
 

 

  
Abstract— The estimation of the cumulative distribution 

functions (CDF) and probability density functions (PDF) are 
important in the statistical analysis. In this study we estimated the 
cumulative distribution functions using following types of spline 
functions: B-spline, penalized spline (P-spline) and smoothing spline. 
The data was generated from the mixture normal distributions. We 
used 15 different mixture normal distributions with broad range of 
shapes and characteristics. From each model it was generated 1000 
samples of sizes n=50, 100 and 200 respectively. We have used the 
third degree of the spline functions, as it is most used type of spline 
in recent studies. We compare the estimation accuracy of the three 
spline estimators with the empirical estimators in terms of their mean 
squared error (MSE). 
 

Keywords— B-spline, cumulative distribution function, 
penalized spline, smoothing spline  

I. INTRODUCTION 
EGRESSION analysis is tending to be one of the most 
popular techniques to estimate data set with unknown 

function. it is used in various fields, such as, economy, 
sociology, biology, genetics etc. Most of the problems solving 
in these fields have a nonlinear effect, i.e. the relationship 
between variables are nonlinear. These problems could be 
solved by using parametric nonlinear models, but it gives 
imprecisely results in estimation. In this case it should be used 
nonparametric techniques. There are a number of techniques 
in nonparametric estimation, such as kernel methods, spline 
functions, etc. 

In the past research in estimation of cumulative distribution 
function the main technique to obtain a smooth nonparametric 
function is kernel density function. The main idea goes to 
[1],[2],[3] who made an estimation of univariate independent 
and identically-distributed data with kernel functions.  

Recent studies in kernel estimation of distribution functions 
were proposed by [4]. This article investigates the estimation 
of CDF of nonnegative valued random variables using 
convolution power kernels. Their consistent estimator avoids 
boundary effects near the origin. Research paper of [5] 
discusses methods of decreasing the boundary effects, which 
appear in  the  estimation  of  certain  functional  
characteristics  of  a  random  variable  with bounded  support. 
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In the paper of [6] it is discussed utilizing of boundary kernels 
for distribution function estimation. Also it is investigated the 
bandwidth selection of kernels as it could be find in [7].  
Reference [8] discusses about the smooth simultaneous 
confidence band construction based on the smooth distribution 
estimator and the Kolmogorov distribution. Reference [9] 
studied the asymptotic properties of integrated smooth kernel 
estimator for multivariate and weakly dependent data.  

As far as this paper deals with spline functions, further we 
give a short literature review on estimation CDF with 
polynomial and spline functions. There are a few numbers of 
researches in this area. Reference [10] proposed a smooth 
monotone polynomial spline (PS) estimator for the cumulative 
distribution function applied in simulation and real data set. 
Reference [11] shows estimation of a probability density 
function using interval aggregated data with spline and kernel 
estimators. Another research [12] consider the use of cubic 
monotone control theoretic smoothing splines in estimating 
the CDF defined on a finite interval. Estimating the probability 
distribution function with smoothing spline is given in the 
working paper [13]. She proposed to estimate simulated data 
from the uniform distribution. 

The main objective of this study is to estimate cumulative 
distribution function by applying different types of spline 
functions to the values of (Xi) and their function estimation 
F(Xi ), i = 1,⋯ , n. We choose regression basis spline model 
called B-spline. Another type of spline applied in this study is 
smoothing spline, as it constructs cubic spline basis function 
and penalty term to control more smoothness in 
approximation. Penalized spline is a third type of technique 
that we utilized. It constructs from the B-spline basis function 
and has a penalty term. The reason of utilizing this method, 
that it is a combination of two previous one. Obtained results 
are compared with each other. 

The basic idea of regression spline, penalized spline and 
smoothing splines has described in the following section. 
Section Simulation study talks about selected functions, 
proposed methods and results of the analysis. 

II. ABOUT SPLINE FUNCTIONS 
The nonparametric regression model has the following form 
 

 yi = f(xi) + εi  a < x1 < ⋯ < xn < 𝑏𝑏  (1) 
 
where f ∈ C2(a, b) is an unknown smooth function,yi, 

i = 1,⋯ , n are observation values of the response variable y, 
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xi, i = 1,⋯ , n are observation values of the predictor variable 
x and εi, i = 1,⋯ , n normal distributed random errors with 
zero mean and common  variance σ2. 

