
 

 

 

Abstract— In an object-oriented software development project, 

one of the design methods such as OOSE and OMT is typically 

employed. However, a common weak point is recognized for these 

design methods, that is, they do not provide an easy approach for 

designing a class. In this study, we propose a method to support 

designing a class by focusing on modularization to reduce the degree 

of coupling. We extended the Law of Demeter, which is one of the 

laws to reduce the degree of coupling, so that it may be applied to Java. 

In addition, in Java, since modules developed by somebody are usually 

reused as packages rather than as classes, we decided to apply the Law 

to a set of packages. We developed a tool that can automatically detect 

a violation of the Law as a plug-in of Eclipse. We have conducted an 

experiment to prove that the tool can automatically detect a violation 

of the Law of Demeter and point out the location of violation Then, we 

enter the violated portion of source code to our tool to prove that the 

problem can be corrected. 

 

Keywords— Class Design, Object Oriented Software 

Development, Law of Demeter, Eclipse 

I. INTRODUCTION 

N today's highly information-oriented society, software 

development efforts are coming to be increasingly larger and 

complicated. As a result, wider and deeper knowledge is 

required for software development. 

In particular, although the object-orientated approach is 

commonly used in recent years and it includes typical design 

methods such as the OOSE (Object-Oriented Software 

Engineering) and OMT (Object Modeling Technique) methods, 

its design methods have common difficulties in designing 

classes. In addition, even if a designer has acquired the ability to 

use one of the modeling languages such as object-oriented 

programming languages or UML, he/she cannot take advantage 

of its merits such as robustness and expandability when he/she 

uses it without the knowledge of background principles. 

Therefore, the industry expects universities to grow 

 
Ryota Chiba, Shibaura Institute of Technology Graduate School of 

Engineering, 3-7-5 Toyosu, Koutou-ku, Tokyo, Japan, 

chiba@komiya.ise.shibaura-it.ac.jp 

Hiroaki Hashiura, Shibaura Institute of Technology Graduate School of 

Engineering, 3-7-5 Toyosu, Koutou-ku, Tokyo, Japan 

hashiura@komiya.ise.shibaura-it.ac.jp 

Seiichi Komiya, Shibaura Institute of Technology Graduate School of 

Engineering, 3-7-5 Toyosu, Koutou-ku, Tokyo, Japan 

skomiya@shibaura-it.ac.jp. 

 

well-trained students who have the knowledge and skill of 

software development. Based on the above understanding, we 

have adopted PBL (Project-Based Learning) as the exercise 

lessons of software development to promote training of 

practical object-orientated software design and development 

technology in our university. 

To develop human resources with deep knowledge and 

excellent skills of software development, it is necessary for 

students to learn how to design proper software (software design 

methods). For this purpose, it is necessary to develop tools that 

can provide support for understanding how to design software. 

Based on the above discussion, we decided to use coupling 

[1] as the metrics to measure properness of developed software 

designs in this study. Coupling represents the strength of 

interactions among modules, and weaker coupling among 

modules indicates that they are better-designed. To reduce 

coupling among modules, we focused on the interdependent 

relationship among modules, and placed additional restrictions 

on the destinations of messages. 

 We adopted the Law of Demeter as the method to reduce 

coupling. We used this method to develop a tool that can closely 

scan the occurrences of interdependent relationship and point 

out the locations at which the destination of a message should be 

modified. This tool can be used to detect and clearly specify the 

points where modification is needed to provide information 

useful for future program modification (including modification 

of the specification). 

This paper contains the following sections. Chapter 2 shows 

the position of this study. Chapter 3 discusses the Law of 

Demeter and the enhancement developed in this study. Chapter 

4 describes an outline of our tool and its implementation method. 

Chapter 5 shows that our tool can be used to detect points 

violating the Law of Demeter. Chapter 6 shows the 

effectiveness of our tool based on the comparison with the 

related tools applied to open source code. Chapter 7 describes 

the conclusion. 

