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Abstract—In future power grids, the high penetration with
Renewable Energy Resources (RES) will be a big challenge.
The problem is not the high RES contribution per se, but even
desirable in order to make a decisive contribution to climate
protection through CO2-neutral power generation. The problem
lies in particular in the fact that power stations based on
fossil fuels in current electricity networks are stabilizing factors
and sources of operational flexibility. In future electricity grids,
new sources of flexibility must be tapped - not only at the
generation but also on the side of demand, e.g. through Demand
Side Management (DSM). Various approaches are divided into
direct and indirect control methods. In this paper, we present
a model class of Incentive-based Demand Response (IbDR),
where the power consumption of household coalitions is indirectly
controlled by rebates on electricity bills. We apply the theory of
(convex) cooperative games to design IbDR events that promote
cooperative behavior of households. In particular, the methods
are designed so that the use of storage (batteries) are very
beneficially integrated. We have developed a simulation tool
MASim that simulates electricity consumptions of households.
Using MASim we carried out numerical experiments, which
show the functionality of our proposed IbDR method. In field
studies, we developed the ICT and tried out how batteries can
be controlled within the scope of our proposed IbDR schemes.

Index Terms—Demand-side Management, DR-events, Batter-
ies, Cooperative Game Theory

I. INTRODUCTION

In traditional power grids, uncertainty is mainly based on
fluctuations in energy demand. Statistical and econometric
methods as well as predefined load profiles are used to rec-
oncile the operational planning of bulk production (generation
schedules of power plants) with the loads. This balancing is
generally done relatively early (day ahead or earlier) and grid
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constraints are usually negated. Subsequently, the Transmis-
sion Service Operators (TSO) try to avoid any congestions in
the transmission grids - for example by re-dispatch - usually
also day-ahead. In the short term - 15 minutes to a few
seconds before real time - any irregularities are repaired by
(expensive) control reserves (Frequency Restoration Reserves
(FRR), Frequency Containment Reserves (FCR)). Often, FRR
/ FCR services (e.g. spinning reserves) are provided by power
plants (nuclear, coal, gas, hydro power station) that are also
responsible for bulk power production.

The big challenge in future electricity grids is the sig-
nificant penetration of Renewable Energy Resources (RES)
(wind power, photo-voltaic etc.). Distributed renewable en-
ergy sources will replace - at least partly - bulk production
and - hence - important stabilization factors of power grids
are reduced (like sources for control reserves). Additionally,
different to traditional bulk production, wind power and pho-
tovoltaics cause a lot more uncertainty in the power grids.
And it should not to be underestimated that RES generation
happens mainly in small and medium-size units, which no
longer feed the produced power directly into a TSO grid,
but do so in the Distribution Service Operators (DSO) grids.
TSOs will not longer be able to synchronize with a few
power producers, but will face a huge number of them; most
of them not directly linked to their grids. Consequently, it
is up to the DSO not to rely primarily on the TSOs to
stabilize distribution grids, but this task will be - at least
partially - the responsibility of DSOs. Clearly, it will exceed
the capabilities of a DSO to perform FCR / FRR actions;
these should remain the responsibility of the TSOs. It must
be the task of the DSOs to avoid the need for frequency
control measures as much as possible; and this also by intra-
day actions, and - important - considering grid contraints.
But DSOs need flexibility services for this. EU Smart Grid
Coordination Group (Smart Grid Conceptual Model) writes (
[1], page 84, l530ff): “Flexibility, thus, will be key. Where until
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today in the current supply follows demand model, flexibility
was offered in bulk generation, in the future in the demand
follows supply model the flexibility must be equivalent offered
on both sides (generation (centralized and decentralized) and
consumption (e.g. demand side management)).” The main goal
in this paper is to design and simulate a DSM model class
where it is beneficial for many households to cluster and to
be represented by a market aggregator. An important part is the
utilization of (battery) storage in order to support significantly
households’ and cluster’s DSM efforts.

If our society pursues the goal of a clean, CO2-neutral,
sustainable energy supply, it has to face these challenges. In
contrast to traditional power grids, smart grids are designed
to allow substantial information exchanges in any direction,
and provide tools like smart metering, advanced ICT, etc.
needed in power systems for integrated energy management
and decentralized autonomous grid control. EU Smart Grid
Coordination Group states further ( [1], page 84, l535ff):
“Therefore the ICT infrastructure and ICT solutions, which
enables the required flexibility on demand and supply side in
a fully interchangeable way, becomes a key component of the
smart grid and therefore it will be become part of the smart
grid eco system.”

