)dx]
} exp [5 Z ti — )}

H exp(Bt;) — exp(Bti_1)]" .
=1

k—1

(exp(Bt,) —

Remark that we can distinguish the following special cases
of the MGP(p, 3, k):

1) For g =0, i.e. for MGP(p, 0, ) the intensity is A(t) =
o and we have to deal with the RP(F') with F'(z) ~
G(k,0)-

2) If & 1, then the MGP(p,3,1) becomes the
NHP(A(t)), Cox’s modulated Poisson process.

We will consider the MGP(p, 8, k) for which ¢ > 0,5 >
0,k > 0.

III. THE ML ESTIMATION IN THE MGP MODEL

The log-likelihood function of the MGP(p, 3, k) is of the
following form

E(Qaﬁa ’ﬁt) = nlog |:F(K:§);“_1:| +ﬂS(t)
— 2 lexp(Btn) — 1] + (5 — 1)V(B: 1),

B
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where
n
t)=> t
i=1

t) = > log[exp(Bt;) — exp(Bti-1)] -

i=1

Therefore, the possible MLE’s of MGP(p, 3, k) parameters
are solutions to the following system of the log-likelihood
equations

V(s

(o, B,k3t) _mk 1 -
T o0 o B [exp(Btn) —1] =0,  (5)
0l(o, B, k;t) _n(/i -1
B = 3 + S(t)
e 2 [(1 = Bta) exp(Bta) — 1]
+ (k=W (B;t) =0 (6)
W = nlogo —n¥(x) —nlog s
+ V(B;t) =0, 7
where
W(B;t) = i tiexp(Bt;) — ti—1 exp(fti—1)

—  exp(Bt;) — exp(Bti-1)

and ¥(k) denotes the digamma function.
Proposition 1: The MLE’s omrL, By and Kprp, of the
parameters o, 3 and « in the failure truncation procedure for

the MGP(p, 3, k) exist if and only if, given data t, there exists
the solution to the equation

Li(B;t) =: log[nk(B;t)] — W[k(B;t)]

— loglexp(8ta) 1]+ T V(B =0, ®)

with respect to /3, where
W(5:8) = S(t) - 5
K(Bit) = - : )
. p(ﬁtn)
W(ﬁ7 t) - nth
Proof. Observe that the equation %;’H’t) = 0 holds for
¢ = o ki t) = — 10" (10)

exp(Btn) — 1

Substituting ¢ = p*, where p* is defined by (10), into (6) and
(7) we obtain the log-likelihood equations for 5 and « of the
following form

_nx=1) ne [ Bt esp(Bt,)
R 2l Lseer ey g
+ (k=W =0; (D
log(nk) — ¥(k) — loglexp(ft,) — 1]
+2V(Bt) = (12

Notice that equation (11) is a linear function with respect
to x and the parameter kK = k(3;t) can be easily determined
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to be of the form given by (9). Substituting x = k(3;t) into
equation (12) leads to equation (8) for S. O

It will be shown in Theorem 1 below that in the
MGP(p, 8, k) model the MLE’s of g, § and k not always exist.
The conditions will be given under which the MLE’s do exist.
If the MLE’s exist, then they can be evaluated using Theorem
2, which gives the formulas determining the MLE’s of g, 8
and x of the MGP(p, 8, k) in the case of failure truncation
observation scheme.

Denote
Ly (B;t) = loglr(B;t)] — W[r(6; 1)), (13)
Lf(ﬂ;t) := —logn + loglexp(St,) — 1]
—lV(ﬁ;t), (14)
Dy(t) := S(t) — (n+ 1)5" 15)
w(B:8) = W(B ) = S(t) — % (16)
(the nominator of k(53;t)), 17
p(fie) = W3 —nt, SEE )
(the denommator of k(5;t)),
Bo(t) == kp(0T;t), (19)
o tn o KN(OJr;t)
KJO(t) T 2D1(t) o KD(O+;t)
. /QN(OJr;t)
 Bolt) 0)
Dy (k) := log(k) — ¥(k), 2D
1 & i —tie
Zo(t) :== —ﬁ;bg <ntt:jl)
= L (07;¢). (22)
Theorem 1: The MLE (EML,BML,EML) of the vector

