

Abstract— In a software development project, conducting a unit

test is an important task but not an easy process. In particular, preparing

a unit test procedure for a program that uses external resources such as

files and databases as its input tends to be a difficult task since it

requires the developer to set up various conditions. This paper proposes

a unit test technique that can automatically reproduce runtime

conditions of a java program by tracing the execution history of the

program for the object generation method and the flow of changes, and

also proposes a development support tool. Our technique and support

tool allow the developer to automatically generate a unit test procedure

for a program for which it is difficult in the past to create a unit test

procedure since it uses external resources.

Keywords—Automatic generation, Execution history, JUnit, Unit

test

I. INTRODUCTION

N a software development project, the software testing

process is an important process to prove the validity of

software functionality. In the software testing phase, a unit test

is conducted to find defects in modules, such as methods and

classes that are the smallest unit of software components.

Automatically generating unit test cases has become an

important task, much research has been conducted[1]-[4]. It is

known that a unit test can be done efficiently by using the unit

test framework called xUnit. JUnit[5] provided in xUnit is

usually used to conduct a unit test of a program written in Java.

JUnit provides the framework that can be used to write test

cases as a test class and enable automatic execution of test cases.

A test class can be used to generate test cases that are aimed

at testing a class or methods of a class and that can be used to

represent the test results supposed to be obtained when specific

input data is provided. However, it is difficult to create test cases

for such a program that uses input data from external resources,

such as files or databases, since the behavior of the program may

Yuhei Otani is with the Graduate School of Engineering and Science

Shibaura Institute of Technology, 3-9-14 Shibaura, Minato-ku Tokyo, 108-8548,

Japan (e-mail: ma11038@shibaura-it.ac.jp)

Hiroaki Hashiura is with the Faculty of Information Sciences and Arts, Toyo

University, 2100 Kujirai, Kawagoe-shi Saitama, 350-8585 Japan

Seiichi Komiya is with the Graduate School of Engineering and Science

Shibaura Institute of Technology, 3-9-14 Shibaura, Minato-ku Tokyo, 108-8548,

Japan

have an impact on the status of the external resources during

program execution. In order to conduct a test on such a program,

it is necessary to create a test case that does not have an impact

on the resource status by reproducing the status of the external

resources during program execution. From this viewpoint, there

are only few test support tools that can be used to conduct a test

for which reproduction of the status during program execution is

essential.

This study proposes a unit test technique of automatic test

case generation that can generate test cases by reproducing the

execution status of a java program based on its execution history.

The authors have also developed a tool that supports this

technique and evaluated its effectiveness through experiments.

This paper consists of the following sections. Section 2

introduces specific cases in which reproduction of program

execution status is essential to conduct a test. Section 3 shows

related studies in which test cases are generated based on an

execution history. Sections 4 through 6 clarify the specific

procedures proposed in this study. Section 7 describes the

evaluation experiment conducted using the implemented tool

proposed in this study. Section 8 discusses the conclusion and

the future direction.

II. WHAT PROMPTED US TO START THIS STUDY

This section describes the reason why reproduction of the

program execution status is essential by showing specific sample

cases.

A. A program that uses external resources

Executing a program that uses external resources including

file streams, network streams, and database connection has

strong impacts on the status of such resources. Therefore, when

conducting a test on a program that uses external resources, the

user has to develop test cases based on the assumption made for

the resource status during program execution. However, typical

external resources are unstable and uncertain, and their internal

states are highly changeable. As a result, test cases developed

based on the assumption of the external resources’ states may

not represent their actual states on execution. So, it is necessary

to set the internal resources to appropriate states on program

execution.

Figure 1 shows an expected resource state when a test is

executed on the fileProcess method. The fileProcess method

A Software Testing Tool with the Function to

Restore the State at Program Execution of a

Program under Test

Yuhei Otani, Hiroaki Hashiura, and Seiichi Komiya

I

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

71

takes an object of the FileInputStream class as its argument, uses

this object to read the contents of a file, and returns the results

generated by processing the read values. This method expects,

as the prerequisite, that it read the value “D” on Line4 in file1.

To satisfy this condition, the argument in of the fileProcess

method should be the input stream associated with file1 and the

cursor should point to Line4. However, since the cursor points

at the beginning of the file, Line1, when the stream is created

from the file, a read operation is allowed to start only from Line1.

