
 

 

  
Abstract—Data transformations are an important tool for the 

proper statistical analysis of data from various disciplines such as 
biological, ecological, medical studies. The requirement for the data 
transformations is normality which is the one of main important 
central assumptions in these statistical analyses. A Monte Carlo 
simulation study is made for controlling the power transformation 
methods to achieve normality in this study. Log-normal, Beta, 
Gamma, Weibull and Rayleigh probability distributions are simulated 
with different parameters in order to transform them to be normal. 
The interpretations of the results are made and the convenient 
transformations for the each specified distribution is determined. 
 

Keywords—Normality, Power transformation, Simulation, 
Statistical distributions. 

I. INTRODUCTION 
ORMALITY is the one of main important central 
assumptions in statistical studies. Since in reality this is 

not the fact, transformation of random variables are required to 
achieve specified purposes i.e. stability of variance, the 
additivity of effects and the symmetry of the density. For 
instance, the usual regression model techniques are applied by 

assuming that Y X β ε= + , where ( )1, , T
nY Y Y=   is the 

response vector to be estimated and ( )1, , T
nε ε ε=   is a 

normal random vector having mean 0 and covariance matrix 
2Iσ . In essence, the distribution of iε  in reality usually does 

not reflect the normality, because they often don’t have equal 
variances. Therefore various transformation methods were 
defined to handle these problems and to transform the data to 
be almost normal. There are a great variety of possible data 
transformations, from adding constants to multiplying, 
squaring or rising to a power, converting to logarithmic scales, 
inverting and reflecting, taking the square root of the values, 
and even applying trigonometric transformations such as sine 
wave transformations [1], [2], [3].  The most frequently used 
transformation method through others is Box–Cox 
transformations, also known as power transformations. Linear, 
log, square root, inverse, quadratic, cubic, and similar 
transformations are all special cases of Box–Cox formulations 
[6]. Box–Cox transformations attempt to transform the 
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variable to a normally distributed one. Asymptotic theory for 
Box-Cox transformations in linear models are investigated by 
[7]. The efficiency of t-Test and Hotelling’s T2-Test after a 
Box-Cox transformation are studied by [8]. Moreover, [9] 
investigated the effects of skewed and leptokurtic multivariate 
data on the Type I error and power of Hotelling’s T2 were 
examined by manipulating distribution. 
     In this study, we aimed to compare special transformations 
on simulated data from different statistical families, i.e. 
Lognormal, Beta, Gamma, Weibull, and Rayleigh. The 
considered transformations are log, inverse, square root, 
partial entropy, geometric mean*log, Box-Cox modified 
transformation.  We make Monte Carlo simulations and 
compare the results after transformation via normality test 
which is known to be powerful for the corresponding 
distribution.  

II. POWER TRANSFORMATIONS FOR NORMALITY  
In this study we considered Log-normal, Beta, Gamma, 

Weibull and Rayleigh probability distributions which 
probability density functions are presented in Table 1(a) and 
Table 1(b).  

 
Table 1(a): Probability Density Functions of Distributions 
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Table 1(b): Probability Density Functions of Distributions 
Probability 
Distribution 

Details 

Log-normal 
distribution 

for 0x > , where µ  and σ  are 
the mean and standard deviation of 
the variable’s natural logarithm  

Beta 
distribution 

where Γ  is the gamma function. 
The beta function, B, appears as a 
normalization constant to ensure 
that the total probability integrates 
to unity. 
 

Gamma 
distribution 
 

for 0x >  and , 0k θ > . 
 
 
for 0x > , a shape parameter 

kα =  and an inverse scale 

parameter 
1β
θ

= , called a rate 

parameter. 
Weibull 
distribution 

where 0k >  is the shape 
parameter and 0λ >  is the scale 
parameter of the distribution. 