The basic aim of the nonparametric regression is to estimate 
unknown function 𝑓𝑓 ∈ 𝐶𝐶2(𝑎𝑎, 𝑏𝑏) (of all functions 𝑓𝑓 with 
continuous first and second derivatives) in equation (1). In 
nonparametric regression, function 𝑓𝑓 is some unknown, 
smooth function. 

Regression spline chooses a basis amounts to choosing 
some basis functions, which will be treated as completely 
known: if bj(x) is a  jth  such basis function, then f  is assumed 
to have a representation  

 
f(x) = ∑ βjbj(x)q

j=1        (2) 
 
for some values of the unknown parameters, βj  

The basic aim of the nonparametric regression is to estimate 
unknown function f ∈ C2(a, b) (of all functions f with 
continuous first and second derivatives) in model (1). In 
nonparametric regression, function f is some unknown, 
smooth function. 

B-splines [14],[15] are constructed from polynomial pieces, 
joined at certain values at the knots τ. Before introducing B-
spline basis function let take a short look about Newton’s 
divided difference polynomial. 

The nth  divided difference of a function f at the points 
x0,⋯ , xn , which are assumed to be distinct, is the leading 
coefficient of the unique polynomial pn(x) of degree n  which 
satisfies pn�xj� = f(xj),j = 0,⋯ , n. The divided difference 
denoted as f[x0,⋯ , xn] or ∆x

n(x0,⋯ , xn)f(x). 
The B-spline Bi,k+1 of  degree k with knots τi ,⋯, τi+k+1 is 

defined as  
 

Bi,k+1(x) = (τi+k+1 − τi)∆t
k+1(τi ,⋯ , τi+k+1)(t − x)+

k    (3) 
 
B-spline representation can be expressed as follows: 
 

Bi,k+1(x) = (τi+k+1 − τi)∑
(τi+j−x)+

k

∏ (τi+j−τi+l )k +1
l=0
l≠j

k+1
j=0   (4) 

 which shows that this function is indeed a spline with 
τi ,⋯ , τi+k+1 as active knots[15]. 

Smoothing spline [16] estimate of the function arises as a 
solution to the following minimization problem: Find 𝑓𝑓 ∈
𝐶𝐶2(𝑎𝑎, 𝑏𝑏) that minimizes the penalized residual sum of squares 

 
𝑆𝑆(𝑓𝑓) = ∑ {𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖)}2 + 𝜆𝜆 ∫ {𝑓𝑓′′ (𝑥𝑥)}2𝑏𝑏

𝑎𝑎
𝑛𝑛
𝑖𝑖=1 𝑑𝑑𝑑𝑑  (5) 

 
for some value 𝜆𝜆 > 0. The first term in equation denotes the 

residual sum of the squares and it penalizes the lack of fit. The 
second term which is weighted by 𝜆𝜆 denotes the roughness 
penalty. In other words, it penalizes the curvature of the 
function 𝑓𝑓. The 𝜆𝜆 in (5) is known as the smoothing parameter.  

The solution based on smoothing spline for minimum 
problem in the equation (5) is known as a “natural cubic 
spline” with knots at 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛 . From this point of view, a 

special structured spline interpolation which depends on a 
chosen value  𝜆𝜆 becomes a suitable approach of function 𝑓𝑓 in 
regression model.  

Let 𝑓𝑓 = (𝑓𝑓(𝑥𝑥1),⋯ , 𝑓𝑓(𝑥𝑥𝑛𝑛) be the vector of values of 
function 𝑓𝑓 at the knot points 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛 . The smoothing spline 
estimate 𝑓𝑓𝜆𝜆  of this vector or the fitted values for data𝑦𝑦 =
(𝑦𝑦1,⋯ ,𝑦𝑦𝑛𝑛)′  are given by   

 

𝑓𝑓𝜆𝜆 =

⎣
⎢
⎢
⎡𝑓𝑓𝜆𝜆(𝑥𝑥1)
𝑓𝑓𝜆𝜆(𝑥𝑥2)
⋮

𝑓𝑓𝜆𝜆(𝑥𝑥𝑛𝑛)⎦
⎥
⎥
⎤

= (𝑆𝑆𝜆𝜆)𝑛𝑛×𝑛𝑛 �

𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑛𝑛
�      (6) 

 
where 𝑓𝑓𝜆𝜆  is a natural cubic spline with knots at  𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛  

for a fixed smoothing parameter 𝜆𝜆 > 0, and 𝑆𝑆𝜆𝜆   is a positive-
definite smoother matrix which depends on 𝜆𝜆 and the knot 
points 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛 . For general references about smoothing 
spline, see [16]. 

