
 

  
Abstract—Risk assessment became a crucial factor in the process 

of decision making regarding the management of both physical and 
intangible assets. However, when making these decisions, several 
aspects have to be considered simultaneously, very often in an 
uncertain environment, what makes standard risk assessment 
techniques insufficient. Moreover, for safety critical assets, usual 
measure of risk – the expected value cannot be the unique 
quantification measure. This paper introduces a new methodology for 
the multi-attribute risk assessment of critical assets, seen as the 
combination of different risk factors. The methodology is based on 
numerical convolution of probability distribution functions of multi-
attribute utilities. After the new, aggregated probability distribution is 
built for every alternative, the ranking of alternative is performed by 
the stochastic dominance rules. This method allows the usage of both 
additive and multiplicative multi-attribute utility function, which 
enables to incorporate the risk attitude of the decision maker in the 
initial stage. Finally, numerical example is given to illustrate the 
proposed methodology.  
 

Index Terms — Convolution, Multi-attribute utility function, 
Stochastic dominance, Risk Assessment 
 

I. INTRODUCTION 
isk Assessment is integral part of Risk management 
process, representing the necessary step before 
proceeding to the treatment of risk attempting to answer 

the following questions:  
 

• What can happen and why?   
• What are the consequences?   
• What is the probability of their future occurrence?  
• Are there any factors that mitigate the consequence of 

the risk or that reduce the probability of the risk? 
 
Most often, the risk associated with an event E is defined 

as the product of probability of event (failure of component or 
group of components) and consequences of this event: 
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Risk(E)=p(E) × Con(E)        (1) 
 

However, this simple relationship does not take into account 
the factors such as nonlinear relationships between the utility 
and the value of consequences, which requires more complex 
relationships between values: 

 
Risk(E)=p(E)y ×  Con(E)x         (2) 

 
With this definition of risk widely adopted by many 

disciplines, its translation into quantitative terms has been a 
major source of conflicts and misguided use. The most 
common quantification of risk as the expected value is 
probably the dominant reason for this misunderstanding in the 
quantification of risk. In both discrete and continuous universe 
of probability space, the expected value of risk is an operation 
that multiplies each event by its probability of occurrence and 
sums (or integrates) all these products over the entire universe 
of events. However, this operation commensurate adverse 
events of high consequences and low probabilities of 
exceedance with events of low consequences and high 
probabilities of exceedance.   

Another problem with such data analysis models lies in 
extreme events, which are rare by nature and my have not yet 
occurred in the recent history of a financial institution [1, 2]. 
Therefore, accurate prediction of the frequency of extreme 
events is of primary importance in many financial applications 
such as Value–at–Risk (VaR) analysis [3]. 

The third problem in the Risk assessment process is the 
simplistic risk evaluation that result in lists of risks or sets of 
scenarios not providing sufficient information to prioritize 
requirements when faced with resource constraints (e.g., time, 
money) [4, 5]. These models are also incomplete due to the 
need to take into consideration the aggregation of multiple 
objectives, such as: human, environmental and financial 
consequences that an accident on physical asset may cause. 

For these reasons, multi-attribute risk assessments and 
stochastic dominance are combined in this methodology as 
possible answer to problems imposed by the complex 
requirements of the risk assessment process. Multi-attribute 
risk assessment provides a convenient framework for 
systematically developing quantitative risk assessments that 
one can use to prioritize security requirements. On the other 
hand - Stochastic multiple criteria decision making (SMCDM) 
refers to the problem of selecting alternatives associated with 
multiple attributes/criteria, where consequences of alternatives 
with respect to criteria are in the form of random variables.  
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In the remainder of the paper, we consider a decision 
problem consisting of n alternatives denoted by ai, i = {1, ... , 
n}, each evaluated on m criteria denoted by cj, j = {1, ... , m}. 
Let zij be the evaluation of ai in terms of criterion cj, according 
to some suitable performance measure. Our concern is with 
decision making situations in which the values of zij for each i 
are not known with certainty for all j. This formulation is 
known as ACE (or AEE) model (Alternatives, 
Attributes/Criteria, Evaluators). 