II. PURPOSE OF THIS STUDY 

According to Myers[1], proper modularization is one of the 

essential factors to develop well-defined software. One of the 

techniques to perform modularization is to split a system into 

modules in view of the independency of each module. 

Automatically Detecting Detects on Class Implementation in Object 

Oriented Program on the Basis of the Law of Demeter: 

Focusing on the Dependency between Packages 
 

RYOTA CHIBA, HIROAKI HASHIURA, SEIICHI KOMIYA 

I 

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES 
Issue 1, Volume 5, 2011

123



 

 

Myers[1] proposed the concepts of module cohesion (module 

strength) and module coupling as the metrics to measure 

independency of program modules. It states that higher 

cohesion and lower coupling are essential for modules to 

achieve a high degree of independency.  It also states that the 

module maintainability is increased when the modules satisfy 

these conditions. 

The maintainability of software is defined in ISO/IEC 

9126-1[2], stating that maintainability is essential to enhance 

the quality of software. 

To quantitatively evaluate the independency of these modules, 

Chidamber and Kemerer[3] introduced the CK metrics. It is 

important for an actual implementation to keep the value of 

metrics within an appropriate predefined range based on the 

information provided with the metrics. However, neither 

practical procedure nor effective means or method has been 

provided to keep the value within an appropriate range. As a 

result, the developer’s experiences and intuition has played a 

major role to achieve an appropriate value. As a technique to 

cope with the issue, the Refactoring [4] can be used to improve 

the quality of software while keeping its external behavior as it 

is. The effectiveness of refactoring has been proved in 

traditional software development projects. Various studies have 

been performed to achieve appropriate values for the metrics 

using this technique. [5]-[7] In these studies, source code is 

modified based on the results of source code analysis. 

However, modifying source code based only on the values of 

metrics causes another problem that it is difficult to understand 

how the corresponding design is modified. As a result, the 

original design has been modified in such a way that it is 

difficult to track the modification made through refactoring. 

Therefore, in order to solve this problem, the mechanism is 

needed, which can point out the interdependencies among 

portions of source code by analyzing the source code. With 

consideration of approaches based on use of tools, our tool 

adopted an approach in which implementation flaws are pointed 

out but not corrected automatically, although there may be other 

approaches in which implementation flaws are corrected 

automatically. Although minimum interdependencies are 

required for programs, we think that the necessity of 

interdependencies should be judged according to the intention 

of the designer or programmer. In addition, since our aim is to 

provide support for learning a software design method, 

automatically correcting a design flaw does not serve this 

purpose. 

III. THE LAW OF DEMETER 

A. What is the Law of Demeter?  

The Law of Demeter was proposed by Lieberherr [8][9] of 

Northeastern University in 1987 as a rule for producing the 

design proposal which may be set for object-oriented software. 

The Law of Demeter, as shown in Fig. 1 provides a rule with 

which “a message can be sent from a standard object 

exclusively to the objects directly connected to the standard 

object, and cannot be sent to other objects.” According to 

Lieberherr, et al.[8], an object which can directly 

communicate with the standard object is called “friend.” They 

defined friend objects for C++ programs. 

This was also shown by Larman [7] as "Low Coupling 

Pattern.” That is, in other words, the Law of Demeter provides a 

mechanism to clarify the portions for which no dependency 

relationship (coupling) is required. 

 

 
Fig. 1. The Law of Demeter 

B. The Law of Demeter Extended for Java 

The Law of Demeter provides the way to develop programs 

for implementing objects with higher independency and lower 

coupling defined by Myers. The concept of "friend" was defined 

in 1988 for the object-oriented language C++ [8] (at that time 

JAVA did not exist). Therefore, we define “friend” as shown in 

Fig. 2 in this study so that it may be used in JAVA. 

 

 
Fig. 2. The Law of Demeter for Java 

 

Messages are allowed to be passed only between those 

objects that satisfy one of the above conditions (the 

interdependent relationship between classes is not restricted). 

