
 
 

Domain-specific modelling of the REA ontology 
 

Zdenek Melis, Jaroslav Zacek, Frantisek Hunka 

 

Abstract – The REA ontology is a concept for creating design of 
business infrastructure based on ownership and its exchange. It 
provides a comprehensive framework to business process modelling. 
This ontology has four levels of abstraction to cover greater 
possibility of views on business of usage compared to standard 
modelling methods. This paper describes creation of modelling tool 
based on this ontology using the domain-specific modelling. This 
approach uses domain-specific structure of the ontology to ensure 
validation of created models.  Modelling tool automatically generates 
the resource flow simulator based on object-valued Petri nets and 
allows interconnections of models with different level of abstraction.  

 

Keywords - business process modelling; DSL; DSM; REA 
ontology; source code generation 

 

INTRODUCTION 
Business process modelling is a challenging and essential 

discipline for business management. The business process 
modellers place great emphasis on the descriptive mechanism 
of business processes, which must be able to handle all 
demands that they made on it and it must be also user-friendly 
and it must be based on the modelling problem domain. 
Equally as important is to have a tool that integrates this 
mechanism and provides a basic environment to help create a 
model. The created model is not beneficial by itself and may 
act counterproductively if contains some mistakes. The basic 
requirement of the tool is to lead the modeller, check him and 
help him. The model itself can only represent reality. The 
modelling tool is often required to do more such as to give 
developers some feedback either in the form of reports, 
statistics, analyzes or usable source code. We cannot assume 
that the modeller has a deeper knowledge of programming or 
economic mathematics and statistics. All these requirements 
for the modelling tool practically reflect the characteristics of 
domain-specific modelling. 

Choosing of the ontology for describing business processes 
is also important. Nowadays the modellers have a wide range 
of different ontologies to build a model, but most of them have 
imperfections due to the use of general concepts for 
modelling.  Therefore they are not able to answer the question 
why the business activity is performed. From this perspective, 
it is preferable to use a value modelling that, unlike other 

modelling principles, focuses on modelling of the value of 
economic resources. The best-known representative of the 
value modelling is the REA ontology. 

Currently, there are two similar projects that combine 
domain-specific modelling with the ontology REA - The REA-
DSL [11] and REA Policy Modelling [9]. The first one is 
limited only to operational (basic) level of the ontology and 
uses its own notation. The usage of this tool is very limited in 
the practice. The second tool is focused on the policy level of 
the REA value model and provides, besides basic validation of 
the model, the set of validation attributes in the form of 
propositional calculus. This approach makes working with the 
model very confusing. Practical use of the tool is also limited 
by the absence of automation functions. For these reasons 
there was an effort to create a tool that eliminates discussed 
problems and that will be suitable for practical use. 

This paper explains how to create a domain-specific 
modelling tool for business processes modelling described by 
the REA ontology. The first part of the paper discusses the 
domain-specific modelling technology and the REA enterprise 
ontology. The second part is devoted to the creation of 
modelling tool itself from the initial identification of domain 
concepts and rules to creating a metamodel and its 
transformations into the domain language of the modelling 
tool. 

I. DOMAIN-SPECIFIC MODELLING 
Domain-specific modelling (DSM) is a software 

engineering methodology narrowly focused on one particular 
specific domain. Narrow focus allows working with domain 
terms including their meaning. Domain-specific language 
(DSL) is created based on the domain terms. DSL contains the 
domain syntax and the semantics. 

Basic advantages can be divided into several categories 
[3]: 

• Productivity - Easier and more efficient application 
development leads to higher productivity within a 
single domain. The productivity gain is often in 
hundreds of percent. 

• Quality - Improving the quality is given by the model 
validation and verification, which prevents to create 
inconsistent or illogical links. By using domain 
concepts it also eliminates the need of mapping 
domain concepts to different modelling language, 
which is a frequent source of errors. Finally full code 
generation guarantees the absence of implementation 
errors. 

 
Zdenek Melis, Jaroslav Zacek, Frantisek Hunka are with the University of 
Ostrava, Department of Computer Science, 30. dubna 22, 701 03 Ostrava, 
Czech Republic. E-mail: zmelis@seznam.cz , {Jaroslav.Zacek, 
Frantisek.Hunka}@osu.cz  
 

INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS

Issue 4, Volume 1, 2013 227



 
 

• Expertise requirements - 2 groups of people 
participates on the development of applications using 
DSM. The first group consists of domain experts, and 
their task is to create a modelling tool using DSM 
techniques. In the second group there are the users of 
this tool, which creates models and from them it is 
subsequently generated the final application. These 
users need only knowledge of the domain to develop 
applications. 

DSM architecture has three layers:  

• Language (DSL) - According to [3] DSL is a 
computer programming language of limited 
expressiveness focused to a specific domain. Domain 
concepts are mapped to objects modelling language, 
or as an object property, object links, sub-models or 
models of the other language. 