The next technique that we used in this study is P-splines 
[17]. This study makes some significant changes in smoothing 
spline technique. First, it assumes that 𝐸𝐸(𝑦𝑦) = 𝑩𝑩𝑩𝑩 where 
𝐵𝐵 = (𝐵𝐵1(𝑥𝑥),𝐵𝐵2(𝑥𝑥),⋯ ,𝐵𝐵𝑘𝑘(𝑥𝑥)) is an 𝑛𝑛 × 𝑘𝑘 matrix of B-splines 
and 𝒂𝒂 is the vector of regression coefficients. Secondly, it is 
supposed that the coefficients of adjacent B-splines satisfy 
certain smoothness conditions that can be expressed in terms 
of finite differences of the 𝑎𝑎𝑖𝑖 . Thus, from a least-squares 
perspective, the coefficients are chosen to minimize 

 
𝑆𝑆 = ∑ �𝑦𝑦𝑖𝑖 − ∑ 𝑎𝑎𝑗𝑗𝐵𝐵𝑗𝑗 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑗𝑗=1 �2 + 𝜆𝜆 ∑ (Δ𝑘𝑘𝑎𝑎𝑗𝑗 )2𝑛𝑛
𝑗𝑗=𝑘𝑘+1

𝑚𝑚
𝑖𝑖=1  (7) 

 
For least squares smoothing we have to minimize S in this 

equation. The system of equations that follows from 
minimization of S can be written as:  

 
𝑩𝑩′𝒚𝒚 = (𝑩𝑩′𝑩𝑩 + 𝜆𝜆𝑫𝑫𝒌𝒌

′ 𝑫𝑫𝒌𝒌)𝒂𝒂       (8) 
 
where 𝑫𝑫𝑘𝑘  is a matrix representation of the difference 

operator Δ𝑘𝑘 , and the elements of 𝑩𝑩 are 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑗𝑗 (𝑥𝑥𝑖𝑖). 
The problem of choosing the smoothing parameter is one of 

the main problems in curve estimation. If we use fitting curves 
by polynomial regression, the choice of the degree of the fitted 
polynomial is essentially equivalent to the choice of a 
smoothing parameter.  There are a number of different 
methods to choose smoothing parameter such as, Cross-
Validation, Akaike Information For penalized and smoothing 
splines we used the usual Cross Validation score function. Let 
(𝑆𝑆𝜆𝜆)𝑖𝑖𝑖𝑖  be the 𝑖𝑖𝑡𝑡ℎ  diagonal element of 𝑆𝑆𝜆𝜆 . For smoothing splines 
the usual Cross Validation score function is  

 

𝐶𝐶𝐶𝐶(𝜆𝜆) = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖−𝑓𝑓𝜆𝜆 (𝑥𝑥𝑖𝑖)

1−(𝑆𝑆𝜆𝜆 )𝑖𝑖𝑖𝑖
�

2
𝑛𝑛
𝑖𝑖=1       (9) 

 
Here 𝜆𝜆 is chosen to minimize 𝐶𝐶𝐶𝐶(𝜆𝜆). 
The selection of the number of knots and their positions are 

important in approximation problems using spline functions. 
We used equidistant knots among the data set. The optimal 
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selection of knot amount could be estimated with Akaike 
Information Criteria. But in this study we used automatic 
knots selection with equidistant positions. 

III. SIMULATION STUDY 
This section shows a simulation study that we conducted to 

evaluate the performance of used techniques. The data was 
generated from the mixture normal distributions taken from 
[18]. The selected mixture distributions are shown in Table I. 