To satisfy the prerequisite, the internal state of the stream must

be set to allow the read operation to start from Line4.

One of the ways to set up the internal state is to capture the

internal state of a running stream object and reproduce it.

Serialization is usually used as a typical way to reproduce the

internal state of a running object. Serialization is a technique to

convert the internal states of an object being handled in a

program into byte strings or something represented in the XML

format and save them in a file. However, serialization cannot be

adopted for some objects associated with external resources

such as input and output streams, since it is not possible to

serialize these objects. To reproduce the object states without

serialization, it is necessary to find the object states during

program execution and set up the environment for operations.

For example, the read method of the FileInputStream object can

be repeatedly called until the cursor points to Line4 to set the

stream object to the expected state. However, usually it is not

easy to implement such a setup procedure.

B. Programs with complex dependency relationship

To write a test class for a class, it is necessary to instantiate

the targeted test class. At this stage, if the class to be tested has a

dependency relationship, it may be quite difficult to instantiate

the class. The dependency relationship, in this case, represents

the relationship that requires an object from another class to

instantiate the targeted class. An increasing number of setup

procedures are required to resolve the dependency relationships

as the number of objects required for the arguments of the

constructor increases or the complexity for generating the

objects increases.

Figure 2 shows several examples for a class of which

dependency relationship can be easily resolved and for another

class of which dependency relationship cannot be easily resolved.

The example of classA represents a class of which dependency

relationship can be easily resolved since it can be instantiated

only by passing a value of int type to the argument of the

constructor. On the other hand, classB can be instantiated only if

an object of the class that is equipped with Connection which

represents a specific connection with a specific database is

passed. In this case, it is difficult to resolve the dependency

relationship since the object cannot be prepared unless an actual

connection is implemented with the database. In the case of

classC, it is necessary to pass objects D, E, and F of other classes

as its arguments to instantiate it. Probably, the D, E, and F

classes may have further complex dependency relationships. As

the number of dependency relationships increases, it becomes

more difficult to run the class and develop test cases.

Reproducing the object states during program execution makes

it needless to resolve such dependency relationships.

Fig.1 Expected stream state.

Fig.2 Classes with dependencies.

III. RELATED STUDIES

This section describes a survey of related works in which unit

tests are generated from execution results and compares those

works with our study.

Elbaum et al. proposed a unit test generation technique with

which independent unit tests are generated for each method by

classifying execution results into several groups and

independently rerun each method on each group[6]. The

following discusses how to implement this technique. First, use

XStream to save the internal states of the program before and

after a method is executed during a system test. Then, run a

method of which saved preconditions are restored. This

technique finally compares the post-conditions generated after

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

72

the restored method is executed with the post-conditions saved

during the system test to check to see if they are identical.

XStream provides a library that can be used to serialize the

states during program execution, writes them to a file after

converted to the XML format, and restore them. This technique

cannot be used to restore the objects that cannot be serialized.

Another feature of this tool is to increase the execution

efficiency by finding the objects that can be referenced from a

specific method and save only the information specific to the

method. Our study aims at capturing and restoring the execution

states more completely. As a result, our technique is less

efficient than Elbaum’s technique from the viewpoint of stored

data volume. On the other hand, it can handle automatic

generation of unit tests for programs that cannot be serialized

and to which Elbaum’s technique is not applicable.

IV. OUR TECHNIQUE PROPOSED IN THIS STUDY

To cope with the issues described in Section 2, the authors

proposes a technique that can be used to automatically generate

unit tests by capturing an execution history generated by test

data and composing the contents of the execution history. The

execution history can be used to clarify the operations

performed by each object during program execution. Our

technique traces the operations on external resources executed

by stream objects and reproduces the states of streams by

executing the traced operations using the test classes. In addition,

since the execution history can be use to clarify how the objects

were generated, the dependency relationships can be resolved by

generating the objects according to the execution history exactly.

The following describes the actual steps performed with our

technique.

Step 1. Develop test cases manually to perform the entire

program based on the requirements specification.

Step 2. Acquire the execution history by running the test

cases created in Step 1.

Step 3. Analyze the execution history and automatically

generate a unit test program.