• Generator - converts the generated model to a 
specific syntax. The output of the generator is not 
necessarily the source code, but it can be tests, 
documentation, metrics, or for example prototyping. 

• Domain framework - forms a layer between the 
generated code and existing code in the target 
environment and reduces the complexity of the code. 
The other areas of its use include the elimination of 
duplicity from generated code, providing an interface 
for the generator, integration with existing code, or 
hiding the target environment. 

The basic concept of the DSM is to focus on a fixed 
domain. That defines the language and model behaviour of 
that domain. In the case of fixed domain the DSM achieves 
incomparably better results compared to other modelling 
approaches, especially in the productivity and simplicity of 
development. However, if the domain is not fixed, or the 
changes are expected, the DSM loses its advantages. In this 
case, it is comparable or even it has significantly worse results 
than other modelling approaches. 

II. VALUE MODELLING OF BUSINESS PROCESES 
The essence of the value modelling of business processes 

is to monitor the value of economic resources and their 
property. An economic resource is the thing or the service that 
is lacking and has benefits to economic agents. This modelling 
approach is based on the use of specific concepts, unlike other 
modelling methods (e.g. IDEF0 [2]), that use general concepts 
[8]. The best known representative of the value modelling is 
the REA ontology. 

The term business process can be defined differently 
depending on areas where the term is used. For example, V. 
Řepa [10] defined it as follows: The business process is a set 
of activities transforming a summary of inputs into a summary 
of outputs, which the company performs in order to fulfil 
business objectives. In other words, the business process is the 
sequence of steps that creates products and services by 
transformation of inputs into outputs. It is important to say that 
each process must have its owner and fixed boundaries. 

 

A. The REA Ontology 
In order to explain the term of the REA ontology, it is 

necessary to explain the term ontology itself. According to 
[23] ontology is an explicit specialization of 
conceptualization. Specialization is a study of things that exist 
or may exist in a particular domain. Conceptualization is the 
abstraction and the simplified view of the world. 
Specialization means a formal and declarative representation 
[4]. 

The REA ontology (REA means Resource, Event, Agent) 
is a concept for creating design of business infrastructure 
based on ownership and its exchange. It is based on the 
concept of economic exchanges, increasing the enterprise 
value. 

B. Levels distribution of the REA ontology 
Depending on the level of abstraction the REA ontology 

can be divided into four levels [1]: 

• Value System Level Model - This level represents the 
view of the resources that are exchanged between 
enterprises and external business partners. The high 
level of abstraction is used for alignment of business 
objectives and strategies [12]. 

• Value Chain Level Model -Illustrates interconnection 
of business processes with a focus to monitoring 
resource flows. The value chain is used primarily to 
diagnose competitiveness of an enterprise because it 
offers an overall view of the chain of processes. This 
view allows simulations and optimizations [16] of 
processes in the company. 

• REA Model Level - Describes individual business 
processes and it is the most important level of the 
REA ontology, because here are modelled most 
important information relating to the company. This 
level answers to the question of why the process is 
carried out. The value model of business process 
shows particular changes in the value of resources 
that are based on the concepts of economic 
exchanges and conversions increasing the value of 
the company. 

• Task level - Describes steps to fulfil events. Defines 
the lowest level of abstraction, contains the code 
concepts and therefore is implementation-dependent. 

The REA model level is divided according to functionality 
into two groups [7]: 

• Operational level - Forms the basic structure of the 
model. Describes events that have already happened. 
Basic concepts of operating levels are resource, event 
and agent and semantic abstractions increasing the 
value of the company - the exchange and the 
conversion. 

• Policy level – Illustrates what could, should or 
shouldn't happen. It contains concepts and semantic 
abstraction defining rules, schedules, contracts and 
other extensions of the model such as grouping, 
typing, or commitments. 

INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS

Issue 4, Volume 1, 2013 228



 
 

 

C. Use of the REA ontology 
Traditional approaches to business process modelling 

using general concepts are not recommended because of a low 
concreteness of the models. Such a model is not able to 
provide the checking of economic errors and automation. 
Unlike these approaches the REA ontology uses specific 
concepts, which increases the amount of model information 
preserving the simplicity of the model. 

The REA ontology contains internal rules for the 
verification of the consistency of the model and thereby it 
prevents creation of incorrect links. The result of this 
consistency verification is the model that has all relations 
properly declared and connected and answers the question 
why a business activity is carried out, and therefore why 
economic events occur. This is a significant difference and big 
advantage of the REA ontology compared to other solutions 
offered by traditional approaches. 

Another feature of the REA ontology is the simplicity and 
clarity of models for ordinary users, who will work with it. On 
the other hand, the ontology is sufficiently accurate to be able 
to automate the process modelling. 

Another major advantage of the REA ontology is that the 
model has an independent order of occurring of the economic 
events. The model is able to record everything that actually 
happens, and it is not limited to the sequence of events 
(scenario) defined at the time of design. Another advantage is 
the independence of the model in relation to technical aspects 
of the transfer of resources. Therefore it is not necessary to 
change the model in case of changing the technical 
infrastructure and due to the strict rules of the REA ontology 
the integrity and consistency of the model is ensured [7]. 