 
Table I. Mixture normal distributions 

Name Function 
Gaussian 
Density 

𝑁𝑁(0,1) 

Skewed 
Unimodal 
Density 

𝐹𝐹2(𝑥𝑥) =
1
5𝑁𝑁

(0,1) +
1
5𝑁𝑁�

1
2 , �

2
3�

2

�

+
3
5𝑁𝑁�

13
12 , �

5
9�

2

� 

Strongly 
Skewed Density 𝐹𝐹3(𝑥𝑥) = �

1
8𝑁𝑁�3 ��

2
3�

𝑙𝑙

− 1� , �
2
3�

2𝑙𝑙

�
7

𝑙𝑙=0

 

Kurtotic 
Unimodal 
Density 

𝐹𝐹4(𝑥𝑥) =
2
3𝑁𝑁

(0,1) +
1
3𝑁𝑁 �0, �

1
10�

2

� 

Outlier Density 
𝐹𝐹5(𝑥𝑥) =

1
10𝑁𝑁

(0,1) +
9

10𝑁𝑁�0, �
1

10�
2

� 

Bimodal 
Density 𝐹𝐹6(𝑥𝑥) =

1
2𝑁𝑁 �−1, �

2
3�

2

� +
1
2𝑁𝑁�1, �

2
3�

2

� 

Separated 
Bimodal 
Density 

𝐹𝐹7(𝑥𝑥) =
1
2𝑁𝑁�−

3
2 , �

1
2�

2

� +
1
2𝑁𝑁�

3
2 , �

1
2�

2

� 

Asymmetric 
Bimodal 
Density 

𝐹𝐹8(𝑥𝑥) =
3
4𝑁𝑁

(0,1) +
1
4𝑁𝑁�

3
2 , �

1
2�

2

� 

Trimodal 
Density 𝐹𝐹9(𝑥𝑥) =

9
20𝑁𝑁�−

6
5 , �

3
5�

2

� +
9

20𝑁𝑁�
6
5 , �

3
5�

2

�

+
1

10𝑁𝑁�0, �
1
4�

2

� 

Claw Density 
𝐹𝐹10(𝑥𝑥) =

1
2𝑁𝑁

(0,1) + �
1

10𝑁𝑁 ���
𝑙𝑙
2�

4

𝑙𝑙=0

− 1� , �
1

10�
2
� 

Double Claw 
Density 

𝐹𝐹11(𝑥𝑥)

=
49

100𝑁𝑁�−1, �
2
3�

2

� +
49

100𝑁𝑁�1, �
2
3�

2

�

+ �
1

350𝑁𝑁��
𝑙𝑙 − 3

2 � , �
1

100�
2

�
6

𝑙𝑙=0

 

Asymmetric 
Claw Density 𝐹𝐹12(𝑥𝑥) =

1
2𝑁𝑁

(0,1) + �
21−𝑙𝑙

31 𝑁𝑁�𝑙𝑙
2

𝑙𝑙=−2

+
1
2 ,�

2−𝑙𝑙

10�
2

� 

Asymmetric 
Double Claw 
Density 

𝐹𝐹13(𝑥𝑥)

= �
46

100𝑁𝑁 �2𝑙𝑙 − 1, �
2
3�

2

�
1

𝑙𝑙=0

+ �
1

300𝑁𝑁�
−𝑙𝑙
2 , �

1
100�

2

�
3

𝑙𝑙=1

+ �
7

300𝑁𝑁��
𝑙𝑙
2� , �

7
100�

2
�

3

𝑙𝑙=1

 

Smooth 
Combination 
Density 

𝐹𝐹14(𝑥𝑥) = �
25−𝑙𝑙

63 𝑁𝑁��65 − 96 �
1
2�

𝑙𝑙

�
5

𝑙𝑙=0

/21, �
32
63�

2

/22𝑙𝑙� 

Discrete 
Combination 
Density 

𝐹𝐹15(𝑥𝑥) = �
2
7𝑁𝑁�

(12𝑙𝑙 − 15)/7,�
2
7�

2

�
2

𝑙𝑙=0

+ �
1

21𝑁𝑁 �2𝑙𝑙/7, �
1

21�
2

�
10

𝑙𝑙=8

 

 
From each of these models, we sampled 1000 samples of 

sizes n = 50, 100 and 200 respectively. We consider three 
different type of spline estimators of the distribution function: 
cubic B- spline, cubic smoothing spline and cubic penalized 
spline. Unlike the empirical distribution function, all these 
spline estimators are smooth.  We compare the estimation 
accuracy of the spline estimators with the mean squared error 
(MSE) performance criteria. For a given F� , the MSE criteria is 
defined as follow. 

