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Abstract— The problem of existence of maximum likeli-
hood estimates (MLE’s) of unknown parameters in a modu-
lated gamma process (MGP) is considered. It is shown that the
MLE’s do not always exist. A theorem is established which
gives the conditions under which the MLE’s can be deter-
mined. A simulation study was conducted for some chosen
values of the process model parameters for small numbers of
the process events observed. The aim of the simulation was:
1) to provide frequency of appearing the respective conditions
formulated under which the MLE’s do exist, 2) to demonstrate
the frequency of appearing the condition formulated under
which the MLE’s do not exist and 3) in the case when the
MLE’s do exist to give their values and accuracy. The MGP
considered is a member of the rich class of the trend renewal
processes which were considered among others in the fields
of reliability, economics and medicine.

Keywords— Modulated gamma process, inhomogeneous
gamma process, trend-renewal process, maximum likelihood
estimation.

I. INTRODUCTION

A modulated gamma process (MGP) is a special case of
the inhomogeneous gamma process (IGP) defined in [2]. As
the class of trend renewal processes (TRP’s) introduced in
[8] includes IGP, the MGP is also the special case of TRP.
The MGP, so others TRP models, are a compromise between
the renewal process (RP) and the nonhomogeneous Poisson
process (NHPP), since its failure probability at a given time t
depends both on the age t of the system and on the distance of
t from the last failure time. Thus it seems to be quite realistic
model in many practical situations.

In the paper we consider the problem of existence of MLE’s
of the parameters of the MGP. We show that the MLE’s in the
model considered do not always exist and we give conditions
under which the MLE’s can be determined.

Statistical inference for the MGP was considered in [2]
and for modulated Poisson process (a special case of mod-
ulated gamma process) in [3]. Both papers only seriously
addressed questions of hypothesis testing (via the likelihood
ratio test), but did not satisfactorily solve the problem of
parameter estimation. Inferential and testing procedures for
log-linear nonhomogeneous Poisson process (a special case of
the modulated Poisson process) can be found in [1], [4], [6],
[7], [12].
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The article is organized as follows. In Section II we recall
the definition of the IGP and its special case – the MGP. In
Section III we establish a theorem which gives the conditions
under which the MLE’s in the models considered can be
determined. In Section IV a simulation study was conducted
for some chosen values of the process model parameters to
demonstrate the frequency of appearing the condition formu-
lated under which the MLE’s do not exist, and to provide
frequency of appearing the respective conditions formulated
under which the MLE’s do exist, and to give the values and
accuracies of the MLE’s in the cases when the MLE’s exist.
Section V contains conclusions and some prospects.

II. DEFINITIONS AND PRELIMINARIES

The IGP was defined in [2] in the following manner. Con-
sider a Poisson process with intensity function λ(t). Suppose
that an event occurs at the origin, and that thereafter only
every κ-th event of the Poisson process is observed. Then, if
T1, . . . , Tn are the times of the first n events observed after
the origin, their joint density is the following

fn(t1, . . . , tn) =
{ n∏

i=1

λ(ti)[Λ(ti)− Λ(ti−1)]
κ−1

}
· exp[−Λ(tn)]/[Γ(κ)]

n, (1)

where

Λ(t) =

∫ t

0

λ(u)du (2)

and t0 = 0. If κ is any positive number, not necessarily an
integer, then (1) is still a joint density function. A point process
{Ti, i = 1, 2, . . .} with the joint density (1) for all positive
integers n is called the IGP with rate function λ(t) and shape
parameter κ.

The MGP is the IGP with rate function of the form

λ(t) = ρ exp{βz(t)}, (3)

where β = (β1, . . . , βp) and z(t) = (z1(t), . . . , zp(t))
T . When

κ = 1, this reduces to Cox’s modulated Poisson process (see
[3]).