parameter (g, 3, k) for the MGP(p, 3, k) model exists if one
of the following two cases holds for the data t = (¢1,...,t,)
of the process observed, namely in
CASE 1°%: Dy (t) > 0 for 3 > By(t)
or in
CASE 2°: D;(t) < 0 and D2 (ko(t)) < Zo(t) for 8> 0.
Otherwise, i.e. in
CASE 3°: D;(t) < 0 and Da(ko(t)) > Zo(t)
the MLE’s do not exist.
Proof. According to Proposition 1 the problem of existence of
the MLE’s comes down essentially to the question of whether
there exists a solution to likelihood equation (8) with respect
to . Equivalently, consider the equation

LE(B;t) = LE(B; 1), (23)
where LE(B;t) and Lf(3;t) are defined by (13) and (14),
respectively.
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Let us take into account the right hand side function
LE(B;t) of the likelihood equation. The function LZ(3;t)
can be expressed in the following form:

1 n
LEBt) = == log[nh;(B;t
X (B5t) n; og[nhi(B;t)],
where
ex ti — €eX ti_
hi(B:t) = p(Bti) — exp(Bti-1)
exp(fStn) —
_ exp(ﬂ(tz - tn)) - exp(ﬁ(tifl - tn))
1—6Xp(5tn)
One can show that
. t; —ti—1 )
1 h;(B;t) = ———, =1,...,n.
g B =T =l
Moreover,
li hi(5; , < 1 li hn(B;t) =
Gm hi(Bit) =0, i<n;  lim hn(B;t)
Thus,
th :77210 { i_“)]

: Zo(t).

Now we show that limg ,o+ LE(B;t) > 0. To do this we
use the fact that the arithmetic mean for positive numbers
is not smaller than their geometric mean. Namely, for a;

nfti —ti-1) we have
tﬂ,
1in(ti—tl 1) o
n < tn, B
i=1
Thus,
. Rip.ey _ “rn(t —tio) .
Jim LR (3:e) = 3| T] 5 > 105(1) = 0,

ie. limg o+ LE(B;t) > 0 for every realization t

(t1,...,tn). Moreover, limg_, o LE(B;t) =
Remark that
OLE(B;t) 1
—wNDV T = -t 24
a8 n/‘:D(ﬂ, )7 (24)

where xp(3; t) is defined by (18) (denominator of the function
k(B;t)). Notice also that

1) if D1(t) <0, then kp(B;t) < 0 for every 8 > 0, where
D1 (t) is defined by (15);

2) if D1(t) > 0, then kp(B;t) > 0 for B € (0,By(t))
and kp(B;t) < 0 for B € (By(t),0), where Sy(t) is
defined by (19). If kp(B;t) < 0, then x < 0 which does
not concern the process model considered.

Thus, we have shown that the function L(3;t) is increasing
as a function of § for 8 € {f > 0: k(8;t) > 0}.
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From formula (24) and the fact

kp(B;t) € (S(t) — nty, S(t) — (n + 1)t2n>

we infer that

OLE(B;t)
op

(n+ 1)t,
2n

€ (—S(t) +

It then follows that the function LZ(3;t) increases not faster
than ¢, — S(t). Thus the function LZ(3;t) increases from
LE(0%;t) = Zo(t) > 0 but no faster than ¢,, — S(t) provided
that D1(t) < O or decreases on the interval (0, ((t)) and
increases on (fo(t), +00) but not faster than ¢, — S(t).

Consider now the left hand side function LZ(3;t) of the
likelihood equation defined by (23). Observe that

,—S(t) + tn> :

-0.

LE(B;t)

— logln(B; )] — W[w(B;t)] € [ !