The proposed methodology is based on the numerical 
convolution of probability distribution functions of attributes 
evaluations. The result of this convolution is used for the 
derivation of aggregated utility function probability 
distribution. This method of aggregation enables the use of 
more complex utility functions, besides the simple additive 
form. After the new, aggregated probability distribution is 
built for every alternative, the ranking of alternatives is 
performed by the stochastic dominance rules. This step greatly 
reduces and makes more practical the procedure of the ranking 
of different alternatives, what will be demonstrated through 
the illustrative example.  

The paper is organized in the following way. In the next 
section, the literature review, following the problem 
formulation is presented. In the following section, the new 
methodology for the stochastic multiple criteria decision 
making, describing each step of the methodology: composition 
of multiplicative multi-attribute utility function, aggregation of 
utility function based on probability convolution and the 
stochastic dominance rules for the ranking of alternatives is 
explained. Finally, the methodology is illustrated through the 
example of finding the investment alternative with the 
minimum risk.  

II. LITERATURE REVIEW 
The problem of uncertainty in decision making is related to 

two types of uncertainties: internal uncertainty, relating to the 
process of problem structuring and analysis, and external 
uncertainty, regarding the nature of the environment and the 
consequences of particular course of action, which may be 
outside of the control of the decision maker. The taxonomy of 
different uncertainty types and the approaches to solve them is 
given in [6, 7]. The most common type of external uncertainty 
is related to the stochastic nature of outcomes of proposed 
actions, where multivariate probability distribution governs the 
joint realization of performance outcomes across all 
alternatives and all attributes. 

Since the early works in this field, multi-attribute utility 
theory (MAUT), a structured methodology designed to handle 
the tradeoffs among multiple objectives has proven to be very 
useful when dealing with different problems regarding multi-
agent and communication systems  [8, 9]. The purpose of using 
MAUT was to produce a function such that an alternative is 
preferred to another if and only if its expected utility is greater. 
Practically, this requires the construction, for each criterion cj, 
of a marginal utility function uj satisfying the Von Neumann–
Morgenstern axioms [10], and some way of aggregating the 
marginal utility functions into a global utility function U such 
that the expected utility hypothesis is still satisfied. For an 
additive aggregation, preferences for lotteries defined over 

multiple attributes must be ‘‘additively independent’’, i.e. 
depend only on the marginal distributions and not on any 
interactions between attributes. More complex aggregation 
forms are available (multiplicative and multi-linear 
aggregations) if additive independence does not hold [11, 12].  

In recent years, some methods using stochastic dominance 
(SD) rules have been proposed to solve SMCDM problems 
[13-29]. In a multi-criteria framework, stochastic dominance 
conditions are checked for each individual criterion, using the 
marginal distributions. These methods generally include two 
processes: comparison and selection. The former is to identify 
whether there exists a SD relation for comparison of any pair of 
alternatives using SD rules. The latter is to rank alternatives 
based on the determined SD relations using outranking 
methods [20], interactive procedures [21, 22] or Rough Set 
Theory [24, 25]. Huang et al. [31] have shown that a necessary 
condition for multi-attribute stochastic dominance is stochastic 
dominance on each individual criterion. However, the 
conflicting nature of multi-criteria problems means that these 
simultaneous conditions are unlikely to occur often. 

Practical applications of SMCDM problems real-world 
situations where consequences with respect to criteria such as 
the traffic component of passenger are random variables are 
elaborated in [9, 26]. Besides, the method based on stochastic 
dominance degree (SDD) has been also proposed [29, 30]. In 
this method, SD relations for pair-wise comparisons of 
alternatives with respect to all criteria are identified using SD 
rules, and then, in the situation that SD relations are 
determined, the SDDs corresponding to the SD relations are 
calculated to build SDD matrices. Furthermore, an overall SDD 
matrix is constructed. Finally, based on the obtained overall 
SDD matrix, an outranking method is given to obtain the 
ranking result of alternatives. 
 