An alternative method of deriving the IGP is the following
one. Suppose that the random variables

Wi := Λ(Ti)− Λ(Ti−1), i = 1, 2, . . . , (4)

for i = 1, . . . , n are independently and identically distributed
according to the gamma distribution G(κ, 1) with unit scale
parameter and shape parameter κ. It then follows that (1) is
the joint distribution of t1, . . . , tn.
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It follows from Definition 1 given below that the IGP can be
regarded as a special case of a TRP introduced and investigated
first in [8] and [11] (see also [9] and [10]).

Definition 1: The TRP is defined as follows. Let λ(t), t ≥
0, be a nonnegative function, and let Λ(t) be given by (2).
The point process {Ti, i = 1, 2, . . .} is called a TRP with a
renewal distribution function F (t) and a trend function λ(t)
if the time-transformed process {Λ(Ti), i = 1, 2, . . .} is an
RP(F ) with the renewal distribution function F , i.e. if the
random variables Wi, given by (4), are i.i.d. with cumulative
distribution function F . The TRP is denoted by TRP(F, λ(·)).

Parametric inference in the TRP model was studied in [10].
In [5] the problem of estimating unknown trend parameters of
a TRP in the case when its renewal distribution function F is
completely unknown was considered.

Definition 2: The MGP is the TRP(F, ρ exp{βz(t)}),
β = (β1, . . . , βp), z(t) = (z1(t), . . . , zp(t))

T , where F
corresponds to the gamma distribution G(κ, 1).

It follows from the definition of the MGP that ϱ > 0 and
κ > 0. In the sequel the MGP with p = 1 and z1(t) = t is
considered. We will denote it by MGP(ϱ, β, κ). We suppose
that the MGP(ϱ, β, κ) is observed up to the nth event (failure)
appears for the first time, and the values t1, . . . , tn of the jump
times T1, . . . , Tn are recorded. In other words, we consider the
so called failure truncation (or inverse sequential) procedure.
Denote t = (t1, . . . , tn). The likelihood function of the
MGP(ϱ, β, κ), observed until the nth failure occurs is

Ln(ϱ, β, κ; t) =

[
ϱκ

Γ(κ)

]n
exp

(
β

n∑
i=1

ti

)
· exp

[
− ϱ

∫ tn

0

exp(βx)dx
] n∏
i=1

[∫ ti

ti−1

exp(βx)dx

]κ−1

=

[
ϱκ

Γ(κ)βκ−1

]n
exp

[
β

n∑
i=1

ti −
ϱ

β
(exp(βtn)− 1)

]
·

n∏
i=1

[exp(βti)− exp(βti−1)]
κ−1

.

Remark that we can distinguish the following special cases
of the MGP(ϱ, β, κ):

1) For β = 0, i.e. for MGP(ϱ, 0, κ) the intensity is λ(t) =
ϱ and we have to deal with the RP(F ) with F (x) ∼
G(κ, ϱ).

2) If κ = 1, then the MGP(ϱ, β, 1) becomes the
NHP(λ(t)), Cox’s modulated Poisson process.

We will consider the MGP(ϱ, β, κ) for which ϱ > 0, β >
0, κ > 0.

III. THE ML ESTIMATION IN THE MGP MODEL

The log-likelihood function of the MGP(ϱ, β, κ) is of the
following form

ℓ(ϱ, β, κ; t) = n log

[
ϱκ

Γ(κ)βκ−1

]
+ βS(t)

− ϱ

β
[exp(βtn)− 1] + (κ− 1)V (β; t),

where

S(t) =
n∑

i=1

ti,

V (β; t) =

n∑
i=1

log [exp(βti)− exp(βti−1)] .