First, the system requirements specification is analyzed to

clarify the program behavior and the test data is defined as input

items to the program. Since the unit tests are generated from the

execution history acquired by running the program with the test

data defined here, the test data should be prepared as the one

that is related to the state to be reproduced.

Then, the program is executed with the defined test data to

acquire the execution history. The execution history is acquired

with traceglasses discussed later in this paper. As shown in

Figure 3, the execution history can be used to trace the input and

output of each method as well as to identify the impacts on a

specific object made by the method.

The acquired execution history is analyzed to generate a unit

test for each method by reproducing the same states as the ones

observed on program execution for each method that appears in

the execution history. Section 6 describes the technique to

analyze the execution history. For our technique, a specific

environment is required to execute a program and acquire its

execution history. It is necessary for our technique to work

properly that the requirements specification is prepared and the

program has been proved to start successfully and run with no

bugs.

Fig.3 Information gained from the execution history.

Fig.4 The viewing area of traceglasses.

V. TOOLS USED IN OUR TECHNIQUE

Our technique uses traceglasses as the tool to acquire the

execution history. It generates its output and test cases as a test

class of Junit. The following describes these tools.

A. traceglasses[7]

Traceglasses is a debugger that can collect log data as trace

records during execution of a java program and allow the user to

track defects interactively. It allows the user to track object

generation incidents and all operations since it keeps trace

records of executed programs as much as possible from the

beginning to the end.

Figure 4 shows an actual display screen of traceglasses.

Traceglasses gives a unique ID such as <1> to identify each

object it has used. The operations performed by an object can be

tracked by searching for the corresponding ID. For example, the

trace line of

bool:true = board:<5>.create(br:<4>)

indicates that the method create is called from the object <5>

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

73

stored in the variable board, the object <4> stored in the

variable br is specified as the argument to the method, and the

return value of true is stored in the variable bool. That is, the

corresponding instruction line executed in the source code is

bool = board.create(br);. The values stored in the objects <4>

and <5> can be identified by searching the preceding lines

located before this instruction line.

For example, the object <5> is found to be an object of the

Board class since it is generated in the trace line of <5> = new

Board().

B. JUnit

JUnit is a framework that works as a test driver and has been

developed to automate unit tests of java programs. With JUnit,

unit tests are written as a test class. The test flow using a test

class is as follows:

1. Set up the method to be tested.

2. Use assertions to examine the preconditions of the method.

3. Run the method.

4. Use assertions to examine the return values of the method,

if any.

5. Use assertions to examine the post-conditions of the

method.

 In this case, the setup procedure includes generating objects

required to call the method to be tested and setting each object

to a value that satisfies the test conditions. An assertion is a

method, such as assertEquals and assertTrue, which can be used

to determine if the test has succeeded or not. The assertEquals

method takes two values as its arguments and determines that

the test has succeeded when they are identical and that the test

has failed when they are not identical.

VI. ANALYSIS OF EXECUTION HISTORY

This section discusses how to compose the contents of the

execution history to generate a test class. Figure 5 shows the

entire analysis flow.

A. Acquiring the method information invoked during

execution (I)

First, the information of the method to be tested is acquired to

generate a test class. Our technique deals with testing of the

methods that are invoked during execution, except for those in a

library such as the standard library. At this stage, the following

points are examined for each method invoked.

1. The ID of the object that called the method

2. The arguments to the method

3. The return value from the method

4. The names of the fields referenced by the method called

from the object

5. The ID of the object (*) changes are made in the method

6. The field name of (*)

7. The value of (*) before change

8. The value of (*) after change

Fig.5 The flow chart to show the steps to analyze the execution history.

1 bool:true = board:<5>.move(br:<4>) ．．．

2 <6> = this:<5>.al ．．．

3 <14> = <6>.get(num:0) ．．．

4 rect:<14>.move(dx:1,dy:1) ．．．

5 this.<14>.x=2

6 this.<14>.y=2
Fig.6 Example of trace to obtain information of method.