1
26(B;t)" K(B;t)

|

and it is decreasing as a function of k(3;t). Since x(f;t) is
decreasing as a function of § in the interval (5y(t),c0) or on
(0, 00), the function LL(3;t) is increasing as a function of 3.
Thus we have the following conclusions:

1) If Di(t) > 0, then LL(B;t) increases from 0O on the
interval (By(t), +00) to limg_, yo0o LE(B;t) = +o00.

2) If Dy(t) < 0, then LL(B;t) increases from log|[ro(t)] —
ko (t)] to limg_, 1o LL(B;t) = 400, where rq(t) is
defined by (20) .

Finally, we gather from the considerations carried above that

19 If Dy (t) > 0, then the equation (8) has a solution Bz,
in the interval (5y(t), c0).

20 If D;y(t) < 0, then the equation (8) has a solution
By >0 provided that 1Og[l€0(t)] — \I/[Iio(t)] < Zo(t).

3% In other cases, equation (8) has no solution in the interval
(0, 00).

Thus the proof of the theorem is complete.

Figures 1 — 6 illustrate the statements of Theorem 1 in
the three situations, Case 1°, Case 2° and Case 3°, i.e. for
three possible realizations of the process under the same triple
(0,8, k) of the process model.
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K(B:t)
L(B:Y)

\ 5r .
il 0=2.5, f=0.1, k=2
! iCASE 1°%: the MLE's do exist
\ooal D(t)=2.1581
b BwL=0.1036
\ P
\aboooid
\ P
2“‘ : _\‘\ /

1

Fig. 17 Plots of the functions k(B;t), Le(B;t) and kp(B;t)
for the data t = (¢1,...,t,),n = 10, of a trajectory for which
Case 1Y holds

5 -
0=2.5, =0.1, k=2
CASE 1°: the MLE's do exist
al D4(t)=2.1581
BuL=0.1036
3 -
2 -
e L(B)
1t N _,-"/ — L(BY)
b = LB
L - ‘\l'//’ L -__—-T—--_——--_\ --------- L ), /3
-0.1 {1 0.2 0.3 0.4 0.5 0.6
Fig. 2:Plots of the functions LZ(B;t), L,.(B;t) and LE(5;t)

for the data t = (¢1,. .

., tn),n = 10, of a trajectory for which
Case 1° holds

ST
P 0=2.5, B=0.1, k=2
. CASE 2°: the MLE's do exist
P bl D4(t)=-0.8896
b Da(o(t))=0.1897
P Zo(t)=0.4140
oY BnL=0.0477
\\\ é 1F i-;’l\./TL\\
™ R R
. i/\‘\/ . . . . . .
o\

Fig. 3 Plots of the functions k(B;t), Le(B;t) and kp(B;t)
for the data t = (¢y,...,t,),n = 10, of a trajectory for which
Case 2° holds
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5 .
0=2.5, B=0.1, k=2
CASE 2°: the MLE's do exist
af D4(t)=—0.8896
Dy(ko(t))=0.1897
Zo(t)=0.4140 e
! Bw.=0.0477 -7
2k _/./'
. T T LK(BY)
i P — LdBY
e T L (B:t)
~0.1 = 0.1 0.2 0.3 0.4 0.5 0.8
* / . A

Fig. 4:Plots of the functions LL(B;t), L,.(3;t) and LI(3;t)
for the data t = (¢4,...,t,),n = 10, of a trajectory for which
Case 2° holds

z 0=2.5, f=0.1, k=2

CASE 3°: the MLE's do not exist
Lol D;(t)=—1.6722

: D»(ko(t))=0.3403
Zo(1)=0.1132

Li(B:Y)