Therefore, the possible MLE’s of MGP(ϱ, β, κ) parameters
are solutions to the following system of the log-likelihood
equations

∂ℓ(ϱ, β, κ; t)

∂ϱ
=

nκ

ϱ
− 1

β
[exp(βtn)− 1] = 0, (5)

∂ℓ(ϱ, β, κ; t)

∂β
= −n(κ− 1)

β
+ S(t)

+
ϱ

β2

[
(1− βtn) exp(βtn)− 1

]
+ (κ− 1)W (β; t) = 0, (6)

∂ℓ(ϱ, β, κ; t)

∂κ
= n log ϱ− nΨ(κ)− n log β

+ V (β; t) = 0, (7)

where

W (β; t) =

n∑
i=1

ti exp(βti)− ti−1 exp(βti−1)

exp(βti)− exp(βti−1)
,

and Ψ(κ) denotes the digamma function.
Proposition 1: The MLE’s ϱ̂ML, β̂ML and κ̂ML of the

parameters ϱ, β and κ in the failure truncation procedure for
the MGP(ϱ, β, κ) exist if and only if, given data t, there exists
the solution to the equation

Lκ(β; t) =: log[nκ(β; t)]−Ψ[κ(β; t)]

− log[exp(βtn)− 1] +
1

n
V (β; t) = 0, (8)

with respect to β, where

κ(β; t) =

W (β; t)− S(t)− n

β

W (β; t)− ntn
exp(βtn)

exp(βtn)− 1

. (9)

Proof. Observe that the equation
∂ℓ(ϱ, β, κ; t)

∂ϱ
= 0 holds for

ϱ∗ = ϱ(β, κ; t) =
nβκ

exp(βtn)− 1
. (10)

Substituting ϱ = ϱ∗, where ϱ∗ is defined by (10), into (6) and
(7) we obtain the log-likelihood equations for β and κ of the
following form

−n(κ− 1)

β
+ S(t) +

nκ

β

[
1− βtn exp(βtn)

exp(βtn)− 1

]
+ (κ− 1)W (β; t) = 0; (11)

log(nκ)−Ψ(κ) − log[exp(βtn)− 1]

+
1

n
V (β; t) = 0. (12)

Notice that equation (11) is a linear function with respect
to κ and the parameter κ = κ(β; t) can be easily determined
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to be of the form given by (9). Substituting κ = κ(β; t) into
equation (12) leads to equation (8) for β. 2

It will be shown in Theorem 1 below that in the
MGP(ϱ, β, κ) model the MLE’s of ϱ, β and κ not always exist.
The conditions will be given under which the MLE’s do exist.
If the MLE’s exist, then they can be evaluated using Theorem
2, which gives the formulas determining the MLE’s of ϱ, β
and κ of the MGP(ϱ, β, κ) in the case of failure truncation
observation scheme.

Denote

LL
κ (β; t) := log[κ(β; t)]−Ψ[κ(β; t)], (13)

LR
κ (β; t) := − log n+ log[exp(βtn)− 1]

− 1

n
V (β; t), (14)

D1(t) := S(t)− (n+ 1)
tn
2
, (15)

κN (β; t) := W (β; t)− S(t)− n

β
(16)

(the nominator of κ(β; t)), (17)

κD(β; t) := W (β; t)− ntn
exp(βtn)

exp(βtn)− 1
(18)

(the denominator of κ(β; t)),
β0(t) := κD(0+; t), (19)

κ0(t) := − tn
2D1(t)

=
κN (0+; t)

κD(0+; t)

=
κN (0+; t)

β0(t)
, (20)

D2(κ) := log(κ)−Ψ(κ), (21)

Z0(t) := − 1

n

n∑
i=1

log

(
n
ti − ti−1

tn

)
= LR

κ (0
+; t). (22)

Theorem 1: The MLE (ϱ̂ML, β̂ML, κ̂ML) of the vector
parameter (ϱ, β, κ) for the MGP(ϱ, β, κ) model exists if one
of the following two cases holds for the data t = (t1, . . . , tn)
of the process observed, namely in
CASE 10: D1(t) > 0 for β > β0(t)
or in
CASE 20: D1(t) < 0 and D2(κ0(t)) < Z0(t) for β > 0.
Otherwise, i.e. in
CASE 30: D1(t) < 0 and D2(κ0(t)) ≥ Z0(t)
the MLE’s do not exist.
Proof. According to Proposition 1 the problem of existence of
the MLE’s comes down essentially to the question of whether
there exists a solution to likelihood equation (8) with respect
to β. Equivalently, consider the equation

LL
κ (β; t) = LR

κ (β; t), (23)

where LL
κ (β; t) and LR

κ (β; t) are defined by (13) and (14),
respectively.