Folding individual business processes when the outputs of 
one process are linked into the inputs of the other processes 
creates a value chain. This represents a cyclic net of processes. 
The processes exchange the value and thus directly or 
indirectly contribute to the formation of desirable 
characteristics of the final product or service. They can be 
subsequently exchanged with other economic agents for a 
resource that has greater value for the company. The value 
chain helps to identify economic resources within an 
enterprise and provides an overview to business processes of 
the company. 

III. IDENTIFICATION OF KEY ELEMENTS OF THE REA 
ENTERPRISE ONTOLOGY 

The first step in creating a design of modelling tool is a 
basic structure that behaves as the descriptive apparatus and 
describes the general principles of the REA value model. First 
it is necessary to identify individual concepts and relationships 
within the structural division of the REA model level and 
specify rules for their behaviour. These findings should lead to 
the creation of the most important part of the modelling tool - 
the metamodel. Metamodel clearly specifies and defines 
models created by the tool and ensures their basic validation. 

 

A. Concepts of the operational level of the REA model level 
Basic operational level of the REA model level contains 3 

concepts [7]: 

• Economic resource – Basic economical company 
resource that company wants to plan, monitor and 
control. Examples of economic resources are 
products, services, money, raw materials, tools, etc. 

• Economic agent - An individual or some organization 
capable of having control over economic resources 
and able to receive or transmit further control of other 
agents. An example might be a customer, supplier, 
company, etc. 

• Economic event – Represents either increment or 
decrement in the value of economic resource. This 
transformation could be realized immediately or in a 
certain time period. Examples could be work unit, 
using of services, renting, etc. 

Following links and domain rules are defined between 
these concepts [13]: 

• Stack flow (Inflow/ Outflow) - Connects economic 
resource and economic event 

o There must be at least one economic event 
for every economic resource. 

o There must be at least one economic 
resource for every economic event. 

• Participate (Provide/ Receive) – Connects economic 
agent and economic event 

o Every event requires the participation of two 
agents, one in the role of the recipient and 
the second as a provider. 

o Every agent must be connected with an 
incremental event by the Receive link and 
with a decrement event by the Provide link. 

• Duality - Connects an incremental and a decrement 
economic event 

o Every incremental event must be linked to at 
least one decrement event through Duality 
entity. 

o Every decrement event must be linked to at 
least one incremental event through Duality 
entity. 

 

B. Semantic abstraction  and concepts of the policy level of 
the REA model level 
The limited range of this paper does not allow dealing with 

all concepts of the policy level. For this reason, we have to 
focus on processing basic and most frequently used concepts 
of the REA model level, namely semantic abstractions typing 
and group and resource management concepts - a contract, a 
schedule and a commitment. 

• Typification  - It is a homogeneous collection whose 
elements have the same characteristics defined by the 
type. Typification is an abstraction of a group of 
objects into a certain category forming bond "is a-

INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS

Issue 4, Volume 1, 2013 229



 
 

kind-of" It is used to capture the description of the 
concept applied to a set of objects [5]. 

• Group - Is a structural element of the REA model 
level designed for creating heterogeneous collections 
or sets of REA entities. This is a special form of 
aggregation that forms a bond "is a-member-of" [5]. 
The group itself is not limited to operating level 
entities, but virtually any entity of the REA model 
level including other groups with which, however, 
forms intransitive dependence. 

• Commitment - Promise or obligation to perform an 
economic event in a specific time. For this reason, 
parameters should contain the scheduled date and 
planned value. An example can be ordering goods, 
where one party agrees to provide chosen goods and 
the other party agrees to provide the required amount. 

• Contract/Schedule - Is a set of obligations and rules 
that define conditions of performing the duality in the 
future and events performed if initial commitments 
are unfulfilled. 

Between these concepts following links and domain rules 
are defined: 

• Typification - Connects resource/event/agent type 
with corresponding concept of operational level 

o Every entity type must be linked with just 
one entity it represents. 

• Fulfillment - Connects commitment and economic 
event 

o Every incremental commitment must be 
linked to incremental economic event.  

o Every decrement commitment must be 
linked to decrement event.  

• Specification - Connects commitment and agent (or 
agent type) 

o Every commitment must specify the agent or 
the agent type who is responsible for it. 

• Reciprocity - Connects incremental and decrement 
commitment 

o Every decrement commitment must be 
linked with at least one incremental 
commitment. 

o Every incremental commitment must be 
linked with at least one decrement 
commitment. 

• Party - Connects contract/schedule and economic 
agent or agent type 

Each contract/schedule must declare two 
parties (Agents or Agent types). 

• Clause - Connects commitment with contract or 
schedule.  

o Every contract must contain decrement and 
incremental commitment.  

o Every commitment must be declared by 
some contract or schedule. 

• Reservation - Connects commitment and economic 
resource or resource type 

o Every commitment has to reserve at least 
one type of resource. 