 
MSE�F�� = 1

n
∑ �F�(Xi) − F(Xi )�

2n
i=1      (10) 

 
First, we have generated n = 50 samples from each 

distribution function and estimated with three different spline 
methods. Fig. 1. demonstrates an example of scatterplot of 
distribution function values and approximated with spline 
functions. 

 
a) 
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b) 
 

Figure 1. a) Scatterplot of distribution function F4 and b) 
it’s estimation with B-spline (solid line), smoothing spline 

(dashed line), penalized spline (dotted line) 
 
The estimation results are reported in further tables. Results 

of estimation of cumulative distribution functions with 𝑛𝑛 =
50, 𝑛𝑛 = 100 and 𝑛𝑛 = 200 are given in Table II, Table III. and 
Table IV. respectively.  

 
Table II. Estimation results (mean square error values) 

with 𝑛𝑛 = 50. 
Functions B-spline Smoothing 

spline 
P spline 

𝐹𝐹1(𝑥𝑥) 0.093 0.409 0.021 
𝐹𝐹2(𝑥𝑥) 1.257 0.634 0.439 
𝐹𝐹3(𝑥𝑥) 60.920 4.775 60.035 
𝐹𝐹4(𝑥𝑥) 1000.199 11.525 953.043 
𝐹𝐹5(𝑥𝑥) 300.619 119.285 271.351 
𝐹𝐹6(𝑥𝑥) 2.042 1.429 0.483 
𝐹𝐹7(𝑥𝑥) 8.231 2.124 2.550 
𝐹𝐹8(𝑥𝑥) 7.827 2.290 3.850 
𝐹𝐹9(𝑥𝑥) 10.054 3.724 6.708 
𝐹𝐹10(𝑥𝑥) 82.596 81.488 87.229 
𝐹𝐹11(𝑥𝑥) 2.395 1.849 0.898 
𝐹𝐹12(𝑥𝑥) 70.871 22.622 66.022 
𝐹𝐹13(𝑥𝑥) 8.933 7.518 6.841 
𝐹𝐹14(𝑥𝑥) 80.983 75.269 94.602 
𝐹𝐹15(𝑥𝑥) 100.468 60.749 137.669 

 
From the results shown in Table I. it could be seen that 

mostly spline with penalty term, i.e. smoothing spline and 
penalized spline. Actually, outperforming results of spline 
with penalties is expectable. Because, smoothing term that 
added to splines with basis functions gives them more 
smoothness with control of smoothing parameter 𝜆𝜆. 

Further we give results for simulation with 𝑛𝑛 = 100 and 
𝑛𝑛 = 200 in Table III. and Table IV. respectively. 

 
Table III. Estimation results (mean square error values) 

with 𝑛𝑛 = 100. 
Functions B-spline Smoothing 

spline 
P-spline 

𝐹𝐹1(𝑥𝑥) 0.241 0.398 0.053 
𝐹𝐹2(𝑥𝑥) 3.236 0.908 1.111 
𝐹𝐹3(𝑥𝑥) 96.865 6.711 80.473 
𝐹𝐹4(𝑥𝑥) 162.759 9.681 126.914 

𝐹𝐹5(𝑥𝑥) 152.368 23.194 100.935 
𝐹𝐹6(𝑥𝑥) 5.049 1.082 1.086 
𝐹𝐹7(𝑥𝑥) 11.532 1.574 4.178 
𝐹𝐹8(𝑥𝑥) 15.984 2.065 7.611 
𝐹𝐹9(𝑥𝑥) 13.267 3.318 9.303 
𝐹𝐹10(𝑥𝑥) 101.118 101.170 90.840 
𝐹𝐹11(𝑥𝑥) 5.043 1.781 1.436 
𝐹𝐹12(𝑥𝑥) 93.577 25.558 80.139 
𝐹𝐹13(𝑥𝑥) 13.510 8.080 7.945 
𝐹𝐹14(𝑥𝑥) 110.587 75.885 100.181 
𝐹𝐹15(𝑥𝑥) 162.648 46.625 200.112 

 
Table IV. Estimation results (mean square error values) 