Rayleigh 
distribution 

for [ )0, .x ∈ ∞  

 
The log-normal distribution is commonly used to model 

failure times in reliability applications. The Weibull 
distribution is related to a number of other probability 
distributions; in particular, it interpolates between 
the exponential distribution (k =1) and the Rayleigh 
distribution (k =2). The Weibull distribution and the Rayleigh 
distribution are very important for modelling the distribution 
of wind speed and significant wave height. Weibull 
distribution is also the one that is famous in survival analysis.  

Unfortunately, in statistical analysis, we usually assume that 
the data is from a normal population when in fact it is not. So, 
we often have to transform the variables before carrying out 
the analysis. In this study we used several types of 
transformations (such as the reciprocal transformation, 1/Y, 

the square root transformation, Y , and the logarithmic 
transformation, logY  and Box-Cox transformations).  

Box-Cox transformations proposed by [4] in which 0ix > , 
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where coefficient λ  can be the maximum likelihood 

estimation.  Another form of power transformation that is 
frequently used is given by 
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In 1982, Box and Cox [5] gave a modification of 

formulation by  
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where x  is the geometric mean of all observations. 
 These transformations have been chosen based on 

theoretical or empirical evidence to achieve normality.  
Additionally, we considered the geometric mean x  *log and 

the partial entropy ( )logex x  for data transformation which 

are new considerations for data transformation. 

III. SIMULATION STUDY 
In this part of the study, we simulated data from different 

statistical families, i.e. Lognormal, Beta, Gamma, Weibull, and 
Rayleigh. Lognormal distributions with location parameter 0 
and scale parameters (10, 1.5, 1, 0.5, 0.25, 0.125), Beta 
distribution with parameters ((0.5, 0.5), (5, 1), (1, 3),(2, 2),(2, 
5),(5, 25),(25, 5),(0.5, 25)), Gamma distribution with 
parameters ((1, 2), (2, 2), (3, 2), (5, 1), (9, 0.5)), Weibull 
distribution with parameters ((1, 0.5), (1, 1) ,(1, 1.5), (1, 5) ,(5, 
10) ,(10, 5), (10, 25) ,(25, 10)) and Rayleigh distribution with 
parameters (0.5, 1.0, 2.0, 3.0, 4.0, 10, 25) are considered for 
simulation study. 10.000 random samples with 30 units are 
generated for each specified probability distribution.  

Anderson-Darling test is used for the data transformed from 
Beta, Weibull and Rayleigh distributions and Jarque-Bera test 
which uses skewness and kurtosis is used for the transformed 
data from Lognormal and Gamma distributions.   

The simulation results for Beta distribution are shown in 
Table 2(a) and Table 2(b).  

 
Table 2(a): Simulation results for Beta distribution 

BETA (Anderson-Darling test) 
Parameters X Log Inverse 

(0.5, 0.5) 0.1433 0.0046 0 
(5, 1) 0.2111 0.0645 0.0177 
(1, 3) 0.3724 0.3732 0.0003 
(2, 2) 0.9255 0.3111 0.0063 
(2, 5) 0.7823 0.6005 0.0131 

(5, 25) 0.8226 0.8489 0.1824 
(25, 5) 0.8222 0.6971 0.5455 

(0.5, 25) 0.0018 0.3568 0 
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Table 2(b): Simulation results for Beta distribution 
BETA (Anderson-Darling test) 

Parameters Square 
Root 

Partial 
Entropy 

Geo. 
Mean*Lo

g 
(0.5, 0.5) 0.1882 0.1667 0.0046 

(5, 1) 0.1174 0.5167 0.0645 
(1, 3) 0.9382 0.053 0.3732 
(2, 2) 0.8036 0.0315 0.3111 
(2, 5) 0.956 0.0089 0.6005 