III. PROBLEM FORMULATION 
A discrete multi-attribute decision making problem may be 

conceived as a model (A, C, E), where  A is finite set of actions 
ai, i ={1, ... , n}, C is a finite set of attributes cj, j = {1, ... , m}, 
and Z is the set of evaluation of action with respect to attributes 
zik, i = 1, 2, ..., n, k = 1, 2, ..., m. In decision analysis based on 
probabilities, for each alternative ai, the zij are viewed as 
random variables with an associated (m-dimensional) 
multivariate probability distribution function Fi. Let Fij denote 
the corresponding marginal distribution function for criterion cj 
if alternative ai is selected, and fij the associated probability 
density function. 

Huang et al. [31] showed in the case of probability 
independence and the additive multi-attributes utility function, 
that the necessary condition for the multi-attributes stochastic 
dominance is to verify stochastic dominance on the level of 
each attribute. In practice, the essential characteristic of a 
multi-attributes problem is that the attributes are conflicting, 
and consequently, multi-attributes stochastic dominance 
relations results poor and useless to decision maker.   

In the proposed methodology, stochastic dominance of 
aggregated probability distribution functions of alternatives is 
used. The problem of correlation between attributes is solved 
by multiplicative utility function. The aggregated utility 
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function is composed with the convolution of marginal 
probability distributions. The stochastic dominance is 
evaluated only on aggregated probability functions, instead of 
pair-wise comparison of alternatives for individual criterion, 
which makes the application of methodology more practical.  

The decision process is performed in four steps. The first 
step is the building of multiplicative utility function. In the 
second step, using the numerical calculation of convolution of 
individual criterion probability distribution functions, the 
aggregated probability distribution is composed. In the third 
step, using stochastic dominance rules, a dominance matrix is 
formed, based on which, in the final step, a ranking of 
alternatives is performed.  

The decision process is performed in four steps, 
schematically represented on figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematical representation of decision making procedure 
 

The first step is the building of multiplicative utility 
function. In the second step, using the numerical calculation of 
convolution of individual criterion probability distribution 
functions, an aggregated probability distribution is derived. In 
the third step, using SD rules, a dominance matrix is formed, 
based on which, in the final step, a ranking of alternatives is 
performed.  

 

A. Aggregated multi-attribute utility function 
 
Multi-attribute utility theory is concerned with expressing 

the utilities of multiple-attribute outcomes or consequences as a 
function of the utilities of each attribute taken singly. The 
theory specifies several possible functions (additive, 
multiplicative and multi-linear) and the conditions to be met 
under which each would be appropriate. If additive 
independence exists, the multi-attribute utility function is 
additive (3), where wi represents the weighting factor. 

 
1

n

i i i
i

U( x ) w u ( x )
=

= ⋅∑   

 
1

1
n

i
i
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=

=∑  (3) 

If mutual utility independence exists, the multi-attribute 
utility function is additive or multiplicative of the form 
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i

n

( Kk u ( x ))
U( x ,x ,...,x )

K

+ −

=
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      (4) 

 
Here, 
ui(xi)  = the single-attribute utility value for attribute i with 
score xi (ranges from 0 to 1),  
ki  = a parameter from the tradeoff for component i, for all i, 
and  
K  = a normalization constant, ensuring that the utility values 
are scaled over the component range space between 0 and 1. 
 

One method to determine the function is to measure each 
u(x), determine the kj values, and find the K value by iteratively 
solving  (5). 
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So far, SMCDM problems were exclusively related to 
additive form of utility functions. However, the three cases in 
expression (6) can be distinguished in terms of the multivariate 
risk posture, which they represent. As the value of K ranges 
from negative, to 0, and to positive, the overall utility function 
can reflect three different types of interactions between 
individual components. In the compensatory case, performance 
of one component can make up for the lack of performance by 
other components. In the complementary case, a good 
performance by one component is less important than balanced 
performance across the components. In the additive case, the 
performance of one component does not interact with the value 
of the other components. 

 if 
1

1
n
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=

>∑ , then -1 < K < 0  (6.a) 
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=

=∑ , then K = 0, and the additive model holds (6.b) 

 
1

1
n

i
i

k
=

<∑ , then K > 0 (6.c) 

The case a) represents multivariate risk aversion, second 
case risk neutrality and the c) case risk seeking behavior. The 
attributes in the first case can be characterized as 
compensatory, or substitutes, while those in the third case are 
complements. The intuitive interpretation is that substitute 
attributes are such that an improvement in one is relatively 
satisfying, while an improvement on two or more is not much 
better. With complementary attributes, an improvement on any 
one alone is not very useful, while a simultaneous 
improvement on several is much better. 