In a conservative approach, power consumers (like house-
holds) allow external control of (at least some of) their
consumption. Bigger loads with little to no impact on comfort
and no direct user interaction are obviously most suitable. For
example, heating and cooling units can be switched on and off
at any time as long as the tempearture is kept within predefined
bounds (see [2]). Overnight charging of an electric vehicle can
be delayed or done with limited current, given that the battery
is fully charged when the owner wants to use the vehicle in
the morning. Likewise a washing machine might be not started
immediately (confer [3]). Other appliances like a stove or a
TV set can definitely not be controlled from an external entity.

In the simplest case, electricity suppliers try to operate
households’ devices within given constraints (like minimal and
maximal room temperature) or suppliers incorporate house-
holds’ (comfort) optimization into their control decisions. In
more sophisticated transactive control approaches (see [4])
not a supplier controls households’ devices but the system
itself controls appliances by contingent interactions between
the components of the system and by continuing adaption in
order to maximize suppliers’ profits, respectively minimize
households’ costs.

However, in many cases it is not expected or even not
desired that someone else controls consumers’ devices. Then,
electricity suppliers have to rely on the cooperation of the
power consumers in order to carry out a meaningful DSM.
Of course, a powerful tool is pricing, like Time of Use (ToU)
pricing. Suppliers’ other instruments can be offering rewards
and incentives, or just better understanding households’ pref-
erences.

Instead of controlling electricity consumers, their supplier
rely – in combination with pricing, incentives, and rewards –
on market mechanism. Assuming rational agents, the partic-

ipants of the power grid implement decisions that guarantee
them the best possible outcome. Mathematical programming
and noncooperative game theoretical models of smart power
grids allow us to understand the behavior and interactions in
these systems; analysis of these models guides us how to make
the grid smarter (as an example we want to mention here
[5]). The authors in [6] call these approaches direct control
methods.

In this paper we focus on indirect control methods; differ-
ently to the situation where power consumers implement - as
rational agents - an optimal (and thus prescriptive) solution,
in this paper we want to investigate smart grid set-ups where
the participants of the power grid are not cooked down to a
single mathematical model. They are not fixed to prescriptive
power consumption rules, but they are allowed to choose any
proper (even non-rational) consumption decision. Demand side
management is carried out by indirect control methods and a
common approach is that power consumption is controlled by
means of incentives, confer Incentive-based Demand Response
(IbDR); one can find a review about IbDR in [7].

We postulate that electricity consumers can decide which
information level on their future electricity consumption (and
on the efforts providing it) they agree to provide, and we
assume that binding agreements are possible in advance. The
energy supplier can give incentives and offer rewards for ful-
filling agreements. In principle, the supplier could fix complex
individualized contracts with every electrical power consumer,
but we consider this hardly practicable. The potential of this
approach is fully exploited when acting as a group (coalition)
allows improvement compared to the situation when each par-
ticipant of the power grid acts individually and independently.
In a typical setup, a given set of players (power consumers)
are grouped around an aggregator (facilitator, mediator), who
represents the interests of the group as a whole.

An example is given in Equation (1) in [8], where electricity
consumers get compensated for their load level reduction
during a single DR event. Moreover, in this paper [8] a more
interesting DR scheme is proposed, where DR activities - still
load level reductions - are rewarded only, after a minimal
level M of a total load level reduction is achieved. A single
consumer cannot achieve this minimal level M, and consumers
have to group up to coalitions that are big enough to fulfill the
minimal load level reduction. It is to mention that in the cited
framework, the marginal increase of a reward due to a load
level reduction is constant (as long as the minimum level M
is fulfilled). The major goal of our paper is to design fair and
attractive DR events, where the marginal reward increases the
higher the contribution to the DR event is. Especially, we want
to design DR events, where support/usage of storage (batteries)
makes cooperation more effective.

For the ICT (Information and Communications Technology)
of this kind of energy networks, it is important to know how
much each member of the group contributes to the group’s
goal. Especially, after realizing the power consumption of the
individual electricity consumers, based on a given and known
agreement, the ICT has to compute the group’s total achieved
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reward (value of the coalition) and the players’ individual
contribution. Based on these figures, the ICT has to calculate
and manage an allocation of the reward to the individual
power consumers. In a wider perspective, we investigate how
to design DR events (or, more general, binding agreements),
which are favorable for both, power consumers and their
supplier. A crucial question is, how storage (batteries) can be
incorporated beneficially into the system, and how ICT has to
be designed to in order to be able to carry out these processes
automated.