• Group - Connects group with any entity of the model 
o It has no restrictions. 

Fig 1 illustrates an example of the model structure 
presenting basic concepts, semantic abstractions and links 
between them. For better clarity the model is divided into the 
operational level and the policy level. 

 

Resource increment
Event

Agent

decrement
Commitment

Schedule

«stockflow»

«provide»

«receive»

«clause»

«fulfillment»

«duality»

«reciprocity»
«reservation»

«party»

Resource Type

decrement
Event Resource

Agent

increment
Commitment

«fulfillment»

«clause»

«provide»
«receive»

«stockflow»

Agent Type

«typification»

Agent Type

«party»

Resource Type

«specification»

«specification»

«typification»

«reservation

«typification» «typification» policy level

operational level

Fig. 1.   An example of the general structure of business process  

INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS

Issue 4, Volume 1, 2013 230



 
 

 

IV. METAMODEL OF THE REA MODEL LEVEL 
The core of the REA ontology is the REA model level. In 

order to create a domain-specific language that will provide a 
validation of the model, it is necessary to identify elements 
and their relations in the model and on this basis create the 
metamodel.  

According to [6] the metamodel is a model that is used for 
formal specification of other models. 

The creation of the metamodel is carried by analogous way 
as the formation of the model itself. Individual model 
elements are sequentially added to the metamodel and 
subsequently interconnected by specific links that correspond 
to possible connection in the model. The multiplicity based on 
domain rules is determined for these links. It is a way to 
capture the behaviour of the model, its elements and links in 
the metamodel and to ensure the validation of the model. By 
successive steps there were added individual concepts into the 
metamodel and based on previous analyzes were defined by 
their interactions and multiplicity. These steps have led to a 
metamodel shown in Fig. 2. Group links are not shown at the 
figure just for the clarity, because the group can connect with 
any model element (including itself). 

 

Schedule Contract

ResourceEventAgent

Event Type

Agent type

Commitment

Duality

Resource type

duality

Incremental 
event

Decrement 
event

instance instance

typificationtypification

Incremental 
commitment

Decrement 
commitment

instance instance

reciprocity

rezervation

typification

rezervation

inflow

outflow

receive

provide

specification

party

party

party

party

fulfillment

fulfillment

clause

clause

fulfillment

0..*

1

1

1

1 1

0..*

1..* 1..*

1..*

1..*1..*

0..*

1..* 1..*

1..* 1..*

0..*
0..*

0..*

0..*

0..*

0..*

0..*

1..*

0..* 0..*

0..*

0..* 0..*

0..*

0..*
0..*

0..*

0..*

0..*

0..* 0..*

0..*
0..1

0..10..*

duality

1..* 1..*

Reciprocity

reciprocity

1..* 1..*

specification

0..*

0..*

Group

 
Fig. 2.  The metamodel of selected concepts and semantic abstractions of the 
REA model level 

 

V. RESOURCE FLOW FORMALISM 
In order to practically implement the value chain and 

ensure not only their validation, but also the ability to simulate 
the flow of resources, it is necessary to use an appropriate 
formalism. The Petri net theory matches best for solving this 
problem type (e.g. [17], [18]). To be able to work with such 
complex structures, such as the resource, the object-value Petri 
nets (OV-PN) must be used.  

A. Object-valued Petri net 
Object-valued Petri net is an extension of P/T Petri net. This 
extension has been introduced in [22]. Object-valued Petri nets 
are used as formalism for validation and synchronization of 
complex object models [14]. 

Definition: Object-valued Petri net 

Petri net is extended to a 6-tuple (P, T, F, V, R, C), where: 

•  is a finite nonempty set of places, 
•  is a finite nonempty set of transitions, 
•  (P and T are disjoint), 
•  is a finite set of arcs (flow 

relation), 
• V is a finite set of object data types, 
• R is a finite set of transforming 

functions , where  is the power 
of the set of object data types. 

• C is a set of capacity function.   
and  denotes infinite. 

• is the initial marking of the 
token. , where  is 
the multiple set of the object data type tokens in p. 

The main idea of the Object-valued Petri net is an object-
valued token that provides adequate expressivity to describe 
resources represented by complex object structures. The token 
carries basic information to identify the specific object 
instance. Initial marking consists of the multiple set of object 
data types deployed across the net. Firing of each token means 
change in marking of the net and also change of the token 
type. However token identification remains and therefore we 
can identify the token in every step of the simulation process. 
If the model is partly linked with the Object-valued Petri net 
theory we have to define the path of tokens. Formalism itself 
defines necessary basis to create the model, unfortunately that 
does not ensures the sequence of movements into desirable 
result. Object-valued Petri net realizes transition as soon as the 
transition is feasible. Nevertheless the real model can require 
other conditions to realize the transition (for instance lazy 
constructions). Therefore we have to state the new definition 
of the path and pass of the model. 