Let us take into account the right hand side function
LR
κ (β; t) of the likelihood equation. The function LR

κ (β; t)
can be expressed in the following form:

LR
κ (β; t) = − 1

n

n∑
i=1

log[nhi(β; t)],

where

hi(β; t) =
exp(βti)− exp(βti−1)

exp(βtn)− 1

=
exp(β(ti − tn))− exp(β(ti−1 − tn))

1− exp(βtn)
.

One can show that

lim
β→0+

hi(β; t) =
ti − ti−1

tn
, i = 1, . . . , n.

Moreover,

lim
β→+∞

hi(β; t) = 0, i < n; lim
β→+∞

hn(β; t) = 1.

Thus,

lim
β→0+

LR
κ (β; t) = − 1

n

n∑
i=1

log

[
n(ti − ti−1)

tn

]
=: Z0(t).

Now we show that limβ→0+ LR
κ (β; t) > 0. To do this we

use the fact that the arithmetic mean for positive numbers
is not smaller than their geometric mean. Namely, for ai =
n(ti − ti−1)

tn
we have

1

n

n∑
i=1

n(ti − ti−1)

tn
= 1 =

1

n

n∑
i=1

ai ≥ n

√√√√ n∏
i=1

ai

= n

√√√√ n∏
i=1

n(ti − ti−1)

tn
.

Thus,

lim
β→0+

LR
κ (β; t) = −n

√√√√ n∏
i=1

n(ti − ti−1)

tn
≥ log(1) = 0,

i.e. limβ→0+ LR
κ (β; t) > 0 for every realization t =

(t1, . . . , tn). Moreover, limβ→+∞ LR
κ (β; t) = +∞.

Remark that

∂LR
κ (β; t)

∂β
= − 1

n
κD(β; t), (24)

where κD(β; t) is defined by (18) (denominator of the function
κ(β; t)). Notice also that

1) if D1(t) ≤ 0, then κD(β; t) ≤ 0 for every β > 0, where
D1(t) is defined by (15);

2) if D1(t) > 0, then κD(β; t) > 0 for β ∈ (0, β0(t))
and κD(β; t) < 0 for β ∈ (β0(t),∞), where β0(t) is
defined by (19). If κD(β; t) < 0, then κ < 0 which does
not concern the process model considered.

Thus, we have shown that the function LR
κ (β; t) is increasing

as a function of β for β ∈ {β > 0 : κ(β; t) > 0}.
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From formula (24) and the fact

κD(β; t) ∈
(
S(t)− ntn, S(t)− (n+ 1)

tn
2

)

we infer that

∂LR
κ (β; t)

∂β
∈
(
−S(t) +

(n+ 1)tn
2n

,−S(t) + tn

)
.

It then follows that the function LR
κ (β; t) increases not faster

than tn − S(t). Thus the function LR
κ (β; t) increases from

LR
κ (0

+; t) = Z0(t) > 0 but no faster than tn−S(t) provided
that D1(t) < 0 or decreases on the interval (0, β0(t)) and
increases on (β0(t),+∞) but not faster than tn − S(t).

Consider now the left hand side function LL
κ (β; t) of the

likelihood equation defined by (23). Observe that

LL
κ (β; t)

= log[κ(β; t)]−Ψ[κ(β; t)] ∈
[

1

2κ(β; t)
,

1

κ(β; t)

]

and it is decreasing as a function of κ(β; t). Since κ(β; t) is
decreasing as a function of β in the interval (β0(t),∞) or on
(0,∞), the function LL

κ (β; t) is increasing as a function of β.
Thus we have the following conclusions:

1) If D1(t) > 0, then LL
κ (β; t) increases from 0 on the

interval (β0(t),+∞) to limβ→+∞ LL
κ (β; t) = +∞.