The useful representation of the function is obtained by 
setting ci = Kki, for all i, which leads to the following form: 

Decision matrix 
Criteria weights 

MAUT 

Aggregated utility 
function  Convolution 

SD rules 

Dominance matrix 
calculation 

Ranking of 
alternatives 
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A compensatory relationship means that a high utility on one 
component can partially compensate for a low utility on the 
other. The strong compensatory case can be thought of as a 
strong OR, where the overall utility evaluates to 1 if any of the 
components utility functions evaluate to 1. Algebraically, this 
interaction is obtained when ci = -1 for all components i.   

The Archetypal Weak Compensatory case is obtained when 
ci = -0.5 for all components i.   

Components have a complementary relationship when they 
reinforce each other, or when all are needed to perform a 
function. In a strong complementary case, the worst 
performance by one component entirely cancels out the 
performance of the other components.  This can be thought of 
as a strong AND, where the overall utility evaluates to 0 if any 
of the components utility functions evaluate to 0. 
Algebraically, this kind of interaction is obtained when c = ∞ 
for all components i.   

In previous methodologies, the decision maker risk attitude 
is taken into account only at individual level of criterion 
comparison, while with the multiplicative function; this attitude 
can be directly incorporated in the model itself. Having in mind 
that the additive form is just a special case of multiplicative 
function, the later is adopted as general utility function form in 
this methodology.  

In this model, ui(xi) - the single-attribute utility value for 
attribute i with score xi (ranges from 0 to 1), has been 
represented by the evaluation zi, following some probability 
distribution. 

After the appropriate model has been adopted for the utility 
function representation, the second step is the aggregation of 
marginal probability distributions. The problem of this 
aggregation can be formulated in a following way. If we know 
the probability distributions of individual evaluations – random 
variables zi, what is the probability distribution of combination 
of random variables given by expression (4)?  
 

 

B. Aggregation of utility distribution functions 
 

For the four basic arithmetic operations on random variables, 
the answer to the question what is the probability distribution 
of combination of random variables given by expression (4) 
can be obtained by the convolution. The convolution of 
probability distributions arises in probability theory and 
statistics as the operation in terms of probability distributions 
that corresponds to the addition of independent random 
variables and, by extension, to forming linear combinations of 
random variables. For two functions, fX and fY, the convolution 
of basic operation of functions is given [32]: 
 

 1
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Z X Y

Z X Y
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Z X Y : f ( z ) f ( z x ) f ( x )du

Z X Y : f ( z ) f ( z x ) f ( x )du
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∫

∫

∫
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 (8) 

The implementation of this result is relying mostly on 
Laplace, Mellin, Fourrier or other transformation techniques. 
The convolution of n distributions can be obtained by the 
inverse Fourrier transform, or other asymptotic expansion [33]. 
However, these transformations are not straightforward for 
general X and Y.  

The definition of the convolution of vectors is similar to the 
above definition of the convolution of continuous functions. 
Let X and Y be two independent integer-valued random 
variables, with distribution functions fX and fY respectively. 
Then the convolution of fX and fY is the distribution function fZ 
given by:  
 
 

Z X Y
k

f ( j ) f ( k ) f ( j k )= ⋅ −∑  (9) 

for j =  - ∞ ... ∞ . The function fz(j) is the distribution function 
of the random variable Z = X + Y.  

Evans and Leemis [34] presented an efficient algorithm for 
computing the distributions of sums of discrete random 
variables. However, the main problem of using regular 
convolutions or some form of transformation (Discrete 
Fourrier, Fast Fourrier or Edgworth expansion) is their unique 
relation to the summation of individual distributions. The more 
general, multiplicative form of utility function requires other 
convolution type. In the proposed methodology, the numerical 
solving of discrete convolution of vectors is used, allowing 
more complicated utility function forms, directly computing 
the cumulative distribution function which will be used in 
stochastic dominance matrix calculation.  