Definition: Path of the OV-PN 

Let OV-PN = (P, T, F, V, R, C) be an Object-valued Petri net 
with initial marking . The path from the place  
to following place  is the sequence ( , 
where (  for 1 ≤i ≤ n. 

INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS

Issue 4, Volume 1, 2013 231



 
 

Definition: Pass of the OV-PN 

Object-valued Petri net OV-PN = (P, T, F, V, R, C) with initial 
marking  is feasible when: 

1. Must exist an initial place  where • . 
2. Must exist exactly one final place , where • 

 
3. Every place  lies on the pass between 

initial place i and final place o. 

In this context the first condition is understood as a marking of 
the input of the model that can be represented by more than 
one input parameter. If this condition is set to be strict to the 
value of input marks the model cannot realize calling of the 
method with more than one input parameter. The output of the 
model is usually one because of the standard method 
construction in object-oriented paradigm [19]. Third condition 
expresses the fact that every place and every transition exists 
on the path between the initial place and the final place. 
Therefore the Object-valued Petri net should not have blind 
paths and every call in the model should be reachable form 
initial place by passing finite number of transitions 
representing a flow relation F. Similarly to the initial place 
every place in the model exists in the flow relation F is able to 
reach the final place of the model. 

Boundedness and safeness 

Object model synchronized by Petri net mechanism can be 
bounded at the places level as in ordinary Petri net. Every 
method can produce more than one output during the 
simulation. Places may store these outputs as Object-valued 
tokens (similar to colour evaluation in [21]). By applying 
safeness rule the places in model store only one object-valued 
token and the model becomes less complex. 

Conservation 

Created model cannot be strictly conservative. For example 
the Purchase process consumes several inputs and produces 
one output. The model cannot have a constant token count for 
every marking from set of the reachability set  

∑ ∑∈ ∈
≠ℜ

S S ii
i i

pMpMM
ρ ρ

)()(:)( 00
. 

Liveness and deadlock 

All methods in object-oriented paradigm can be executed more 
than once [20]. However by executing some method an 
internal state of the object can be altered. That means if we 
need to apply liveness property to whole model, every method 
must be considered as an atomistic operation. 

 Generally the transition  is alive if:  

•  and • .  

It means that transition becomes active, if there are tokens on 

all transition’s entrances and the place that follows the 
transition is empty. The net is alive if there is at least one live 
transition in every step of simulation process otherwise a 
deadlock occurs. Deadlock is solved on a higher abstraction 
level and requires user intervention. 

B. Object-valued Petri net extensions 
The main condition of the value chain is cyclicality. However 
the Object-valued Petri net has two definitions that limit the 
path of the net and pass of the net. First definition says that O-
V Petri net with a specific marking M0 has a specific sequence 
from one place to another. The value chain has also specific 
sequence that defines the path of the chain. Moreover the 
cyclic chain consists of many single paths connected to each 
other. To express a general value chain principle with the Petri 
net theory we have to define a cyclic Petri net and its inverse 
net: 

Definition: Cyclic Object-valued Petri net 

A marked Petri net (OV-PN, M0) is cyclic Petri net if from 
every reachable marking M it is possible to return into M0 (i.e. 

. 

Definition: The inverse of an Object-valued Petri net 

For a Petri net OV-PN, its inverse  is 
given by: 

• and 
•  and for every 

 and  
 

 

 
Fig. 3. Value chain and its OV-PN representation 

INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS

Issue 4, Volume 1, 2013 232



 
 

Cyclic Object-valued Petri net is the basic formalism for 
creating, synchronizing and managing cyclic models of the 
value chain. Fig. 3 illustrates the example of the value chain 
and its OV-PN representation. 

 

VI. DESIGN PROCESS OF THE VISUAL MODELLING TOOL 
The tool was created in a Visual Studio by Microsoft with 

the DSM Tools extension. This domain-specific development 
environment offers an excellent compromise between the 
availability, price and automation support. 

A.  Proposal of the DSL of the REA model level 
The creation of the DSL of the tool corresponds to the 

metamodel mentioned before. Individual concepts are replaced 
by domain classes. The highest class is a domain model. It has 
a composite link to REAElement, which is the super class of 
all REA model level concepts and specifies their basic 
structure and parameters. Between various elements of the 
metamodel there are created unique relations. DSL Tools, 
however creates only one-way links. For this reason links 
management is solved programmatically. This solution also 
provides an automatic determination of links. Every element 
of the model has an associated class with a visual 
representation of the element whose visual parts are connected 
to parameters of the domain class. After adjusting parameters 
related to properties of the tool (such as the structure of the 
toolbar), the tool can be started and in a limited way also used. 

Fig. 4 shows a fragment of the DSL with fundamental 
structural separation of elements. 

 
Fig. 4.  Part of the DSL 
 

B. Model validation 
Model validation is controlled by the validation 

framework. The validation logic can be any method that is 
registered in the framework. Individual domain rules are 

placed into appropriate classes according to way of use 
(validation of the link, element or model) using partial class 
technology. While any domain rule is broken, the user is 
alerted to the error by description of the problem as well as the 
reference to the problem element.  