2) If D1(t) < 0, then LL
κ (β; t) increases from log[κ0(t)]−

Ψ[κ0(t)] to limβ→+∞ LL
κ (β; t) = +∞, where κ0(t) is

defined by (20) .

Finally, we gather from the considerations carried above that

10 If D1(t) > 0, then the equation (8) has a solution β̂ML

in the interval (β0(t),∞).
20 If D1(t) < 0, then the equation (8) has a solution

β̂ML > 0 provided that log[κ0(t)]−Ψ[κ0(t)] < Z0(t).
30 In other cases, equation (8) has no solution in the interval

(0,∞).

Thus the proof of the theorem is complete. 2

Figures 1 – 6 illustrate the statements of Theorem 1 in
the three situations, Case 10, Case 20 and Case 30, i.e. for
three possible realizations of the process under the same triple
(ϱ, β, κ) of the process model.

ϱ 2.5, β 0.1, κ 2

CASE 1
0
: the MLE's do exist

D1 t 2.1581

-0.1 0.1 0.2 0.3 0.4 0.5 0.6
β

-1

1

2

3

4

5

βML 0.1036

βML κD β;t

Lκ β;t

κ β;t

Fig. 1: Plots of the functions κ(β; t), Lκ(β; t) and κD(β; t)
for the data t = (t1, . . . , tn), n = 10, of a trajectory for which
Case 10 holds

ϱ 2.5, β 0.1, κ 2

CASE 1
0
: the MLE's do exist

D1 t 2.1581

-0.1 0.1 0.2 0.3 0.4 0.5 0.6
β

-1

1

2

3

4

5

βML 0.1036

βML Lκ
R β;t

Lκ β;t

Lκ
L β;t

Fig. 2: Plots of the functions LL
κ (β; t), Lκ(β; t) and LR

κ (β; t)
for the data t = (t1, . . . , tn), n = 10, of a trajectory for which
Case 10 holds

ϱ 2.5, β 0.1, κ 2

CASE 2
0
: the MLE's do exist

D1 t)=-0.8896

D2(κ0(t))=0.1897

Z0(t)=0.4140

-0.1 0.1 0.2 0.3 0.4 0.5 0.6
β

-1

1

2

3

4

5

βML=0.0477

βML
κD(β;t)

Lκ(β;t)

κ(β;t)

Fig. 3: Plots of the functions κ(β; t), Lκ(β; t) and κD(β; t)
for the data t = (t1, . . . , tn), n = 10, of a trajectory for which
Case 20 holds
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ϱ 2.5, β 0.1, κ 2

CASE 2
0
: the MLE's do exist

D1 t)=-0.8896

D2(κ0(t))=0.1897

Z0(t)=0.4140

-0.1 0.1 0.2 0.3 0.4 0.5 0.6
β

-1

1

2

3

4

5

βML=0.0477

βML
Lκ
R(β;t)

Lκ(β;t)

Lκ
L(β;t)

Fig. 4: Plots of the functions LL
κ (β; t), Lκ(β; t) and LR

κ (β; t)
for the data t = (t1, . . . , tn), n = 10, of a trajectory for which
Case 20 holds

ϱ 2.5, β 0.1, κ 2

CASE 3
0
: the MLE's do not exist

D1(t)=-1.6722

D2(κ0(t))=0.3403

Z0(t)=0.1132

-0.1 0.1 0.2 0.3 0.4 0.5 0.6
β

-1

1

2

3

4

5

κD(β;t)

Lκ(β;t)

κ(β;t)

Fig. 5: Plots of the functions κ(β; t), Lκ(β; t) and κD(β; t)
for the data t = (t1, . . . , tn), n = 10, of a trajectory for which
the MLE’s do not exist

ϱ 2.5, β 0.1, κ 2

CASE 3
0
: the MLE's do not exist

D1(t)=-1.6722

D2(κ0(t))=0.3403

Z0(t)=0.1132

-0.1 0.1 0.2 0.3 0.4 0.5 0.6
β

-1

1

2

3

4

5

Lκ
R(β;t)

Lκ(β;t)

Lκ
L(β;t)

Fig. 6: Plots of the functions LL
κ (β; t), Lκ(β; t) and LR

κ (β; t)
for the data t = (t1, . . . , tn), n = 10, of a trajectory for which
the MLE’s do not exist

As a consequence of Proposition 1 and Theorem 1 we have
the following theorem.