This paper is organized as follows. In Sec. II we describe
coalition games and DR schemes in general. In Sec. III we
describe how to compute rebates, and in Sec. IV we show how
batteries can be integrated to advantage. In Sec. V we present
the coalition game set-up used. Then, simulation and results
are given in Sec VI. Finally, our conclusion is presented.

II. COALITION GAMES AND DR SCHEMES

We assume that the electricity supplier announces DR
events and a group of power consumers led by an aggregator
contracts compensation based on their potential DR services.
The purpose of setting up a group is that each member
achieves the same or better result (i.e., less electricity cost)
when following a DR program in a group than in the situation
of disagreement where the players are acting individually.
Those group members who do not contribute to the agreed
DR scheme with their power consumption behavior (dummy
or zero players) will not receive an increase in their score
and will be unmasked to the aggregator. Group members
are not tied to an optimal (prescriptive) solution, however, if
consumers are provided with information about their personal
outcomes (and, of course, about the DR scheme), there may be
a different (more cost-effective) energy consumption behavior
in the future. Conceptually, in this article we discuss model
approaches from the field of coalition games; an introductory
chapter can be found in [9].

Additionally, we model batteries as supplementary players
operating in an effective DR response. Coalition games will
make sense only, if grouping improves effectiveness: the
higher the group’s contribution to the DR scheme is, the more
effectively batteries can be used. This approach is applied for
valuating the alternatives, if a group of consumers considers
to purchase batteries. Using regret matching [10], respectively
joint strategy fictitious play [11], individual consumer’s deci-
sions about holding shares of a joint battery (operated at the
aggregator’s level) are contemplated.

Mathematics of DR schemes

We consider a sizeable group of n (electricity) consumers
who have gathered around an aggregator for a given DR
scheme. Consumers may only join or leave the group at
the beginning of a planning period. We assume that the DR
scheme is designed so that the system’s ICT, after realizing
consumers’ power consumption, can calculate the total payoff
based on DR activities for each subset of these n consumers. In
other words, for a given set N = {1, . . . , n} of n consumers,

the ICT of the smart grid must be able to calculate the
nonnegative value v(S) of any coalition S ⊂ N (v maps
groups of consumers S to the welfare they will achieve v(S),
if they act together).

Though in practice, the ICT will never compute totally the
so-called characteristic function v of a coalition game (N, v).
Therefore, we only consider DR schemes, from which we are
able to derive a formula/rule that allows us to compute a quan-
titative value v(S) of reward gained by the DR activities by the
members of any given coalition S ⊆ N ; especially observed
DR activities of the grand coalition (consists of all players in
N ) results in DR rewards (the reward funded/realized by the
supplier) equal to the value of the grand coalition v(N) (here
v(S), S 6= N are conceptual values, only). To clarify it, the
DR scheme defines the characteristic function v, which can
be evaluated after the consumers carried out their actions. Of
course ICT has to update – in different planning periods, we
face DR activities and, hence, different characteristic function
values.

Now let us have a look on a n-person coalition game
with given characteristic function v and assume transferable
utilities. The latter refers to the concept that a group (coalition)
S can distribute the value of its coalition v(S) among its
members acting on their own authority. As in a group of
family members - although they are selfish to some extend
- no one tries to maximize his/her individual utility at other
family members’ expense, but the family tries to distribute
in a fair (i.e. stable) way. The set of feasible solutions of a
coalition game (N, v) consists of all utility allocations for the
whole group N, where the value of the grand coalition v(N)
is distributed fully among the players and every player of the
game gets a non-negative share of v(N) allocated.

Of course an allocation where one player gets the full
value of the grand coalition allocated is feasible, but such an
allocation may not be stable in the sense that other players
may feel harassed and decide to leave the grand coalition and
seek to build on their advantages in smaller coalitions. In this
sense, a feasible utility allocation is called stable, if the value
of the grand coalition is fully allocated among all players of
the game and the aggregated allocations of the players of any
potential coalition S is greater equal than the value of this
coalition, v(S). In other words, no coalition can provide its
members a better position than they can achieve joining the
grand coalition (coalitionary stable). This is valid for the trivial
coalition of a single player, too, which means that a single
player’s payoff for joining the grand coalition is as least as
good as acting individually (individually stable). We call the
set of all stable allocations of a coalition game (N, v) the
core of this game (see [12]). Unfortunately, there are coalition
games, where the core is an empty set; mathematical theory
shows us that just in convex (coalition) games the core is never
empty.