(5, 25) 0.9508 0.7431 0.8489 
(25, 5) 0.7666 0.9207 0.6971 

(0.5, 25) 0.4734 0.066 0.3568 
 

According to Table 2(a) and Table 2(b), it is obvious that if 
we have random sample from Beta distribution then only the 
square root transformation is appropriate to achieve normality. 
However, it works well only for some of the Beta distributions 
(i.e. with parameters (1, 3) ,(2, 5) and (5, 25)). In general for 
the simulations from Beta distribution, we can say that while 
location parameter is increasing and scale parameter is 
decreasing, the best data transformation is partial entropy. For 
example, the random samples from Beta(5, 1) are 21.11% 
normally distributed before transformation and after the partial 
entropy transformation that proportion increases to 51.67%).  
In contrast, while location parameter is decreasing and scale 
parameter is increasing, the best data transformation is square 
root. If both location and scale parameter are smaller than 1, 
data transformation may not be significant for beta 
distribution. 

The simulation results for Lognormal distribution are shown 
in Table 3(a) and Table 3(b). 

 
Table 3(a): Simulation results for Lognormal distribution 

LOGNORMAL (Jarque-Bera) 
Parameters X Log Inverse 

(0, 10) 0 0.9712 0 
(0, 1.5) 0.0135 0.9672 0.0133 
(0, 1) 0.09 0.9683 0.0902 

(0, 0.5) 0.4689 0.9687 0.4672 
(0, 0.25) 0.8084 0.9702 0.8091 

(0, 0.125) 0.9315 0.97 0.9247 
 

Table 3(b): Simulation results for Lognormal distribution 
LOGNORMAL (Jarque-Bera) 

Parameters Square 
Root 

Partial 
Entropy 

Geo. 
Mean*Log 

(0, 10) 0 0 0.9712 
(0, 1.5) 0.2129 0.0007 0.9672 
(0, 1) 0.4751 0.0078 0.9683 

(0, 0.5) 0.8113 0.1078 0.9687 
(0, 0.25) 0.9248 0.4946 0.9702 

(0, 0.125) 0.963 0.8241 0.97 
 

Table 4(a) and Table 4(b) shows the simulation results for 
Gamma distribution. 

 
Table 4(a): Simulation results for Gamma distribution 

GAMMA (Jarque-Bera) 
Parameters X Log Inverse 

(1, 2) 0.2803 0.6662 0.0068 
(2, 2) 0.5253 0.8049 0.0614 
(3, 2) 0.6476 0.8545 0.1418 
(5, 1) 0.7719 0.8966 0.2959 

(9, 0.5) 0.8522 0.9283 0.507 
 

Table 4(b): Simulation results for Gamma distribution 
GAMMA (Jarque-Bera) 

Parameters Square 
Root 

Partial 
Entropy 

Geo. 
Mean*Lo

g 
(1, 2) 0.8818 0.0355 0.6662 
(2, 2) 0.9329 0.0521 0.8049 
(3, 2) 0.9488 0.2014 0.8545 
(5, 1) 0.9618 0.5417 0.8966 

(9, 0.5) 0.9628 0.7596 0.9283 
 

Anderson-Darling test is used for the normality checking 
after the data simulated from Weibull distribution is 
transformed. The results are given in Table 5(a) and Table 
5(b). 

 
Table 5(a): Simulation results for Weibull distribution 

WEIBULL (Anderson-Darling test) 
Parameters X Log Inverse 

(1, 0.5) 0.069 0.6099 0.0003 
(1, 1) 0.0669 0.6072 0.0002 

(1, 1.5) 0.0613 0.6131 0.0003 
(1, 5) 0.0633 0.6022 0.0003 

(5, 10) 0.9352 0.6023 0.2032 
(10, 5) 0.8223 0.6035 0.3769 

(10, 25) 0.8171 0.5972 0.3734 
(25, 10) 0.6986 0.6069 0.5107 

 
Table 5(b): Simulation results for Weibull distribution 

WEIBULL (Anderson-Darling test) 
Parameters Square 

Root 
Partial 

Entropy 
Geo. 