Theorem 2: If Case 10 or 20 holds, then the MLE’s
ϱ̂ML, β̂ML and κ̂ML can be determined as follows: β̂ML is the
solution to equation (reflogLikehoodBeta), κ̂ML is determined
by the formula

κ̂ML = κ(β̂ML; t), (25)

where κ(β; t) is defined by (9) and

ϱ̂ML =
nβ̂MLκ̂ML

exp(β̂MLtn)− 1
.

IV. SIMULATION STUDY

The main purpose of the simulation study is to show
using numerical program how often on average the Cases 10,
20 and 30 of Theorem 1 may occur observing the process
corresponding to the MGP(ϱ, β, κ) model considered.

The MGP(ϱ, β, κ) can be generated according to the for-
mula

ti =
1

β
log

[
β

ϱ
Gκ,1 + exp(βti−1)

]
, i = 1, 2, . . . , n,

where Gκ,1 is a random number generated according to the
gamma G(κ, 1) distribution.

Each sample of the MGP(ϱ, β, κ) is generated up to a fixed
number n of jumps is reached.

The simulation study was carried out for small values of the
number n of jumps (failures). For each chosen triple (ϱ, β, κ),
the number k repetitions of the realization of the MGP(ϱ, β, κ)
were generated.

The ’real’ last failure times Tn are evaluated as the means
from the k end-time points of the k repetitions of realizations
of the process generated up to nth jump (failure), and all the
ML estimates are evaluated as the means from the k estimates,
such that each of these estimates was derived on the basis of
the individual realization of the process considered.

To evaluate the ML estimates of the parameters ϱ, β and
κ, the numerical program was constructed using Mathematica
10.4 package.

The accuracy of any MLE, say η̂ of η, is measured by the
variability of an estimator η̂ which under squared error loss
is determined by the root mean squared error RMSE(η̂) =√
(sd(η̂))2 + (mean(η̂)− η)2, where sd stands for the stan-

dard deviation, and by the absolute error (ABSE) which under
absolute error loss is defined by ABSE(η̂) = |η̂ − η)|.

In tables the abbreviations se, ae and re are used for the
RMSE’s, ABSE’s and RE’s, respectively.

The results of the simulation study are given in Tables I
and II in the case of the MGP(ϱ, β, κ) for some combinations
of the parameters ϱ, β and κ. The parameters of the model
have been chosen to maintain the last failure time Tn ≈ 1.
For comparison, analogous numerical results are presented in
Tables III and IV.

Tables I and III contain the values of the ML estimates
ϱ̂ML, β̂ML, κ̂ML and the percentages of occurrence of the
Cases 10, 20 and 30 in the two situations, when Tn ≈ 6
and Tn ≈ 1, respectively. In the tables these percentages are
denoted by ML1, ML2 and noML, respectively.
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As Tables I and III show, it does not rarely happens that the
MLE’s do not exist. For many triples (ϱ, β, κ) the percentage
of the case of non-existence of the MLE’s exceeds 20% and
for some cases is even close to 30%. The Case 20 appears
significantly less often than the Case 10.

In Tables II and IV there are given the RMSE’s of the
estimators considered. In the whole range of parameter triples
(ϱ, β, κ) of data set for Tn ≈ 6, corresponding to Table II, all
the RMSE’s of the estimators β̂ML are considerably smaller
than the RMSE’s of the other two estimators.