Whenever in a DR scheme the rewards for DR activities
can be quantified, it is possible to compute the characteristic
function v for a group of N consumers and consequently we
can formulate a coalition game (N, v). However, coalition
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games with empty core(i.e., without stable solutions) may
result. From mathematical theory we know that this can
happen only if a DR scheme allows the following situation:
consider a coalition S in the absent of a player i. The margina
contribution mi(S) of player i to the coalition S is the
difference between the value of the coalition, when player i is
added to S, minus the value of the coalition S (without i). Now
add one or more players to S (not i) to form a new, bigger
coalition T. If now the marginal contribution mi(T ) of player
i to the coalition T is smaller than the marginal contribution
mi(S) of i to the coalition S, then it is not possible to
find stable utility allocations (the core is empty). However
in such a case, we face a DR scheme where building groups
is counterproductive and hence modelling by coalition games
should be questioned. Coalition games that exclude such (for
building coalitions counterproductive) cases are called convex
games.

We have discussed that a coalition game (N, v) has to be
convex to ensure meaningful (stable) solutions. Keeping this
in mind, let us do some reverse engineering for constructing
DR events and DR schemes suitable for coalition games.
For this purpose, recall that for a convex coalition game the
characteristic function v has to be a composition of a convex
function f and a measure µ, i.e. v(S) = f(µ(S)) (see [12]). A
measure µ is a real valued function that is nonnegative, maps
empty set to zero and is additive. In our case, the domain
of µ is the set of all coalitions in the game. Obviously, we
have to measure DR activities of the members of a coalition
(done by µ) and have to transform this measure to monetary
values (done by f ; subsequently, we will call this function
measure-to-money).

III. DR SCHEMES FOR COOPERATION

Knowing the mathematics we have the ingredients to de-
sign suitable DR schemes, if the intention is that consumers
cooperate. For test scenarios, we assign reference consumption
profiles (like baselines in balance groups) to each consumer.
The measure of a coalition then is defined by the sum of load
level reductions (relative to the reference profiles) of all the
participants of the coalition. Results can be summed up over
several DR events carried out during a planning period (let us
assume a day), e.g. one event in the morning and one event
at the afternoon peak.

Based on measured DR event contributions of the grand
coalition the supplier gives a discount (as a lump sum),
applying a strictly convex measure-to-money function f , a
mapping of group’s aggregated DR event contribution into
monetary values (defining the lump sum). In other words, the
total load level reduction of the group is calculated and the
supplier gives a discount on the group’s (not individual) cost
of service; the marginal discount increases with the increase
in load level reduction.

This reward is given to the aggregator and equals the value
of the grand coalition. While every member of the group pays
for its actual power consumption a given and known flat or
variable (time of use ToU) price to the supplier, the aggregator

distributes the reward among the group members according to
their contribution to the DR scheme.

A. Computation of the Individual Rewards

As we construct a convex game for the distribution of
the reward, the existence of stable allocations can be con-
cluded. However in general, stable allocations are not unique.
Shapley proposed in [13] an allocation that is the unique
allocation fulfilling efficiency (value of grand coalition is
fully distributed), symmetry (two player who play the same
strategies are rewarded equally), dummy player (those who
do not contribute are not rewarded), and linearity (the sum
of rewards of two DR events equals to the reward if the DR
events are carried out jointly in a DR scheme); this unique
allocation is called Shapley values and can be computed for
any coalition game (N, v).

For the formula to compute Shapley values see, for instance,
[8], Equation (5). Shapley values are unique and - theoretically
- they can be computed for any coalition game. However,
keeping in mind prior considerations it is obvious that this
allocation is not necessarily stable for nonconvex coalition
games, but it is well-known that this allocation is stable for
(in the core of) convex coalition games.

Looking more carefully at the formula for the Shapley
values we realize that computing and adding together all its
summands is practically not possible in the presence of about
more than 20 players (due to complexity issues). Shapley
had proposed to add a limited number of randomly chosen
summands (Monte Carlo method). In the topical publication
[8], the authors propose a statistical sampling method that
tries to minimize possible deviation from the computed mean
value for the Shapley values given an upper limit of computed
summands.

Smart grids’ ICT handles the reference profiles of the
consumers, holds and distributes the exact definition of re-
ward calculation (DR scheme characteristics), executes these
calculations (including the distribution of rewards) and does all
the accounting between supplier and aggregator and between
the aggregator and its consumers. Especially, we implemented
the - in the immediately preceding paragraph referenced -
algorithm for computing the Shapley values and integrated it
to the ICT.