Figure 6 shows the trace lines required to collect information

for the move method when it is selected as the test target. This

trace shows that the ID of the object that called the method is 5,

the argument of the method is the object of ID4, the return value

from the method is true, the name of the field referenced from

the object (ID5) that called the method is al, the ID of the object

changes are made in the method is 14, the names of its fields are

x and y, and the value after change is 2. The value before change

is determined by searching the trace lines before the method is

called and set to the value found first, which is the value of the

object before the method is executed. As described above, the

object information required to call the test target method and the

side effect information of the method required to generate

assertions is acquired by searching the preceding and following

lines around the line of the test target method.

B. Generate required objects (II)

To execute the test target method, the object that calls the

method, the object passed as the argument to the method, and

the objects required to generate these objects are required.

These objects are generated according to the steps described in

Figure 7.

In Figure 8, when the method move on Line 5 is selected as

the test target, the objects required for execution are the objects

ID5 and ID4. These two objects are searched for backward

starting from the line on which the test target method is called.

Then, it is found that ID5 is generated on Line 4 and ID4 is

generated on Line 3. Since the object ID3 is required to generate

the object ID4, the line on which the object ID3 is generated is

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

74

Fig.7 The flow chart to show the steps to create an object.

1 <2> = new FileInputStream(“data.txt”)

2 <3> = new InputStreamReader(fis:<2>)

3 <4> = new BufferedReader(isr:<3>) ．．．

4 <5> = new Board() ．．．

5 bool:true = board:<5>.move(br:<4>)
Fig.8 An example of trace to generate necessary objects.

1 <5> = new Board() ．．．

2 <14> = new Rectangle(1,1,2,3) ．．．

3 <6> = <5>.al

4 true = <6>.add(rect:<14>) ．．．

5 bool:false = board:<5>.create(br:<4>)
Fig.9 An example of trace to reproduce related objects.

searched for by backtracking the lines beginning from the line on

which it is used.

It is found that the object ID3 is generated on Line 2. As just

described, when an object is required to generate another object,

it is searched for recursively. Once the way to generate the

object is determined, a set of code lines to generate the object is

generated according to one of the following patterns.

 The new operator is used to generate the object (except for

arrays):

 Type name $+Object ID = new Type name(Variable

name);

 The new operator is used to generate an array:

 Type name[] $+Object ID = new Type name[Number of

data items];

 The return value of the library is used to generate a new

object:

 Type name $+Object ID = $+Object ID.Method

name(Argument);

C. Set generated objects to the values just before called(III)

After an object is generated, it must be restored to the same

state as the runtime state. To reproduce the state of the object,

all method calls and field changes executed between the period

from object generation to actual use must be re-executed.

The following describes how to reproduce the state of the object

ID5 to its actual execution state. Since ID5 is generated on Line

1, it is necessary to search for the operations of ID5 executed

between Line 1 and 5. It is found that the al field of ID5 is called

on Line 3. On this line, the filed al of ID5 is stored in ID6. It

means that, at this point, the field al in ID6 is the same as that in

ID5. Hereafter, since the operations using the field al of ID6

have the same effects as the operations using that of ID5, it is

necessary to track the operations performed by ID6. Since ID6

calls the method add on Line 4, it is necessary to generate a code

line to call add to reproduce the actual execution state. In

addition, since a new object ID14 appears as an argument of add,

this object must be generated according to the procedure of II

and its execution state must be reproduced according to the

procedure of III.

D. Generate assertions (IV)

The setup task to execute the method is completed by the

procedures II and III. Next, the code lines to examine the

precondition and the post-condition of the method need to be

generated based on the information acquired in (I) following the

procedure shown in Figure 10. The assertEquals method is used

for each assertion.

Generation of a unit test for a method completes through the

procedures from II to IV. Perform the procedures on all the

methods executed when the test case is performed until all of the

unit tests are generated.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

75

Fig.10 The flow chart to show the steps to generate assertions.

1 public void test(){

2 java.io.FileInputStream = $2 = new

java.io.FileInputStream(“data.txt”);

3 java.io.InputStreamReader $3 = new

java.io.InputStreamReader($2);

4 java.io.BufferedReader $4 = new

java.io.BufferedReader($3);

5 editor.Board $5 = new Board();

6 $4.readLine();

7 assertEquals(true,$5.create($4));

8 }
Fig.11 Generated unit test program.