I T ™ ol (RS

\

\
\

N

70‘.1}“( 0.1 0.2 0.3 0.4 0.5 0.
Fig{ 5> Plots of the functions x(3;t), L.(6;t) and xp(S3;t)
for the data t = (¢4,...,t,),n = 10, of a trajectory for which

the MLE’s do not exist

5 -
0=2.5, B=0.1, k=2
CASE 3°: the MLE's do not exist
al D4(t)=—1.6722

Da(ko(t))=0.3403
Zy(h)=0.1132 .-~

2t
------- LU(B)
10 LI:;(.B;'()
o LB
P =< | \-_---_—--\- L L ), /_J)
-0.1 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 6:Plots of the functions LZ(B;t), L,.(B;t) and LE(B;t)
for the data t = (t1,...,¢,),n = 10, of a trajectory for which
the MLE’s do not exist

As a consequence of Proposition 1 and Theorem 1 we have
the following theorem.
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TheoArem 2: If Case 1° or 29 holds, then t}le MLE’s
oML, B and Ky r, can be determined as follows: By, is the
solution to equation (reflogLikehoodBeta), %y, is determined
by the formula

RmrL = KJ(BML; t), (25)

where k(3;t) is defined by (9) and

—~ nBMLRML
OML = —=——.
eXp(ﬂMLtn) -1

IV. SIMULATION STUDY

The main purpose of the simulation study is to show
using numerical program how often on average the Cases 1Y,
20 and 3% of Theorem 1 may occur observing the process
corresponding to the MGP(p, 3, k) model considered.

The MGP(p, 3, k) can be generated according to the for-
mula

1
t; = = log éGml +exp(Bti—1)|,i1=1,2,...,n,
o

B
where G ;1 is a random number generated according to the
gamma G(k, 1) distribution.

Each sample of the MGP(p, 3, k) is generated up to a fixed
number n of jumps is reached.

The simulation study was carried out for small values of the
number n of jumps (failures). For each chosen triple (g, 3, k),
the number k repetitions of the realization of the MGP(p, 3, )
were generated.

The ’real’ last failure times 7, are evaluated as the means
from the k£ end-time points of the k repetitions of realizations
of the process generated up to nth jump (failure), and all the
ML estimates are evaluated as the means from the & estimates,
such that each of these estimates was derived on the basis of
the individual realization of the process considered.

To evaluate the ML estimates of the parameters g, 5 and
K, the numerical program was constructed using Mathematica
10.4 package.

The accuracy of any MLE, say 7] of 7, is measured by the
variability of an estimator 77 which under squared error loss
is determined by the root mean squared error RMSE(7)) =
V/(sd(1))2 + (mean(7) — n)2, where sd stands for the stan-
dard deviation, and by the absolute error (ABSE) which under
absolute error loss is defined by ABSE(7) = |7 — n)|.

In tables the abbreviations se, ae and re are used for the
RMSE’s, ABSE’s and RE’s, respectively.

The results of the simulation study are given in Tables I
and II in the case of the MGP(p, 3, k) for some combinations
of the parameters o, 5 and x. The parameters of the model
have been chosen to maintain the last failure time 7, =~ 1.
For comparison, analogous numerical results are presented in
Tables III and 1V.

Tables I and III contain the values of the ML estimates
oML, BymrL, Ry and the percentages of occurrence of the
Cases 19, 29 and 3° in the two situations, when T, =~ 6
and T, ~ 1, respectively. In the tables these percentages are
denoted by ML1, ML2 and noML, respectively.
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As Tables I and III show, it does not rarely happens that the
MLE’s do not exist. For many triples (o, 3, <) the percentage
of the case of non-existence of the MLE’s exceeds 20% and
for some cases is even close to 30%. The Case 2° appears
significantly less often than the Case 1°.

In Tables II and IV there are given the RMSE’s of the
estimators considered. In the whole range of parameter triples
(0, B, k) of data set for T}, ~ 6, corresponding to Table II, all
the RMSE’s of the estimators (35,1, are considerably smaller
than the RMSE’s of the other two estimators.