IV. DR SCHEMES FOR STORAGE

Storage will play a significant role in future power grids;
especially for providing flexibility. Obviously, it requires a
powerful ICT system to integrate e.g. batteries and control
them in an optimal way.

In the simplest scenario, a battery is discharged at its
maximum rate during peak periods with high energy price
(in case of ToU pricing) and then charged during off-peak
periods when energy is cheap (arbitrage energy trading with
batteries). This usage is feasible when the price difference
between peak periods and off-peak periods is large enough
to make up for the cost of the battery. The requirements for
the ICT system are simple. Usually time and duration of high
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and low price periods are known in advance, and the ICT just
needs to configure the Battery Management System (BMS)
accordingly. The BMS then triggers charging and discharging
so that it fits the batteries characteristics optimally.

In more complex DR events, a battery can be used to change
a groups consumption so that it follows a desired/advantageous
pattern. For example, a battery is discharged in a way that over-
all consumption stays below a agreed threshold. Another use
case might be shifting power consumption so that the usage
of renewable energy sources is maximized. These scenarios
require a much deeper integration of battery control into the
system.

In order to utilize batteries optimally the BMS needs a lot of
information about the battery, e.g., the type of the battery, state
of charge (SoC), state of health (SoH), maximum rampage
rates, charge and discharge currents or internal temperature.
These parameters impose restrictions on how the battery can
be operated, e.g., exceeding the internal temperature limit can
permanently damage the battery. On the other hand, keeping
operating conditions within certain parameters can signifi-
cantly reduce the wear of some battery types and thus increase
their lifespan. For such a deep integration the BMS must not
be limited to reading battery parameters and switching it on
and off but has to be able to control the rate of charge and
discharge as well.

Obviously to take full advantage of a very sophisticated
BMS a more capable ICT is required. The communicational
and computational requirements obviously increase with the
amount of data that has to be processed. As mentioned before,
in the most basic scenario either predefined times or simple
trigger signals are sufficient to discharge and charge the battery
and billing can be done by recording the SoC or currents and
timestamps. In order to realize complex DR events the ICT
probably has to react on changes of a group’s consumption in
real time.

For batteries, we extend the game theoretic setup described
above. Batteries here are treated as additional players n +
1, n + 2, . . . . For the discussion here let us assume that we
add a single battery. On the one hand, this battery operates
as an optimized consumer (charges during off-peak hours,
discharges during peak hour DR events), on the other hand
- differently to consumers - we have to incorporate the (fixed
and variable) costs of the player-battery to the coalition game.
Especially modeling how the battery contributes to the value of
a coalition that includes the battery is of interest. We can add
easily the contribution of a player-battery to a coalition to the
measure µ, which does not change qualitatively the structure of
measure µ. Clearly, we can apply a measure-to-monetary-value
function f to this adapted measure. We incorporate cost for
operating batteries (efficiency losses). We neglect investment
cost for batteries; if we did incorporate them, the solution
would be never use a battery, as the cost per kWh stored is
30 Eurocent and higher - up to 60 Cent per kWh in case of
environmentally friendly batteries that are based on salt-water
technologies.

However, we have focused on DR schemes that places

emphasis on utilisation of batteries. As we have learned the
value of a coalition should increase progressively with the
increase of the scale of coalitions. The marginal reward of
a contributed kWh of a battery should increase, if more DR
active players join the coalition. In our studies (confer Section
V) we design and investigate a rebate-based measure-to-money
function f to constitute this.

A. Multi-Agent Simulator (MASim)

To analyze the effectiveness of mechanisms like incentives
and the resulting behavior we developed a Multi-Agent Simu-
lator (MASim). It is a discrete event simulation framework
where agents can interact with the environment (and each
other) at given times. Two types of agents, namely Aggregators
and Households, were implemented. The aggregator manages
the battery and triggers DR events.

Households have residents who can be asleep, awake and
not at home. Residents have slightly different behaviors like
when they get up in the morning and go to bed at night or if
they are at home during the day. Devices in the household
consume energy and are switched on or off based on a
predefined schedule, by residents or with DR events. We
implemented the following types of devices:

1) constantly consuming energy and cannot be switched
off,

2) can be switched on at any time and then need to run for
a certain amount of time (e.g., a dish washer)

3) can be switched on and off at any time by residents or
DR events.