The simplest methodology used to compute the PDF of the 
convolution of the sum of two independent discrete random 
variables PDFs is by the “brute force method". Let X have 
values of  x1, x2, ..., xn and Y have values of y1,y2, ...,yn.  The 
method computes all possible sums between the values of X 
and the values of Y by brute force, e.g., x1 + y1, x1 + y2, ..., x1 + 
ym, x2 + y1, x2 + y2, ..., xn + ym. The sums are placed in the one-
dimensional array S of length n · m. The corresponding 
probabilities for each of these sums, fX(x1) · fY (y1), fX(x1) ·  
fY(y2),...,  fX(xn) · fY (ym), are stored in an one-dimensional array 
P of length n · m. The probability in position Pi corresponds to 
the sum in position Si, i =1, 2, ..., n · m.  

In the proposed methodology, the computational procedure 
is speeded up by the reduction of dimensions of arrays P and S 
to the number of evaluation grades. For the l grade evaluation 
scale,  
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The same method is used for any combination of two or 
more random variables. 

For the sake of illustration, suppose that seven experts 
evaluate alternatives over the set of three criteria (C1, C2, C3) 
on a scale of ten (1, the worst, 10, the best), and evaluations of 
i-th alternative are expressed in the form of the discrete 
probability distribution as shown in Table I.  

For three evaluation distributions, results of 4 different 
combinations of the type of utility function and appropriate 
weight factors are presented in table II. The first two columns 
represent simple additive model (3) with different and equal 
weights, while the third and fourth column represent the 
multiplicative model. The third case, with equal coefficient 
represents “archetypal” compensatory case, for the risk averse 
behavior, while the U4 represents the risk seeking attitude.  
 Using expressions (9) and (10), the aggregated probability 
and evaluations are obtained. Weighting factors for all cases 
together with the probability distributions of evaluations are 
presented in the table II. 

 
 1 1 2 2 3 3U w e w e w e= ⋅ + ⋅ + ⋅  (11) 

 

 1 1 2 2 3 3(1 ) (1 ) (1 )K k E K k E K k EU
K

+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅
=  (12) 

TABLE I.  EVALUATION DISTRIBUTION OF THREE CRITERIA 

Scores e Criteria 
 C1 C2 C3 
1  2/7  
2   1/7 
3 3/7   
4  1/7 1/7 
5 2/7 2/7  
6  1/7 3/7 
7    
8 1/7 1/7 1/7 
9    
10 1/7  1/7 

TABLE II.  AGGREGATED UTILITY VALUES 

i e1 e2 e3 P U1 U2 U3 U4 
     w1=0.5 

w2=0.3 
w3=0.2 

w1=0.33 
w2=0.33 
w3=0.33 

k1=0.5 
k2=0.5 
k3=0.5 
K= - 
0.76 

k1=0.2 
k2=0.3 
k3=0.2 
K= 
0.309 

1 1 1 1 0 1 1 1 1 
2 1 1 2 0 1.2 1.32 1.6 1.25 
3 1 1 3 0 1.4 1.65 2.19 2.50 
 ...    
302 3 1 2 0.017 2.2 1.98 2.50 1.77 
... 
878 8 8 8 0.003 8 7.92 9.97 7.45 
... 
1000 10 10 10 0 10 10 10 10 

 

After the calculation of probability distribution, for every 
real number x, the cumulative distribution function of a real-
valued random variable U is given by 

 
 ( ) ( ) ( ) ( )X X

u x u x
F x P X x P X x f u

≤ ≤

= ≤ = = =∑ ∑  (13) 

Probability distribution functions and their appropriate 
cumulative distributions are represented on figure 1. 

The comparison of different CDFs corresponding to 
aggregated utility function is now possible with the stochastic 
dominance principle. 

 

 

 

 

 

 

 

 

 
Fig. 1. Cumulative probability distribution function of aggregated utility 

 

C. Stochastic dominance 
In order to determine whether a relation of stochastic 

dominance holds between two distributions, the distributions 
are characterized by their cumulative distribution functions, or 
CDFs. Suppose that we consider two distributions A and B, 
characterized respectively by CDFs FA and FB. Then 
distribution B dominates distribution A stochastically at first 
order if, for any argument y, FA(y) ≥ FB(y).  