with 𝑛𝑛 = 200. 
Functions B-spline Smoothing 

spline 
P-spline 

𝐹𝐹1(𝑥𝑥) 0.564 0.603 0.134 
𝐹𝐹2(𝑥𝑥) 7.163 1.227 2.374 
𝐹𝐹3(𝑥𝑥) 11.394 7.5 10.855 
𝐹𝐹4(𝑥𝑥) 20.923 8.099 15.122 
𝐹𝐹5(𝑥𝑥) 38.734 31.446 28.807 
𝐹𝐹6(𝑥𝑥) 9.953 0.794 2.082 
𝐹𝐹7(𝑥𝑥) 12.619 1.144 6.210 
𝐹𝐹8(𝑥𝑥) 27.004 2.031 12.751 
𝐹𝐹9(𝑥𝑥) 14.201 2.671 12.347 
𝐹𝐹10(𝑥𝑥) 111.688 112.701 106.776 
𝐹𝐹11(𝑥𝑥) 10.04 1.369 2.187 
𝐹𝐹12(𝑥𝑥) 98.353 24.346 92.935 
𝐹𝐹13(𝑥𝑥) 19.263 8.029 9.126 
𝐹𝐹14(𝑥𝑥) 130.408 76.529 124.927 
𝐹𝐹15(𝑥𝑥) 160.344 32.489 285.438 

 
From the given results in tables we can conclude that 

splines with penalty term show better result than spline 
function with basis function. Both, smoothing and penalized 
spline outperform B-spline. As for techniques with penalty 
term, smoothing spline shows better approximation than 
penalized spline.  

REFERENCES   
[1] E.A. Nadaraya, “Some New Estimators for Distribution Functions”, in  

Theory of Probability and its Applications,vol. 9, 1964, pp. 497–500. 
[2] A. Azzalini, “A Note on the Estimation of a Distribution Function and 

Quantiles by a Kernel Method”, in Biometrika, vol. 68, 1981, pp. 326–
328. 

[3] H. Yamato, “Uniform Convergence of an Estimator of a Distribution 
Function”, in Bulletin of Mathematical Statistics, vol. 15, 1973, pp. 69–
78. 

[4] B. Funke, C. Palmes, “A note on estimating cumulative distribution 
functions by the use of convolution power kernels”, in Statistics and 
Probability Letters, vol. 121, 2016, pp.90–98. 

[5] A. Baszczyńska, “Kernel estimation of cumulative distribution function 
of a random variable with bounded support”, in Statistics In Transition 
new series, vol. 17, No. 3, 2016, pp. 541–556. 

[6] C. Tenreiro, “Boundary kernels for distribution function estimation”, in 
Statistical Journal, vol. 11, No 2, 2013, pp.169–190. 

[7] Bruce E. Hansen , Bandwidth Selection for Nonparametric Distribution 
Estimation, Working paper 

[8] J. Wang, F. Cheng, L. Yang, “Smooth simultaneous confidence bands 
for cumulative distribution functions”, in Journal of Nonparametric 
Statistics, vol. 25, No. 2, 2013, pp. 395–407 

INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS Volume 5, 2017 

ISSN: 2309-0685 94



 

 

[9] R. Liu, L. Yang, “Kernel estimation of multivariate cumulative 
distribution function”, in Journal of Nonparametric Statistics, vol. 20, 
No. 8, 2008, pp.661–677 

[10] L. Xue, J. Wang, “Distribution function estimation by constrained 
polynomial spline regression”, in Journal of Nonparametric Statistics, 
vol. 22, Issue 4, 2009, pp.443-457. 

[11] J.Z. Huang, X. Wang, X.  Wu, L. Zhou, “Estimation of a probability 
density function using interval aggregated data”, in Journal of Statistical 
Computation and Simulation, vol.86, pp.3093-3105. 

[12] J. K. Charles, S. Sun, C. F. Martin, “Cumulative Distribution Estimation 
via Control Theoretic Smoothing Splines”, in Three Decades of 
Progress in Control Sciences, 2010, pp. 95–104. 

[13] E. M. Restle, “Estimating Distribution Functions with Smoothing 
Splines”, working paper 

[14] P. Dierckx, Curve and surface  fitting with splines, Clarendon Press, 
Oxford, 1993. 

[15] C. De Boor, A Practical Guide to Splines, New York: Springer, 1978 
[16] P.J. Green, B.W. Silverman, Nonparametric Regression and 

Generalized Linear Models, New York: Chapman & Hall, 1994. 
[17] P.H.C. Eilers, B.D. Marx “Flexible smoothing using B-splines and 

penalized likelihood (with comments and rejoinders)”. In Statistical 
Science, vol.11, 1996, pp. 89-121. 

[18] J.S. Marron, M.P. Wand, “Exact Mean Integrated Squared Error”, in The 
Annals of Statistics, vol. 20, 1992, pp. 712–736. 

INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS Volume 5, 2017 

ISSN: 2309-0685 95


	I. INTRODUCTION
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