Usage patterns influence the way devices are used. They can
be arbitrarily complex but the current implementation switches
devices on or off randomly where the probability depends on
the state of the environment like the time of day, state of the
residents, or the current energy price. For example, a stove
is most likely used at noon or in the evening, but only when
someone is at home.

Additionally the environment holds information about the
global surroundings of the agents, e.g., energy prices or
weather/temperature, which can affect the usage patterns of
devices. A heat pump for example is only needed below a
certain temperature.

A simulation configuration includes the number of house-
holds, their residents and devices, size and type of the battery,
energy prices and parameters for DR events as well as the
duration and granularity of the simulation run.

The simulation loops through the following steps:
1) Update the environment (time, temperature)
2) Update the residents states
3) Switch devices on or off based on their usage profiles
4) Households send their current consumption to the ag-

gregator.
5) The aggregator calculates the energy costs and rewards

for each household and sends them out.
6) The aggregator triggers a DR event if it is required to

keep the overall consumption within agreed bounds.
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In our case studies, partly carried out in reality, we have
used a RedFlow zinc-bromine battery for analyzing the phys-
ical aspects of battery management. The Battery Management
System offers a serial Modbus interface to query all operating
parameters and trigger charging or discharging. The battery is
connected to a power inverter which is able to regulate the
charge and discharge rates and can be controlled via Modbus
as well. This analysis allows also a deeper understanding of the
demands on the ICT for controling a system of an aggregator,
batteries and the related electricity consumers.

V. REBATE-BASED DESIGN FOR A DR EVENT

Validation at the component level has shown that the brand-
new algorithm to compute the allocations (Shapley values)
proposed in [8] works fine, and simulating households’ elec-
tricity consumption and contributions to DR event with our
developed MAS simulation MASim works fine, too. The ag-
gregated electricity consumption of a big number of household
is smooth, however, consumption of individual households is
to a high degree fluctuating. It may happen that in one period
cook-top, microwave, oven, hand blender, and dish washer
are used and therefore household’s electricity consumption is
beyond predefined limits, but over a longer period the averaged
consumption of the household stays clear within the limits. If
a household consumes more than prearranged, then µ(.) is no
longer a measure, hence v(.) is no longer the characteristic
function of a convex coalition game; finally, negative alloca-
tions (penalties) can occur. At the first attempt, we put the
Shapley Value, hence the allocation of the household, equal to
0 instead of a negative value, which is a penalty).

Discussing this more thoroughly, it should be clear that
the load level reduction Xi of a household i is relative to
its (known, given) base line consumption Bi. However, one
question is how the base line can be defined. Based on
historical data? Based on the predefined patterns (Standard-
lastprofil)? Based on a negotiated contract between aggregator
and supplier? Anyway, in reality sometimes households will
violate these limits; in some kind, they contribute negatively
to the DR event (and such behavior results not from a wrong
design of our simulation tool). In a first attempt in such cases,
we put the allocation to zero (aware that allocations of the
contributing households are reduced), in the further analysis
we operated batteries (owned/installed at the households) to
compensate electricity consumption higher than the given base
line. In this way, battery utilization was crucial to stabilize the
system.

In this study, we operate batteries at the households (indi-
vidual use) and batteries aggregator (common use). Physically,
these batteries need not be installed according their utilization;
for instance, household can own shares from a central battery
at the aggregator, and this share is reserved for individual
use. The modeling difference is the utilization, individually
or commonly. In the latter case, we analyze especially smart
grid business models, where the batteries’ main purpose is to
support the success in a DR event. There are several different
setups for DR event contribution (like load shifting or shaving,

electricity consumption following a predefined consumption
pattern as closely as possible); in this study, we take load
shifting as DR event as the base.

A. Design of DR Events

The difference between the base consumption Bi and the
realized consumption X̄i measures the contribution Xi =
Bi − X̄i of an individual household i to the DR event. Of
course, incentives can be given, for instance, proportionally
to the collective contribution of all households q µ(N); hence
the measure-to-money function would be linear with coeffi-
cient q. In this study, we modeled a rebate r(µ(N)) on the
actual aggregator’s electricity bill (that are the aggregated bills∑
i∈N X̄i of the members of the grand coalition N ) during

the DR event period and carried back the rebate to the real
consumption X̄i of individual households:

f(µ(N)) = r(µ(N))
∑
i∈N

X̄i. (1)

where µ measures the households’ DR-event contribution

µ(N) =
∑
i∈N

Xi.