The stochastic dominance rules can be fundamentally 
classified in two groups for two classes of utility functions [13]. 
The first group is for increasing concave utility function and 
includes first degree stochastic dominance, second degree 
stochastic dominance and third degree stochastic dominance. 
These rules can be applied for modeling risk averse 
preferences. 
 
Definition 1.  
 

Let a and b (a < b) be two real numbers, X and Y be two 
random variables, F(x) and G(x) be cumulative distribution 
functions of X and Y, respectively. Let U1 include all the utility 
functions u for which u’ ≥ 0,  U2 include all the functions u for 
which u’ ≥  0 and u’’≤ 0 ,  U3 include all the functions u for 
which u’ ≥  0, u’’≤ 0 and u’’’ ≥  0. 

Let EF and EG be the two expectations or the means, 
respectively. Let SD1, SD2 and SD3 denote first, second and 
third degree stochastic dominance, respectively. The SD rules 
are: 

F(x) SD1 G(x) if and only if 
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EF (u(X)) ≥ EG (u(Y)) for all u ∈  U1 with strict inequality 
for some u, or 
F(x) ≤  G(x) for all x  ∈  [a,b] with strict inequality for 
some x; 

 
F(x) SD2 G(x) if and only if 
EF (u(X)) ≥ EG (u(Y)) for all u ∈  U2 with strict inequality 
for some u, or 
x x

a a

F( t )dt G( t )dt≤∫ ∫    

for all x ∈  [a,b] with strict inequality for some x; 
 

F(x) SD3 G(x) if and only if F GE ( X ) E (Y )≥  and 
EF (u(X)) ≥ EG (u(Y)) for all u ∈  U3 with strict inequality 
for some u, or 
x t x t

a a a a

F( z )dzdt G( z )dzdt≤ ≤∫ ∫ ∫ ∫  for all x ∈  [a, b] with 

strict inequality for some x; 
 

The second group of SD rules is for increasing convex utility 
function and includes first degree stochastic dominance, second 
inverse stochastic dominance, third inverse stochastic 
dominance of the first type and third inverse stochastic 
dominance of second type. These rules are equivalent to 
expected utility maximization rule for risk-seeking preferences. 
The first group is used in the domain of gains, whereas the 
second group is used in the domain of losses. As larger values 
of criteria are better than smaller ones and the criteria can be 
defined in the domain of gains, it is assumed that the decision 
maker’s utility function is concave utility function. 

 
Definition 2 
 

In [28], a SD degree is defined, in the following way: 
If F(x) SDh G(x), h∈  {1, 2, 3}, then the stochastic dominance 
degree SDD of  F(x) SDh G(x) is given by: 
 

1 2 3h

[ F( x ) G( x )]dx
( F( x )SD G( x )) ,h { , , }

G( x )dx

{ x x [ a,b ]}

ψ Ω

Ω

− −
= ∈

Ω = ∈

∫

∫
  (14) 

     
Both SD rules and SD degrees are used in the proposed 

methodology. 
The final step in this methodology is the alternative ranking 

based on the results of the dominance matrix. Two types of 
dominance matrices will be used in this methodology: the first 
one obtained by the three types of stochastic dominance from 
the Definition 1. Using the first, second or third degree 
stochastic dominance rule, the appropriate type of the 
dominance matrix is obtained, where the elements of the 
dominance matrix are defined in the following way: 
 
sdij = 1, if  FAi  SDh  FAj, otherwise, sdij = 0 , h ∈  {1, 2, 3} 

In the second dominance matrix type, the matrix elements 
are obtained by the expression (14). The use of both types of 
dominance matrices is equal in this methodology, but the 
choice of appropriate dominance type depends on the required 
level of distinction and grading between alternatives. 