The following code shows an example of the validation 
method ensuring domain rule "Every commitment has to 
reserve at least one resource or resource type". 
    
[ValidationState(ValidationState.Enabled)] 
public partial class Commitment 
{ 
  [ValidationMethod( 
ValidationCategories.Open | 
ValidationCategories.Save | 
ValidationCategories.Menu)] 
  private void  
ValidateConnectionWithResource(ValidationC
ontext context) 
{ 
  if (this.ResourceTypes.Count < 1 && 
this.Resources.Count < 1) 
  
context.LogError(ValidationResources.Commi
tmentMustConnectResourceType, "Reservation 
Link", this); 
  } 
} 
 

C. Interoperation of different levels of abstraction 
Connecting different levels of abstraction allows the user 

to combine the value chain model with an individual 
representation of business processes - REA model levels. 
Different DSM are merged under one platform and their 
mutual communication is established. This connection is 
based on the ModelBus technology. The project containing the 
domain language, that provides its elements to other 
languages, is extended by an adapter. Adapter allows access to 
individual elements of the model, as well as the whole model 
itself. Domain language that uses services of another language 
must integrate new data type ModelBusReference that 
encapsulates information about the reference of an external 
model and its elements. Fig. 5 illustrates the principle of 
interconnection of two DSL. 

 
Fig. 5.  The principle of interconnection of two DSL 

 

INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS

Issue 4, Volume 1, 2013 233



 
 

D. Methodology of DSL interconnection 
The principle of the value chain is the flow of resources 

across business processes. Therefore it is necessary to ensure 
that the resource on the output of one business process is 
identical to the resource on the input of process connected in 
the value chain. This can be achieved by creating a unique ID 
for each resource in the model. Interconnection of two 
processes in the value chain must synchronize the ID of the 
resource on their connector. 

The problem of synchronization of resources is that before 
an interconnection the resources are independent of each 
other. They may vary in structure, characteristics and ways of 
use. For example the resource Product in the Production 
process has other important parameters than the same resource 
in the Sales process and the other meaning can have 
identically named attributes. The cost in the Production 
process may indicate the cost of producing one piece, whereas 
in the Sales process it is the final price to customers. For this 
reason it is necessary to distinguish which attributes will be 
converted and mutually synchronized, alternatively which 
attributes will be renamed to avoid conflict states. It is not 
possible to automate this step and therefore it is necessary for 
a model creator to perform these modifications in the user 
interface. 

The methodology for working with attributes describes 
solving of the basic operations within value chains: 

• Creating a new element: 

1. The user creates a new value chain element. 

2. The user is prompted for a name of the linked 
value model (REA model level). If the model does 
not exist empty one is created. 

3. Validator will check whether the model is not 
already used by another business process. 

4. Every resource in the selected model gets the new 
generated ID. 

• Connecting elements: 

1. The user creates a new link. 

2. The user selects a resource from the source and 
target process to ensure interconnection of 
resources with different names. 

3. The resource ID in target process is set according 
to the source process. This change is transferred to 
transitively linked resources. 

4. The user is asked to transform attributes, change 
them or change its interconnection. Attributes can 
be transformed to both directions. The user is 
informed about the change of attributes only in 
the case the modified resource is linked to other 
processes. 

• Removing the link: 

1. User removes the link. 

2. The new ID for the originally target resource is 
automatically generated. 

3. The ID is transitively transferred to all linked 
processes. 

• Removing the element: 

1. User removes the element. 

2. For all deleted links the procedure described 
above is applied. 

• Changing the reference: 

1. User changes the reference of the resource. 

2. The new ID is generated in the original resource. 

3. The resource in the target process obtains ID from 
the source process. 

• Double-click on the element: 

1. User double-clicks on the element. 

2. The linked model opens. 

Most of the above operations can be implemented in the 
form of domain rules, which are applied automatically during 
execution of the specified event. 

 

E. The code generation 
The code generator uses a template engine T4 (Text 

Template Transformation Toolkit), which is part of Visual 
Studio. This engine transforms the created template into usual 
class containing created methods and code fragments. 
Subsequently this class is compiled and executed and the 
output is the generated code. 

Created modelling tool generates the simulator of the 
resource flow in the value chain. It shows the flow between 
interconnected business processes in the chain. The code 
generation is performed automatically when a valid model is 
saved and the resulting code of the simulator is immediately 
after compilation executable and it doesn't need any necessary 
modifications. 

Practical realization of the flow of resources can be 
achieved by the formalism of cyclic object-value Petri nets. 
The value chain contains at least one token - a resource that is 
gradually transformed by business processes to different 
resources. Initial tokens are manually set by the user during 
creating the model.  