We have chosen the rebate function r(.) in a way that the
marginal rebate increases with an increase of the households’
DR event contribution µ. If households contribute more to
the DR event, their consumption decreases and, hence, there
is a tendency to reduce the DR event discount. However, we
have designed the rebate in a way so that this effect is (more
than) compensated. Moreover, we define the rebate such that
measure-to-money function f is convex and consequently the
coalition game is convex (recall Xi = Bi − X̄i :

f(µ(N)) =

(
2µ(N)∑
i∈N Bi

)3
(∑
i∈N

Bi − µ(N)

)
(2)

Note that if the aggregated DR event contribution is more
than approx. 50% of the base consumption

∑
i∈N Bi, this

setup does not longer work; a further shifting/saving of
electricity use will decrease the reward. We have chosen
the value of 50% arbitrarily; however, this value can be
adapted by changing parameters in the rebate function r(µ) =(

2µ∑
i∈N Bi

)3
(note that factor 2 and power 3 define this 50%).

In case of sub-coalitions S ( N, we have to adapt the
(now theoretical) reward for this group to the aggregated
consumption of the grand coalition

∑
i∈N Bi :

f(µ(S)) =

(
2µ(S)∑
i∈N Bi

)3
(∑
i∈N

Bi − µ(S)

)
(3)

This modeling worked as long as no households violates
the base line consumption. At the point, when we put Shapley
values for households, which thwart the DR event, to zero
(practically eliminating them from the group),

∑
i∈N Bi rep-

resents no longer correctly the grand coalition (N is changed).
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Finally, we have adapted the measure-to-money function (con-
centrate at the index set of the sum)

f(µ(S)) =

(
2µ(S)∑
i∈N Bi

)3
(∑
i∈S

Bi − µ(S)

)

=

(
2µ(S)∑
i∈N Bi

)3∑
i∈S

X̄i. (4)

Now we have in the reward function for coalition S the
consumption of this group and not more. Not replacing the
constant aggregated base consumption

∑
i∈N Bi in the rebate

function makes sense as this is the negotiated value between
aggregator and supplier and is based on the initial participating
households.

We have to be careful, as
∑
i∈S Bi in f(µ(S)) depends on

S and cannot be a parameter (constant) any longer. We face
now the already explained measures µ and another measure
µ̄(S) =

∑
i∈S X̃i; the measures-to-money function f is now

a mapping from IR2 → IR and v(S) = f(µ(S), µ̄(S)). To
ensure that (N, v) is a convex game it is no longer sufficient
that f is convex but f has to be directionally convex (confer
[14]). In case that a measures-to-money function f is C2

(twice differentiable) it holds: f is directionally convex iff
all second derivatives of f are non-negative; the updated f
mentioned in (4) fulfills this.

VI. SIMULATION RUNS

Next we want to add representative results from our analysis
(done with our developed MASim):

Fig. 1 shows the influence of home-batteries on the reward
during a DR event on above mentioned rebate basis under the
assumption that 50 out of 100 households participate actively
(that is in the MASim set-up they reduce the probability of
using household devices during the DR event). The second
50 households in Fig. 1 do not react to the DR event (the
probability of using household devices is unchanged). We
simulated participation at the DR event by lower probabilities
for switching on electrical devices. If a household consumes
more than the baseline consumption, (only) household’s bat-
tery is used to compensate this overuse, as long as a battery
is available and it is not fully discharged.

Red dots show the rewards for households without a battery
and black ones represent the reward when every household is
endowed with a 2,2kW battery (used for its own supply, only).
Diurnal electricity costs (including heating and hot water) are
about 3,5 Euro, and rewards are up to 35 Euro Cent (ten
percent) of household’s electricity costs. Active participation
at the DR event results in a much higher reward (compare 50
households left with 50 households to the right), and utilizing
battery storage increases these rewards (compare black and
red curve); especially, households that are not willing or able
to contribute actively to the DR event, can use battery storage
effectively (compare households 51-100).

Fig. 2 shows the influence of a community owned battery
of a larger scale on the reward during a DR event on above

Fig. 1. The figure shows the reward for 100 households, where the first 50
households participate actively at the rebate DR event. The red dots (lower
curve) show the simulated rewards in the set-up, where none of the households
owns a battery; the black dots (upper curve) show the simulated rewards in
the set-up, where we endow every household with a battery with 2,2 kW
capacity available. (We have interpolated curves with the intention to make
the results better distinguishable, but these curves do not have any meaning.)