TABLE I: The ML estimates of ϱ, β and κ and the percentages
ML1, ML2 and noML of occurrence of the Cases 10, 20 and 30 in
the MGP(ϱ, β, κ);n = 10, Tn ≈ 6

No. ϱ β κ Tn Tn+1 ϱ̂ML β̂ML κ̂ML ML1 ML2 noML

1 1.2 0.01 0.75 5.9456 6.5131 1.0947 0.2609 1.0099 48.0 23.0 29.0

2 1 0.05 0.75 6.2094 6.8129 0.9739 0.2835 1.1288 64.5 16.0 19.5

3 0.9 0.1 0.75 6.0937 6.5584 0.8146 0.3264 1.0372 71.5 13.0 15.5

4 0.6 0.2 0.75 6.2758 6.6220 0.7142 0.3421 1.0134 77.5 11.5 11.0

5 1.6 0.01 1 6.1347 6.7268 1.4247 0.2249 1.3607 52.0 18.0 30.0

6 1.4 0.05 1 5.9702 6.4884 1.3972 0.2286 1.3598 57.5 16.5 26.0

7 1.2 0.1 1 5.9238 6.4150 1.3083 0.2495 1.3646 67.5 16.5 16.0

8 0.9 0.2 1 5.7609 6.0930 1.0852 0.3541 1.4257 83.0 10.5 6.5

9 2.5 0.01 1.5 5.8328 6.4049 2.9294 0.1375 2.3288 51.5 19.0 29.5

10 2.2 0.05 1.5 5.8665 6.3331 2.5470 0.1755 2.2453 60.0 13.5 26.5

11 1.9 0.1 1.5 5.7150 6.1694 2.2966 0.2222 2.2920 77.0 9.5 13.5

12 1.3 0.2 1.5 5.8799 6.2349 1.8867 0.2832 2.3131 90.5 5.5 4.0

13 3.3 0.01 2 5.7701 6.3219 3.4108 0.1469 2.7643 57.5 11.5 31.0

14 3 0.05 2 5.7311 6.2397 3.6625 0.1633 3.1918 66.5 11.5 22.0

15 2.5 0.1 2 5.7536 6.1689 3.5182 0.1900 3.1997 78.0 6.0 16.0

16 1.8 0.2 2 5.7276 6.0841 2.8356 0.2589 3.2374 89.0 4.0 7.0

TABLE II: The RMSE’s of the ML estimates of ϱ, β and κ in the
MGP(ϱ, β, κ);n = 10, Tn ≈ 6

No. ϱ β κ se(ϱ̂ML) se(β̂ML) se(κ̂ML)

1 1.2 0.01 0.75 0.9511 0.3381 1.1357

2 1 0.05 0.75 0.9407 0.3348 1.3344

3 0.9 0.1 0.75 0.6986 0.3321 1.0706

4 0.6 0.2 0.75 0.8413 0.2854 0.9901

5 1.6 0.01 1 1.1860 0.2825 1.5121

6 1.4 0.05 1 1.2162 0.2708 1.4894

7 1.2 0.1 1 1.1443 0.2300 1.4677

8 0.9 0.2 1 1.2471 0.2784 1.5933

9 2.5 0.01 1.5 2.2497 0.1674 2.6645

10 2.2 0.05 1.5 2.0492 0.1814 2.5541

11 1.9 0.1 1.5 1.8147 0.1871 2.6319

12 1.3 0.2 1.5 1.7026 0.1787 2.4736

13 3.3 0.01 2 2.2349 0.1801 3.1222

14 3 0.05 2 2.6006 0.1675 3.7865

15 2.5 0.1 2 2.8601 0.1541 3.5604

16 1.8 0.2 2 3.1108 0.1512 3.8563

TABLE III: The ML estimates of ϱ, β and κ and the percentages
ML1, ML2 and noML of occurrence of the Cases 10, 20 and 30 in
the MGP(ϱ, β, κ);n = 10, Tn ≈ 1