In particular, Definition (v) is added to the Law of Demeter so 

that the embedded classes and data types used in Java may be 

treated as part of OS and may not to be regarded as part of the 

dependency relationship. If the embedded classes and data types 

of Java are not treated as “friend,” a violation of the Law of 

Demeter might be detected even when writing to the standard 

output or calling a method to perform string conversion. 

C. Extending the Scope of the Law of Demeter 

The Law of Demeter aims to reduce coupling between classes 

With a program written in Java, every method of an object 

should be allowed to send a message to a target which is 

restricted by the following criteria. 

 

(i) The object itself. 

(ii) An object passed as an argument to the object itself. 

(iii) An object owned by the object itself as an attribute. 

(iv) An object generated with a method of the object 

(v) The embedded class of JAVA and its base type 

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES 
Issue 1, Volume 5, 2011

124



 

 

by focusing on the interdependent relationship between classes 

to restrict the address of a message. However, applying the Law 

of Demeter with the smallest granularity of class, the number of 

objects (number of couplings) with the friend relationship for 

each object dramatically grows as the scale of software to be 

developed becomes large. As a result, even when the 

relationship between two objects is “friend,” it is difficult to 

judge whether message passing is really required between these 

objects or not. In this study, we propose to use not only a class 

but also a package that consists of more than one class as the 

unit. The reason is that, in Java, reuse of a module is often 

performed in the unit of package rather than the unit of class. 

When reusing a package, it is usually used without checking all 

of the classes in it. In addition, checking internal components of 

a package indicates violation of the principle of information 

hiding. Therefore, checking internal components of a package is 

out of the scope of our tool. Fig. 3 illustrates the above 

discussion. As shown in this figure, communication between 

two classes that are located beyond more than one class within a 

package is allowed. 

 
Fig. 3. The Law of Demeter applied to more than one package 

IV. CLASS DESIGN SUPPORT WITH TOOL 

In this study, we developed a tool that can be used to analyze 

source code to detect the location where a violation of the Law 

of Demeter occurs. The following sections describe an outline 

of the tool and its necessity, and also describe how to analyze 

source code. 

A. The necessity of our tool 

The degree of coupling between packages is measured by 

tracking the destination addresses of messages in source code 

based on the definitions of five friends shown in Fig. 2. For 

example, Object A can call any routine of Object B if Object A 

has instantiated Object B. When a routine of an object provided 

by Object B is called from Object B, just investigating the 

source code of Object A does not clarify to which class the 

message is sent. In other words, it is necessary to track the 

contents of more than one class to examine one class. It is 

possible to track destinations manually if the volume of source 

program is small, but it becomes difficult to examine the 

forwarding addresses of messages when the program volume is 

large. In addition, it is necessary to use fully-qualified name to 

distinguish two or more classes with the same name. Therefore, 

it is necessary to use a tool to automatically extract the 

destination addresses of all message defined in the package, and 

based on the extraction results, the destination addresses are 

checked if they are the same or not per a package and type to 

check the dependency relationship between packages 

automatically. 

In addition, since the knowledge of module independency is 

required to find and identify the dependency relationship, it is 

difficult for a novice programmer whom we are going to provide 

support for making a proper decision. Therefore, it is 

impossible for an instructor to manually detect and identify all 

occurrences of dependency, since there are as many programs as 

the number of student groups. 

B. Outline of our tool 

Eclipse [12] is a free Integrated Development Environment 

(IDE). IDE provides standardized user interfaces that can be 

used to consistently handle programming tools such as an editor, 

compiler, and debugger. Eclipse has been used in various 

development projects with Java in many companies as its 

proven history. 

Based on such a background, we decided to implement our 

tool as a plug-in of Eclipse. As a plug-in of Eclipse, our tool can 

provide suitable advices to novice programmers at any time 

when they write programs. 

Fig. 4 illustrates an outline of development task using this 

tool. The tool analyzes source code within the specified package 

on the specified directory, finds classes with any violation of the 

Law of Demeter, and identifies the source code line 

corresponding the detected violation, according to the friend 

definition in Section 3.B. 