Fig. 2. The figure shows the reward for 100 households, where the first 50
households participate actively at the rebate DR event. A community owned
battery with 110kW is utilized to reduce aggregated electricity demand of all
100 households during the DR event (this battery is not individually used).
(The red dots show the simulated rewards; we have interpolated curves with
the intention to make the results better distinguishable, but these curves do
not have any meaning.)

mentioned rebate basis under the assumption that the first 50
households participate actively. The 50 households on the right
hand side in Fig. 2 do not react to the DR event, however,
electricity demand saved by utilization of the community
owned battery is split evenly to the households. Hence, all
households receive rewards, although, rewards of households
participating actively at the DR event are higher.

Fig. 3 shows shows the effects of learning on the rebate-
based DR event. At the beginning, just 10 households actively
participate in the DR event. The DR event is mainly carried by
a larger community battery (90 kW) and many small batteries
(2.2 kW) owned by households.The green dots (interpolated
by the lower curve) indicate the rewards for each household.
Even the first 10 households actively participating in the DR
event receive hardly any appreciably higher rewards compared
to the rewards of the other households. We have incorporated
”learning” into the simulation by overriding the probabilities of
turning on household appliances using a meta-rule. We only
allowed reducing the probabilities - so a household that is
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Fig. 3. The figure shows the reward for 100 households during a learning
process. A community owned battery with 90kW is utilized to reduce
aggregated electricity demand of all 100 households during the DR event and
we endow every household with a battery with 2,2 kW capacity available.
At the beginning only a few households participate (green; lower curve),
more and more households learn to participate (red), and finally 90 household
contribute actively to the DR event (black; upper curve). (The red, green, and
black dots show the simulated rewards; we have interpolated curves with the
intention to make the results better distinguishable, but these curves do not
have any meaning.)

already actively participating in the DR event will always do
so. Households that are not yet participating are motivated by
the enthusiasm of the already active neighboring households,
but more likely by paying off (word of mouth) higher rewards
to DR-event active households. The first effect mapped in the
meta-rule causes a slow increase of the active participants,
the latter effect - if then already a larger number actively
participates - causes a faster increase, until a certain saturation
occurs. If then already 50 households participate, then they
receive already clearly higher rewards (middle, red curve).
But even households that do not participate actively in the
DR event will profit - albeit to a lesser extent. Now that 90
out of the 100 households are DR-event-active, households can
expect to receive for their decision to participate actively to
the DR-event a 50% higher reward (upper black curve) than
in the situation they and 50 other households have not yet
participated. But the first 50 households are also benefiting
from the fact that another 40 households have now been able
to actively contribute to the rebate-based DR event.

VII. CONCLUSION

In our present research, we investigate possible frameworks
for the adaptive behavior of power consumers and correspond-
ing DSM models in combination with (battery) storage. We put
a major emphasis on the integration of storage as an integral
part in DR schemes. We explore the performance and quality
of our proposed DR-models in an agent-based simulation tool
MASim that we have developed for test purpose. Finally
we have conducted simulation runs with adaptive/learning
features, in order to experiment with our rebate DR event
design behavior in case of recurring application (e.g. diffusion
of reward information).

Performing various scenarios in multi-agent based simula-
tions helps to understand the principle behind the emergence of
successful DSM based on the adaptive behavior of consumer

agents coupled with memory (battery) usage. We have seen
rebate-based DR schemes work well, especially in combina-
tion with battery storage. Batteries can be modeled as sup-
plementary players operating in an effective DR response. Of
course, since coalition games only make sense if the grouping
improves effectiveness, the higher the group’s contribution to
the DR scheme, the more effectively the battery can be used.

In an adaptive, cooperative design of a smart grid, ICT has
to provide a lot more functionality than accounting and billing
of consumed electricity. ICT has to maintain DR events (and
more general DR schemes), in a more automated, transactive
set-up ICT has even to initiate and to shape DR events;
of course in any case, ICT has to provide full information
about DR events. ICT has, on the one hand, to monitor the
contribution of the individual electricity consumers to the DR
events, on the other hand it has to trace the (ill) success
of the whole group regarding to the DR events. ICT has to
compute the allocation of the rewards of successful DR events
to the consumers as incentive to behave according to given DR
events. Finally, a crucial functionality of ICT is the integration
of storage to the smart grid designed as a MAS. We have traced
requirements on the ICT during the simulation runs, although
at first only we will operate in reality the integration of storage
with an already installed battery.

In follow-up projects, we intend to realize other ICT func-
tionalities discussed in this paper and intend to extend it by
additional features (photo voltaic - prosumers, service station
for electric vehicles operated by the aggregator and assigned
to group members etc.).
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