At each step of the simulation run, the output of each 
process is sent to the input of connected process. A resource 
cannot be inserted to the input if the input is occupied by 
token from the previous simulation step - in this case, a 
resource remains at the output of the previous process. If the 
process has all required resources available (all required 
entries are filled), the conversion of these resources occurs 
(exchange), and the result resource is placed on the output of 
the process. The conversion cannot be performed if the output 
is occupied by a resource. The simulation assumes compliance 
with safety rules of Petri nets to represent the transformation 
process of one resource. 

INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS

Issue 4, Volume 1, 2013 234



 
 

Validation of the simulation corresponds to the type of 
simulation (e.g. [15]). In case of resource flow simulation the 
OV-PN rules are applied.  

 
Fig 6. Example of the value chain 

 

Fig. 6 shows a simple example of the value chain. The 
simulation of the flow of resources is as follows: 

• Step 1: The token in the Production process is 
transformed to the Product and is sent to the Sales 
process. 

• Step 2: The Product in the Sales process is exchanged 
for the Money. 

• Step 3a: The Money is sent to the Purchase process, 
where they are exchanged for Material. 

• Step 3b: The Money is sent to the Employee’s salary 
process applies to employees, where it serves as an 
appropriate reward for the Work, which is one of 
resources needed for the production. 

• Step 4: Material and Work are delivered to the 
Production process, where they are converted to the 
final Product. 

The simulator consists of three main parts - the simulation 
core, processes and resources. This partly corresponds to the 
structure of generator files. 

• SimulationGenerator.tt - Acquire and prepare the 
individual data from the model and then runs the 
subgenerators. 

• ResourcesGenerator.tt - Generates a class structure 
for an economic resource. 

• ProcessesGenerator.tt - Generates class structure of a 
business process. 

• CoreGenerator.tt – Generates the simulation core. 

• SupportMethods.tt - It includes support methods (e.g. 
for modifying names). 

Support methods for modifying of names are used to 
ensure the correct naming of the generated classes. The name 
used by the user in the model may not meet required 
conventions for the class name. Spaces, special characters and 
accents are removed. The name is also modified if the name is 
a keyword of C# language, or it begins with a digit.  

It was also necessary to solve the problem with generating 
multiple files. T4 generally assumes that one template 
generates just one file. Therefore, it was necessary to create a 

method that saves generator context (containing generated 
code) to specified file and after that it clears the context.  
private void saveFile(string name) 
{ 

string path = 
Path.GetDirectoryName(Host.TemplateFile
); 
string outputFilePath = 
Path.Combine(path, name); 
Directory.CreateDirectory(Path.GetDirec
toryName(outputFilePath)); 
File.WriteAllText(outputFilePath, 
this.GenerationEnvironment.ToString());  
this.GenerationEnvironment.Remove(0, 
this.GenerationEnvironment.Length); 
  

} 
The final step in creating generator is its adaptation to a 

custom tool to ensure automatic code generation. It also 
allows the generator to be distributed with the modelling tool. 
For this purpose the special class ensuring modifications of the 
template and its execution and the file performing the 
registration of generator during installation of modelling tool 
was created.   

 

VII. COMPARISON OF EXISTING DSM TOOLS FOR THE REA 
ONTOLOGY MODELLING 

Created tool provides an integrated environment for 
creating models of the REA ontology, which provides 
validation of links, elements and the model as a whole. The 
tool allows creating models at both levels of an abstraction - 
the REA model level and the value chain level, and if 
necessary it can interconnect these models. At the value chain 
level the source code generator of the simulator of the flow of 
resources is integrated.  

Table 1 shows a comparison of created tool with similar 
existing tools. 

TABLE I.  COMPARISON TABLE 

  Created tool 
The 

REA-
DSL 

REA 
Policy 

modelling 
Automatic links 
determination Yes No No 

Links validation Yes Yes Yes 
Entity validation Yes Yes Yes 
Model validation Yes Yes Yes 

Code generation Value chain 
simulation SQL C# classes 

Policy level 
support Yes No Yes 

 

INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS

Issue 4, Volume 1, 2013 235



 
 

CONCLUSION 
This paper described the procedure of creating the domain-

specific modelling tool from the initial analysis of domain, its 
elements and rules to the implementation of the solution. The 
proposal tool is fully capable compare to existing tool 
mentioned in the introduction. Moreover the proposal tool 
solves some issues discussed before. To create the tool we had 
to indentify the key elements, links and rules and create a 
metamodel. The metamodel itself becomes a foundation 
formalism to define a domain specific language. Domain rules 
are part of the metamodel as well. These rules are used to 
model validation. The result of combining REA ontology and 
DSM is the tool that is able to create valid models of the REA 
model level and in a higher level of abstraction generates 
simulations of the resources flow. 

 

ACKNOWLEDGEMENT 
The paper was supported by the grant reference no. 

SGS08/PRF/2013 provided by Ministry of Education, Youth 
and Sports. 
 

REFERENCE 
[1]  DUNN CH. L, CHERRINGTON J. O., HOLLANDER A. S, 

Enterprise Information Systems – a Pattern-Based Approach, 3 
edition, 2004, McGraw-Hill/Irwin, ISBN-13: 978-0072404296 

[2] Federeal Information Processing Standards (FIPS) Publication No. 
183, Integration Definition for Function Modelling (IDEF0), 1993, 
U.S. Dept. of Commerce, Washington DC. 