 
Fig. 4. Development tasks using our tool 

C. How to analyze source code 

To find defects in the implementation based on the Law of 

Demeter, it is necessary to extract the package name and the 

class names from the source code of the program. For this 

purpose, it is necessary to develop source code models. Source 

code modeling is often performed using Java element API and 

DOM/AST API. With Java element API, the signature 

information of the method constructer defined in the source 

code can be obtained, but the information of source code written 

in the method cannot be obtained. On the other hand, 

DOM/AST API included in the package 

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES 
Issue 1, Volume 5, 2011

125



 

 

org.eclipse.jdt.core.dom can be used to obtain the information 

inside the method because it provides more detailed models of 

Java source code compared with the Java element. In addition, 

since it can handle Abstract syntax Tree (AST) and incomplete 

or incorrect source code, it is possible to analyze source code 

under development. Therefore, we decided to use DOM/AST 

API in this study to enable analysis of any kind of source code. 

DOM/AST API performs configuration analysis to generate 

an abstract syntax tree when source code is entered to the tool. 

Then, the Visitor pattern that is one of the design patterns 

proposed by Gamma et al. [13] is used to traverse this abstract 

syntax tree to extract the package name and class names. The 

Visitor pattern is a general-purpose mechanism that can be used 

to traverse an object-oriented hierarchy structure and add new 

functions without making changes in the component nodes that 

compose the hierarchy structure. For this reason, we can add a 

procedure that extracts the package name and class names 

without making changes in an abstract syntax tree. 

Summarizing the above, the tool can perform analysis 

following the five steps written below. 

 

 
Fig. 5. Analysis steps performed by the tool 

D. Functionality of the tool 

This tool provides the function to examine the classes in the 

specified package to detect a class that violates the Law of 

Demeter. If the tool finds that a message is sent directly to a 

class other than the one defined as a friend in Section 3.B, it lists 

the name of the class in the package, the number of related lines 

of the source code in that class, and the destination class name of 

the message. This detection result can be used to find specific 

destinations of the messages that violate the Law of Demeter 

and advise the developer to modify the program to reduce 

coupling between modules. In addition, the number of message 

destinations between packages can be regarded as the degree of 

coupling between packages based on our definition. 

V. EXPERIMENT OF THE DETECTION ABILITY OF THE TOOL 

A. Purpose of our experiment 

In this experiment, we develop source code of a sample 

program. The source code contains a portion that violates the 

Law of Demeter. We use the tool to analyze the source code to 

find the violated portion. 

The detection result is examined to identify the information 

of location in the source code where a violation is detected and 

the destinations of messages sent from the source code. Then, 

we modify the detected portion of source code, use the tool to 

analyze the modified source code again, and show that no 

violation is found. 

B. Experimental procedure 

1) Development of sample source code 

For the sample source code, we assume a case in which two 

points are located on a plane of two-dimensional coordinate 

system. 

The following describes an outline of the source code. 

The Line and Point classes are defined in the model package. 

The Point class uses the x and y coordinates to represent a 

specific point with the two-dimensional coordinate system. It 

has a method to set a point and another method to return the 

values of the x and y coordinates of the point. 

The Line class is used to represent a line on the 

two-dimensional coordinate system. Two points are required to 

represent a line with the two-dimensional coordinate. Therefore, 

two points are located on the field. It also provides a method to 

set two Points used to create a line and another method to return 

a Point class for each Point. 

The lod package contains the AntiLoD class that is necessary 

to use the model package. The AntiLoD class is used from the 

Line class to directly get the addresses in the Point class and 

actually draw a line. For example, to call the first x coordinate 

from the AntiLoD class, write the code “line.getP1.getX().” 

Fig. 6 illustrates the above description with class diagrams. 

 
Fig. 6. The class diagrams of generated source code 

 

2) Using the tool to detect violation 

Using the source code developed in Section 5.B.1) as input to 

the tool has generated the results shown in Tables 1 and 2. 

In this case, the cause of violation is a call issued from the 

AntiLod class to call the getP1() and getP2() methods in the 

Line class and return the Point class. ((1) in Fig. 7) Calling the 

getX() and getY() methods in the Point class ((2) in Fig.7) 

violates the Law of Demeter because it performs an 

inter-package communication to get the coordinate values. 