E. Test cases to be generated

A unit test program as shown in Figure 11 is generated

through the procedure listed in Figure 11. Lines from 2 to 5 are

generated by the procedure of II, Line 6 is generated by III, and

Line 7 is generated by IV. There are some problems in this

program such that no exception processing is provided and

restrictions are imposed on access. For example, the readLine

method on Line 6 requires exception handling and the create

method called on Line 7 may be a private method.

We use javassist[8] to resolve these problems. Javassist is a

library that can be used to examine the definitions of class files

and change their contents. Javassist is used to minutely examine

each constructor and method called from the generated test

program for the type of Exceptions. If it is found that exception

handling is required, throws is used to generate an operation to

generate an exception.

 As for the problem of access restriction, javasisst is used for the

original source file to change its attribute to public. By using the

changed class file, it is possible for the test program to run even

though the access restriction is set to private in the original

source file. Since the original source file is not changed,

recompiling the source files after the test is completed can

restore the access restriction to the original state.

VII. EXPERIMENTAL EVALUATION

The authors adopted the following benchmarks to evaluate

the effectiveness of the test cases generated by the system to

implement our technique.

 Test success rate = Number of passed test cases / Number of

generated test cases

 Suitability rate = Number of test cases in which the execution

state is properly reproduced / Number of generated test

cases

 Instruction coverage rate = Number of instructions executed /

Total number of instructions

 Branch coverage rate = Number of branches executed / Total

number of branches

A. Program used in the experiment

The authors developed a small program tested in the

experiment. According to the purpose of this study, this

program contains the following method that is unable to be

serialized.

public boolean create(BufferedReader br)

Table 1 shows the size of the program. The authors used this

program to produce test cases by providing test data that

triggers execution of all defined methods and execution of each

instruction as much as possible.

B. Results

Table 2 shows if the generated test cases can be used to

successfully test the system. Table 3 shows the coverage rate of

test cases against the entire code lines.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

76

C. Consideration

Table 2 shows that 492 test cases were generated, and all of

them passed the test and successfully reproduced the execution

states. The suitability rate is 100% so that the experiment

successfully proved that the test cases generated by our

technique could properly reproduce the execution states. In

addition, it proved that no test case that led to a failure was

generated. Next, as for the Rectangle class, Table 3 shows that

all instructions and branch conditions in the source code are

covered. On the other hand, as for the Board class, the

instruction coverage rate is 91% and six instructions are not

covered while the branch coverage rate is 100%. Although it is

desirable that the coverage rate is 100%, it is not necessary to be

100% since a program may contain some paths that are not

expected to be executed. Examining the code lines for not

executed instructions clarified that the instructions related to

exception handling of IOException are not covered as shown in

Figure 12. This exception is not generated except for a special

situation such that the stream has been closed before the

readLine method is called. If the stream is always open

according to the program specification when the try statement in

Figure 12 is invoked, since no test case can be automatically

generated for these instructions, it is necessary to develop test

cases manually if testing of such statements is mandatory. If

there is a path in the program in which the stream is closed when

the try statement is invoked, it is considered that the test case for

such instructions can be generated by running the system with

input data that walks through such a path.

Table 1. The size of the experimental program.

Table 2. The number of generated test cases and their contents.

Table 3. Code coverage.

1 try{

2 str=br.readLine().split(“,”);

3 }catch(IOException e){ //Not executed

4 e.printStackTrace(); //Not executed

5 return bool; //Not executed

6 }
Fig. 12 Instructions that were not tested.

VIII. CONCLUSION AND FUTURE DIRECTION

This paper discussed generation of test cases that reproduce

the execution states of a program to cope with the difficulty of

program test that handles external resources such as files. To

resolve such a problem, the authors have developed a tool that

automatically generates unit tests by capturing the execution

history of a program and composing the contents as unit tests.

It is considered that the unit tests generated by this tool can be

applied to a system composed of untested programs. An defect

might be found at an unexpected location in an untested program

when its code is altered. To cope with such a defect, it is

effective to develop test cases that can be used to validate

current code behaviors before the code is altered[9]. It is

effective to use our tool for untested programs since our

technique acquires current program behaviors as a program

history and converts it to test cases. On the other hand it is not

suitable to use for finding new defects.