TABLE I: The ML estimates of g, 8 and x and the percentages
ML1, ML2 and noML of occurrence of the Cases 1°, 2% and 3° in
the MGP(p, 8, k);n = 10,T,, = 6

R\]\JL MLI1 ML2 noML

Volume 4, 2016

TABLE III: The ML estimates of g, 8 and  and the percentages
ML1, ML2 and noML of occurrence of the Cases 1°, 2° and 3° in
the MGP(p, 8, k);n =10,T, =~ 1

0 B K| Tn Tn+1| omr Bumr Rar|MLI ML2 noML

7 0.1 0.75
6 0.5 0.75
4 1075
2 2075

1 1.0280
2

3

4

5(10 0.1 1
6

7

8

9

0.9499
1.0169
1.0717
0.9658
0.9541
0.9648
1.0107
0.9571

1.1239
1.0265
1.0810
1.1119
1.0546
1.0327
1.0275
1.0507
1.0463

6.0504 1.4320 1.0225
5.4462 1.8513 1.0028
4.9747 1.9949 1.1759
2.6204 2.9725 1.0799
8.6341 1.4219 1.3310
8.4871 1.5803 1.4112
6.7206 2.0185 1.4432
4.4054 2.6017 1.4649
17.2093 0.9155 2.3549

59.0
64.0
71.0
96.3
51.0
73.0
82.0
95.0
57.0

20.0
20.0
14.0

3.6
15.0
11.0
12.0

4.0
14.0

21.0
16.0
9.0
0.1
34.0
16.0
6.0
1.0
29.0

8 0.5
6 1
32 1
1.5

—_ =

15 0.1

No.| ¢ B &

Tn Tn+l

oML BmL

1.2 0.01 0.75

1 .0.05 0.75
09 0.1 0.75
0.6 0.20.75
1.6 0.01

—_— =

1.2 0.1
09 02

—_ =

5.9456 6.5131
6.2094 6.8129
6.0937 6.5584
6.2758 6.6220
6.1347 6.7268
5.9702 6.4884
5.9238 6.4150
5.7609 6.0930

1.0947 0.2609
0.9739 0.2835
0.8146 0.3264
0.7142 0.3421
1.4247 0.2249
1.3972 0.2286
1.3083 0.2495
1.0852 0.3541

1.0099
1.1288
1.0372
1.0134
1.3607
1.3598
1.3646
1.4257

48.0 23.0

64.5
715
71.5
52.0
57.5
67.5
83.0

16.0
13.0
11.5
18.0
16.5
16.5
10.5

29.0
19.5
15.5
11.0
30.0
26.0
16.0

6.5

11

13
14
15
16

12 0.5
9 1
5 2

20 0.1

16 0.5

12 1
6 2

1.5
L5
1.5

2

2
2
2

0.9652
0.9600
0.9667
0.9544
0.9747
0.9849
1.0029

1.0387
1.0212
1.0066
1.0474
1.0529
1.0407
1.0452

14.7420 1.0871 2.1843
10.8644 1.7009 2.1439
7.1646 2.5862 2.2518
23.2363 0.8064 2.969%4
19.2950 1.0140 2.9353
16.1466 1.4061 2.9422
9.3126 2.2567 2.9578

68.0
88.0
99.4
56.0
74.0
88.5
99.8

15.0
5.0
0.5

16.0

10.0
5.0
0.1

17.0
7.0
0.1

28.0
16.
6.5
0.1

TABLE IV: The RMSE’s of the ML estimates of g, 8 and & in the

2

3

4

5

6[1.4 0.05

7

8

9]2.5 0.01

2.2 0.05

11{1.9 0.1

1.3 0.2

3.3 0.01
3 0.05

25 0.1
1.8 0.2

5.8328 6.4049
5.8665 6.3331
5.7150 6.1694
5.8799 6.2349
5.7701 6.3219
5.7311 6.2397
5.7536 6.1689
5.7276 6.0841