[3] FOWLER M., Domain-Specific Languages, Addison-Wesley 
Signature Series (Fowler), 2011, ISBN 978-0-321-71294-3 

[4] GAŠEVIĆ, D.,  DJURIĆ D., DEVEDŽIĆ V., Model Driven 
Architecture and Ontology Development, Springer Berlin Heidelberg 
New York, 2006, ISBN-13 978-3-540-32180-4 

[5] GEERTS G. L.; MCCARTHY W. E., Policy-Level Specifications in 
REA Enterprise Information Systems, Journal of Information 
Systems, 20(2):37–63, 2006, ISSN: 1365-2575 

[6] GONZALEZ-PEREZ C., HENDERSON-SELLERS B., 
Metamodelling for Software Engineering, Wiley, 2008, ISBN 987-0-
470-03036-3 

[7]  HRUBÝ P., Model-Driven Design Using Business Patterns, 
Springer, 2006, ISBN-13 978-3-540-30154-7 

[8]  HRUBÝ P. A kol., Víceúrovňové modelování podnikových procesů 
(Systém REA), VŠB-TU Ostrava, 2010, ISBN: 978-80-248-2334-8 

[9]  Instant T E a - Tracing Enterprise Architectures, Webové stránky 
společnosti, 2012, Available: http://www.instanttea.com, [10/2012] 

[10] ŘEPA V., Podnikové procesy: Procesní řízení a modelování, Grada 
Publishing, a.s., Praha, 2006, ISBN 80-247-1281-4 

[11]  SONNENBERG CH., HÜMER C., HOFREITER B., MAYRHOFER 
D., The REA-DSL: a domain Specific Modelling Language for 
Business Models, Proceedings of CAISE 2011, 2011, Available: 
http://publik.tuwien.ac.at/files/PubDat_198185.pdf 

[12] HUŇKA F., ŽÁČEK J., MELIŠ Z., ŠEVČÍK J., REA Value Chain 
and Supply Chain, Scientific Papers of the University of Pardubice. 
2011, no. 21 (3/201), p. 68-77 

[13] MELIŠ Z., ŠEVČÍK J., ŽÁČEK J., HUŇKA F., Identification of key 
elements of REA enterprise ontology, Procedia-Information 
Technology and Computer Science Journal, 2012 

[14] ŽÁČEK, J., MELIŠ, Z., HUŇKA, F. Modeling the value chain with 
object-valued Petri nets. Recent Advances in Electronics and 
Communication Systems. Rhodes, Greece, 2013. ISBN 978-1-61804-
201-9 

[15] VYMĚTAL, D., ŠPERKA, R., SLANINOVÁ, K., SPIŠÁK, M. 
Towards the Verification of Business Process Simulation in a JADE 
Framework, International Journal of Economics and Statistics, Issue 
1, Volume 1, 2013 

[16] CHANG, J, LIN Y., Exploring the dynamics of cross-level value 
chain relationships, International Journal of Economics and 
Statistics, Issue 1, Volume 1, 2013 

[17] CAPEK, J., HUB, M., MYSKOVA R., Basic Authentication 
Procedure Modelled by Petri Nets, International Journal of 
Computers and Communications, Issue 4, Volume 4, 2010, 
University Press, ISSN: 2074-1294 

[18] STAINES A. S., A Colored Petri Net for the France-Paris Metro, 
International Journal of Computers, Issue 2, Volume 6, 2012, ISSN: 
1998-4308 

[19]   SHILLING,  J.: Three  Steps  to  Views:  Extending  the  Object-
Oriented Paradigm, OOPSLA 89 Proceedings, 1989.  

[20]   ZACEK J., HUNKA F.: CEM: Class executing modeling, World 
Conference on Information Technology, 2010, page 1597-1601, 
ISSN 1877-0509. 

[21]   ZHAO, X., WEI, C., LIN, M., FENG, X., LAN, W: Petri Nets 
Hierarchical Modelling Framework of Active Products Community, 
Advances in Petri Proceedings of the 2013 International Conference 
on Electronics and Communication Systems Net Theory and 
Applications, 2010, page 153-174, ISBN 978-953- 307-108-4. 

[22]   ZACEK, J., HUNKA, F.: Object model synchronization based on 
Petri net, 17th International Conference on Soft Computing 
MENDEL 2011, Brno University of Technology, Faculty of 
Mechanical Engineering, 2011, ISBN 978-80-214-4302-0. 

[23]   GRUBER T. R., A translation approach to portable ontology 
specifications, Knowledge Acquisition, vol. 5, no. 2, pp. 199–220, 
1993, ISSN 1042-8143 

 
 

INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS

Issue 4, Volume 1, 2013 236

http://www.instanttea.com/
http://publik.tuwien.ac.at/files/PubDat_198185.pdf