Two of the currently identified problems of this tool are that it

takes longer execution time and more than one test case with the

same value is generated as the program size grows since it

generates test cases for all methods executed. As the future

direction of our study, we plan to improve the tool by

developing an algorithm to eliminate test cases with the same

value and allow the user to specify the methods to be tested. In

addition, to improve the effectiveness of our technique, we plan

to conduct evaluation experiments that apply our technique to

the programs that handle input from a database, in which testing

is more difficult than input from files.

REFERENCES

[1] A.Nadeem, M.Jaffar-Ur-Rehman, Automated test case generation from

IFAD VDM++ specifications, SEPADS'05 Proceedings of the 4th

WSEAS International Conference on Software Engineering, Parallel &

Distributed Systems, No.28

[2] M.Alshraideh, Using program specific search operators in test data

generation, ECC'10 Proceedings of the 4th conference on European

computing conference, pp.132-138

[3] S.Dhawan, K.S.Handa, R.Kumar, Software testing: perception on

exploration and ad-libbing, MACMESE'09 Proceedings of the 11th

WSEAS international conference on Mathematical and computational

methods in science and engineering, pp.113-118

[4] D.Caprita, V.Mazilescu, Automated Software Testing for PHP Web Based

Applications, Sustainability in Science Engineering Volume II. p.285.

WSEAS International Conference. Proceedings. Mathematics and

Computers in Science and Engineering. Vol.2, No.11

[5] JUnit, http://www.junit.org/

[6] S.Elbaum, H.N.Chin, M.B.Dwyer, and M.Jorde, Carving and Replaying

Differential Unit Test Cases from System Test Cases, IEEE Transactions

on Software Engineering, Vol.35, No.1, pp.29-45, January 2009

[7] K.Sakurai, H.Masuhara, and S.Komiya, Traceglasses: A Trace-based

Debugger for Realizing Efficient Navigation, IPSJ Special Interest Group

on Programming, Vol.3, No.3, pp.1-17, June 2010

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

77

[8] S.Chiba and M.Tatsubori, Structural Reflection by Java Bytecode

Instrumentation(Special Issue on Groupware of the 21st Century),

Transactions of Information Processing Society of Japan, Vol.42, No.11,

pp.2752-2760, November 2001

[9] M.C.Feathers, Working Effectively With Legacy Code, Prentice Hall,

2004

Yuhei Otani He received a bachelor's degree in engineering from Shibaura

Institute of Technology, Japan in 2011. At present, He is enrolled in

postgraduate of the Shibaura Institute of Technology.

Hiroaki Hashiura He received a bachelor's degree in engineering from

Shibaura Institute of Technology, Japan in 2002. He received a professional

degree in engineering management from Graduate School of Engineering

Management, Shibaura Institute of Technology, Japan in 2005. He received

Doctorate in engineering from Graduate School of Engineering, Shibaura

Institute of Technology, Japan, in 2008. At present, He is an assistant professor

of Toyo University.

Seiichi Komiya He received the degree of the B. S(C), from Saitama University,

Japan, 1969. He received Dr. Eng. from Shinshu University in March 2000. He

was been working for Hitachi Ltd. as a software engineer during 1970-2001, and

has been on loan from Hitachi Ltd. to Information-technology Promotion Agency

Japan (IPA), a substructure of MITI, during 1984-1999. He has studied the

frameworks to construct many kinds of CASE tools (e.g. an automatic

programming system, a software collaborative distributed development

environment, etc.), software specification/design process, CAI and Intelligent

CAI at IPA. In IPA, he has been a principal researcher of Software Technology

Center during 1988-1999, and was also an assistant to director general of

Laboratory for New Software Architectures during 1991-1998. He works for

Shibaura Institute of Technology as a full-time professor since April 2001. He

was also a visiting professor of Tokushima University in 1993. He was also a

visiting lecturer of Chiba University during 1995- 2009, and a visiting professor

of a graduate school of Shibaura Institute of Technology 1997-2001. He was a

manager/a vice-chairman/a chairman of SIG-KBSE/IEICE during

1992-1994/1994/1996/1996-1998. He was also a member/a manager of editorial

committee of IEICE transactions 1994-1999/1998-1999. He was given a title of

“IEICE fellow” from IEICE in 2010.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 6, 2012

78