2.9294 0.1375 2.3288
2.5470 0.1755 2.2453
2.2966 0.2222 2.2920
1.8867 0.2832 2.3131
3.4108 0.1469 2.7643
3.6625 0.1633 3.1918
3.5182 0.1900 3.1997
2.8356 0.2589 3.2374

51.5
60.0
71.0
90.5
575 11.5
66.5 11.5
780 6.0
89.0 4.0

19.0
135
9.5
55

29.5
26.5
135

4.0
31.0
22.0
16.0

7.0

MGP(g, 8, k); n = 10,1, = 1

TABLE II: The RMSE’s of the ML estimates of g, 3 and « in the
MGP(¢, 8, k);n =10, T, ~ 6

No.| ¢ B  k|se(@urr) se(Barr) se(Rarr)
1/1.2 0.01 0.75| 0.9511 0.3381 1.1357
2| 10.050.75| 09407 0.3348 1.3344
310.9 0.1 0.75| 0.6986 0.3321 1.0706
410.6 0.2 0.75| 0.8413 0.2854 0.9901
5(1.6 0.01 1] 1.1860 0.2825 1.5121
6]1.4 0.05 1] 1.2162 0.2708 1.4894
7(1.2 0.1 1| 1.1443 0.2300 1.4677
810.9 0.2 1] 1.2471 0.2784 1.5933
912.5 0.01 1.5 2.2497 0.1674 2.6645

10(2.2 0.05 1.5] 2.0492 0.1814 2.5541
11{1.9 0.1 1.5] 1.8147 0.1871 2.6319
12113 0.2 1.5] 1.7026 0.1787 2.4736
13|3.3 0.01 2| 22349 0.1801 3.1222
14| 3 0.05 2| 2.6006 0.1675 3.7865
15(2.5 0.1 2| 2.8601 0.1541 3.5604
16/1.8 0.2 2| 3.1108 0.1512 3.8563
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No.| 0 B w|se@r) se(Barr) se®arr)
1| 7 0.1 0.75| 4.7626 1.7605 1.0336
2| 6 0.50.75| 5.1487 1.9632 0.7297
31 4 10.75| 5.1027 1.6686 0.8532
41 2 20.75| 32797 1.8863 1.0805
5110 0.1 1] 9.4946 1.8121 1.4686
6| 80.5 1| 8.4933 1.5654 1.2734
716 1 1| 6.2604 1.7741  0.9360
8 3 2 1| 47995 1.4662 0.9459
9115 0.1 1.5| 14.2683 1.0502 2.7438

1012 0.5 1.5| 11.5191 1.0301 2.0652
1119 1 1.5 87395 12546 1.5103
12| 5 2 1.5 8.1666 1.2879 1.2802
13|20 0.1 2| 18.3434 0.9877 3.5316
14|16 0.5 2| 13.6210 0.8326 29712
15112 1 2| 15.6613 0.9532 2.5069
16| 6 2 2| 10.8388 0.9356  2.3028

V. CONCLUDING REMARKS

The result presented in Theorem 1 gives the prescription
whether on the basis of a concrete realization of the process,
subjected to the MGP(p, 8, k) model, the statistician may try
to estimate the unknown model parameters using the ML
method. As the simulation study shows, it does not rarely
happens that the MLE’s do not exist and the existence of
MLE’s strongly depends on data represented by the event
times of the process observed. For many triples (o, 5, %) the
percentage of the case of non-existence of the MLE’s exceeds
20% and for some cases it exceeds even 30%. The Case 2°
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appears significantly less often than the Case 1°. Theorem 2
presents the formulas for evaluating the MLE’s in the Cases
19 and 2°.

In the failure truncation procedure and the model parameters
chosen to maintain approximately the same last failure time,
we observe that the greater the parameter 3 (the smaller the
parameter o under the same k) is, the greater the frequency
MLI is and the smaller the frequencies ML2 and noML are.

The estimators 3,y are considerably less accurate than the
estimators oasr, and Kasr.
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