 

IV. CASE STUDY 
 

This example is investigated in [28] and is related to the 
possibility of investment for an investment company to a most 
potential industry. There are six alternatives to be considered: 
the car industry A1, the pharmaceutical industry A2, the food 
industry A3, the logistics industry A4, the clothing industry A5 
and the computer industry A6. When making a decision, the 
criteria considered includes: the profit C1, the growth C2 and 
the environment C3. The criterion weight vector provided by 
the investment company is w = (0.3; 0.5; 0.2). The five experts 
provide their preference evaluations on alternatives in the form 
of scores 1-5 (1, the worst; 5, the best), as shown in Table III. 
From the data in Table III, it can be seen that experts’ 
evaluations are in the form of probability distributions. To 
select the best alternative(s), the proposed method is used and 
some computation results are presented as follows. 

TABLE III.  DISTRIBUTION OF EVALUATION FOR THREE CRITERIA 

Criteria Scores Alternatives 
  A1 A2 A3 A4 A5 A6 
C1 1 1/5 0 2/5 1/5 0 0 
 2 1/5 0 3/5 0 0 0 
 3 1/5 1/5 0 3/5 0 2/5 
 4 2/5 1/5 0 1/5 2/5 0 
 5 0 3/5 0 0 3/5 3/5 
C2 1 0 2/5 1/5 0 3/5 0 
 2 0 2/5 0 0 0 1/5 
 3 1/5 1/5 2/5 1/5 1/5 1/5 
 4 1/5 0 2/5 2/5 1/5 2/5 
 5 3/5 0 0 2/5 0 1/5 
C3 1 0 0 0 3/5 3/5 1/5 
 2 0 1/5 0 0 2/5 1/5 
 3 0 2/5 1/5 2/5 0 2/5 
 4 4/5 2/5 1/5 0 0 1/5 
 5 1/5 0 3/5 0 0 0 

 
The overall investment risk is calculated for two cases: using 

the simple additive form and for the “archetypal” 
compensatory case. 

Using the simple additive form (3) and numerically 
convoluting probabilities represented in table III, we are getting 
six different probability distributions represented on figure 2. 

Using the first degree stochastic dominance rule, the 
dominance matrix (15) is obtained, where the elements of the 
dominance matrix are defined in the following way: 
sdij = 1, if  FAi  SD1  FAj, otherwise, sdij = 0  
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Fig. 2. Aggregated probability distribution 

   

 

1 1 1 1 1 1
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 1 0 1 0 1

SD

 
 
 
 

=  
 
 
 
 

 (15) 

 
As the final step, the ranking of alternatives from matrix (15) 

is obtained, with the following order: 

1 6 4 2 3 5A A A A A , A   
, what is the same result as in 

[28]. In the proposed methodology, the result is obtained in 
only four steps.  

For the case of multiplicative function, the same procedure is 
performed, and for the “archetypal” compensatory case, the 
ranking of alternatives is as follows: 

1 6 2 4 3 5A A A A A A    
. 

 

V. CONCLUSION 
 
Models based on traditional methods for risk assessment do 

not incorporate the decision-makers behavior regarding risk, 
such as prone or aversion to risk. These models are also 
incomplete due to the need to take into consideration the 
aggregation of multiple objectives, such as: human, 
environmental and financial consequences that an accident on 
physical asset may cause. Nowadays, risk management must 
reconcile the concerns of society, the state and companies in 
relation to the operation and safety of assets, which is one of 
the most difficult tasks in risk management. Usual approach 
for solving the stochastic multiple criteria decision making 
(SMCDM) problem is based on pair-wise comparison with 
respect to each criterion, allowing only the additive form of 
aggregation of individual criteria.  

Therefore, so as to tackle these problems presented by 
traditional methods, this decision model for risk assessment 
was based on MAUT, which provides a risk assessment 

process under a multi-dimensional perspective. Utility theory 
also translates the decision-makers behavior regarding risk, by 
making a quantitative measurement of this behavior. In this 
paper, a new method for solving the SMCDM problem, based 
on numerical convolution of criteria probability distribution 
functions, according to both additive and multiplicative multi-
attribute utility function is proposed. After the new, aggregated 
probability distribution is built for every alternative, the 
ranking of alternative is performed by the stochastic 
dominance. The use of the proposed method is illustrated on 
numerical example. The application of this methodology is not 
restricted to probability distributions represented as vectors, 
because of possible discretization of available CDF.  
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