No. ϱ β κ Tn Tn+1 ϱ̂ML β̂ML κ̂ML ML1 ML2 noML

1 7 0.1 0.75 1.0280 1.1239 6.0504 1.4320 1.0225 59.0 20.0 21.0

2 6 0.5 0.75 0.9499 1.0265 5.4462 1.8513 1.0028 64.0 20.0 16.0

3 4 1 0.75 1.0169 1.0810 4.9747 1.9949 1.1759 77.0 14.0 9.0

4 2 2 0.75 1.0717 1.1119 2.6204 2.9725 1.0799 96.3 3.6 0.1

5 10 0.1 1 0.9658 1.0546 8.6341 1.4219 1.3310 51.0 15.0 34.0

6 8 0.5 1 0.9541 1.0327 8.4871 1.5803 1.4112 73.0 11.0 16.0

7 6 1 1 0.9648 1.0275 6.7206 2.0185 1.4432 82.0 12.0 6.0

8 3 2 1 1.0107 1.0507 4.4054 2.6017 1.4649 95.0 4.0 1.0

9 15 0.1 1.5 0.9571 1.0463 17.2093 0.9155 2.3549 57.0 14.0 29.0

10 12 0.5 1.5 0.9652 1.0387 14.7420 1.0871 2.1843 68.0 15.0 17.0

11 9 1 1.5 0.9600 1.0212 10.8644 1.7009 2.1439 88.0 5.0 7.0

12 5 2 1.5 0.9667 1.0066 7.1646 2.5862 2.2518 99.4 0.5 0.1

13 20 0.1 2 0.9544 1.0474 23.2363 0.8064 2.9694 56.0 16.0 28.0

14 16 0.5 2 0.9747 1.0529 19.2950 1.0140 2.9353 74.0 10.0 16.

15 12 1 2 0.9849 1.0407 16.1466 1.4061 2.9422 88.5 5.0 6.5

16 6 2 2 1.0029 1.0452 9.3126 2.2567 2.9578 99.8 0.1 0.1

TABLE IV: The RMSE’s of the ML estimates of ϱ, β and κ in the
MGP(ϱ, β, κ); n = 10, Tn ≈ 1

No. ϱ β κ se(ϱ̂ML) se(β̂ML) se(κ̂ML)

1 7 0.1 0.75 4.7626 1.7605 1.0336

2 6 0.5 0.75 5.1487 1.9632 0.7297

3 4 1 0.75 5.1027 1.6686 0.8532

4 2 2 0.75 3.2797 1.8863 1.0805

5 10 0.1 1 9.4946 1.8121 1.4686

6 8 0.5 1 8.4933 1.5654 1.2734

7 6 1 1 6.2604 1.7741 0.9360

8 3 2 1 4.7995 1.4662 0.9459

9 15 0.1 1.5 14.2683 1.0502 2.7438

10 12 0.5 1.5 11.5191 1.0301 2.0652

11 9 1 1.5 8.7395 1.2546 1.5103

12 5 2 1.5 8.1666 1.2879 1.2802

13 20 0.1 2 18.3434 0.9877 3.5316

14 16 0.5 2 13.6210 0.8326 2.9712

15 12 1 2 15.6613 0.9532 2.5069

16 6 2 2 10.8388 0.9356 2.3028

V. CONCLUDING REMARKS

The result presented in Theorem 1 gives the prescription
whether on the basis of a concrete realization of the process,
subjected to the MGP(ϱ, β, κ) model, the statistician may try
to estimate the unknown model parameters using the ML
method. As the simulation study shows, it does not rarely
happens that the MLE’s do not exist and the existence of
MLE’s strongly depends on data represented by the event
times of the process observed. For many triples (ϱ, β, κ) the
percentage of the case of non-existence of the MLE’s exceeds
20% and for some cases it exceeds even 30%. The Case 20
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appears significantly less often than the Case 10. Theorem 2
presents the formulas for evaluating the MLE’s in the Cases
10 and 20.

In the failure truncation procedure and the model parameters
chosen to maintain approximately the same last failure time,
we observe that the greater the parameter β (the smaller the
parameter ϱ under the same κ) is, the greater the frequency
ML1 is and the smaller the frequencies ML2 and noML are.

The estimators β̂ML are considerably less accurate than the
estimators ϱ̂ML and κ̂ML.
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