Mean*Log 
(1, 0.5) 0.8115 0.0032 0.6099 
(1, 1) 0.8172 0 0.6072 

(1, 1.5) 0.8153 0 0.6131 
(1, 5) 0.8121 0.0013 0.6022 

(5, 10) 0.8183 0.955 0.6023 
(10, 5) 0.728 0.8786 0.6035 

(10, 25) 0.7146 0.8559 0.5972 
(25, 10) 0.6525 0.7258 0.6069 

 
Simulation results for Rayleigh distribution is obtained by 

applying Anderson-Darling test and is summarized in Table 
6(a) and Table 6(b).  
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Table 6(a): Simulation results for Rayleigh distribution 
RAYLEIGH (Anderson-Darling test) 

Parameters X Log Inverse 
0.5 0.812 0.6026 0.0212 
1.0 0.8079 0.6037 0.0232 
2.0 0.8155 0.6053 0.0217 
3.0 0.8181 0.6085 0.0223 
4.0 0.8088 0.6115 0.0247 
10 0.8132 0.6074 0.0223 
25 0.8125 0.6016 0.023 

 
Table 6(b): Simulation results for Rayleigh distribution 

RAYLEIGH (Anderson-Darling test) 
Parameters Square 

Root 
Partial 

Entropy 
Geo. 

Mean*Log 
0.5 0.947 0.0037 0.6026 
1.0 0.9531 0.0629 0.6037 
2.0 0.9528 0.253 0.6053 
3.0 0.9559 0.3523 0.6085 
4.0 0.9525 0.4097 0.6115 
10 0.9548 0.5251 0.6074 
25 0.9504 0.5947 0.6016 

 

IV. RESULTS AND CONCLUSION 
In this study, we consider continuous probability functions 

(i.e. Lognormal, Beta, Gamma, Weibull, and Rayleigh) which 
have importance in applications of several disciplines as 
engineering, biology, medical sciences etc. These distributions 
are considered with different parameters in order to make 
appropriate comparison to detect the best transformation for 
normality.  

Anderson-Darling test is used for testing the normality of 
the data transformed from Beta distribution. Results denote the 
proportion of random samples which are found to be normal 
distributed after the each transformations (i.e. log, inverse, 
square root, partial entropy, geometric mean*log). First 
column of the Table 2(a) and Table 2(b) gives the proportion 
of random samples which are normally distributed without 
transformations. So, we can compare the proportion of 
normally distributed samples before transformation and after 
transformation.  

Jarque-Bera test is used to check the normality of the data 
transformed from Lognormal distribution in Table 3(a) and 
Table 3(b). The simulation results showed that the Log and 
Geometrical Mean*Log transformation are perfect for 
Lognormal distribution. They are enough for the Log-normal 
distribution with any parameter and other transformations are 
not necessary. Decreasing of value of scale parameter is 
meaningful and effective for inverse, square root and partial 
entropy data transformations. 

Table 4(a) and Table 4(b) shows the simulation results for 
Gamma distribution. In this case, we used Jarque-Bera test to 
check the normality of the random samples. The results denote 

that the best results for normality test are obtained by square 
root transformation for Gamma distribution. We can express 
that while location parameter is increasing and scale parameter 
is decreasing, all results are better. In these results, square root 
transformation is sufficient for every kind of parameters and 
has the most random samples for normal distribution. 

According to Table 5(a) and Table 5(b), the best results are 
obtained by square root transformation when location 
parameter is equal to 1, and best transformation is partial 
entropy when location parameter is greater than 1. The results 
of Log and Geometrical Mean*Log transformation are not 
affected by parameter variation. 

According to Table 6(a) and Table 6(b), we can state that 
the results of data transformation except partial entropy are not 
affected by parameter variation. Increasing of value of 
parameter is important for using of inverse data 
transformation. The square root transformation has the 
successful results for Rayleigh distribution and is the only 
appropriate one. 

Monte Carlo simulation results showed that the square root 
transformation is the only one that success to achieve 
normality in all different cases.  
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