As for the AntiLoD class, a value of 1 is added to the number 

of counts since the message is sent exclusively to model.Point. 

(i)  Input source code. 

(ii) Generate an abstract syntax tree. 

(iii) Traverse an abstract syntax tree by using Visitor. 

(iv) Identify the location in a package from which a 

message is sent to another package. 

(v) Check whether the target object is a friend object 

or not, and generate a warning message if the 

object is not a friend object.  

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES 
Issue 1, Volume 5, 2011

126



 

 

In this study, when more than one message is sent to the same 

class, they are counted as one as a whole. 

The above discussion has proved that the tool works as 

defined in this study to detect violations. 

 
Fig. 7. The cause of violation 

 

Table 1. Detection of the AntiLod class 

lod.AntiLoD 

Line 

number 
Destination of message 

11 model.Point 

12 model.Point 

13 model.Point 

14 model.Point 

 

Table 2. The number of violations in AntiLod 

 

Class name 
Number of 

counts 

lod.AntiLoD 1 

3) Correction of violation 

Lieberherr, et al. proposed to create a wrapper class as an 

approach to dissolve such a dependency relationship. In this 

approach, the dependency relationship is dissolved by allowing 

a class to send a message to a class located beyond several 

classes. We adopt this approach in this study. 

According to the above discussion, it is necessary to hide the 

instances of the Point and Line classes. We have created the 

LineWrpper class as a wrapper class and also created the 

methods getP1X(), getP1Y(), getP2X(), and getP2Y() in the 

LineWrpper class. The dependency relationship is dissolved by 

changing the message destination in the called instance. 

In addition, the LoD class is added that is used to make a call. 

The LoD class obtains the values of a coordinate in the Point 

class from the LineWrapper class. As a result, line.getP1X() can 

be used to obtain the value of the first x coordinate from the 

LoD class. 

Fig. 8 shows the new class diagram corrected according to the 

result of detection. 

 
Fig. 8. The corrected class diagram 

 

4) Using the tool to detect violation after correction 

Using the source code corrected in Section 5.B.3) as input to 

the tool has detected no violation. 

The LineWrpper class calls the getP1() and getP2() methods 

in the Line class and returns the Point class. The getX() and 

getY() methods in the Point class are called. The Point class 

resides in the same package as the LineWrpper class. As a result, 

no violation occurs with regard to the Law of Demeter discussed 

in this study. The experiment has proved that the tool works as 

expected since no dependency relationship has been detected 

within the package. 

C. Summary of experiment 

Since the LoD class takes LineWrpper as its argument, it can 

call a method of the LineWrpper class. Calling a method of the 

Point class from the LineWrpper class to obtain the coordinate 

values does not violate the Law of Demeter defined in this study 

since the called method resides in the same package. 

However, the AntiLoD class takes only the Line argument. 

As a result, it is possible to call a method of the Line class, but it 

is not possible to call a method of the Point class. Therefore, 

obtaining the coordinate values violates the Law of Demeter 

defined in this study. 

The above discussion has validated the Law of Demeter 

proposed in this study and the tool developed based on it by 

detecting a message passing beyond more than one package as a 

violation and allowing a message passing within a package. 

Fig. 9 shows the experimental result and summary. 

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES 
Issue 1, Volume 5, 2011

127



 

 

 
Fig. 9. Comparison of class diagrams before and after 

correction 

D. Consideration on the result of experiment 

In Section 5.B.3), the measure taken to dissolve the violation 

of the Law of Demeter is creating a wrapper class of the Point 

class rather than creating a wrapper class of the Line class. 

Complying with the Law of Demeter class by class causes 

another problem in which many wrapper classes are required to 

be created to send a message to a class beyond several classes. 

Lieberherr proposed to use Aspect to resolve such a 

problem[18]. On the contrary, this study proved that creation of 

many wrapper classes can be prevented by applying the Law of 

Demeter to a package rather than a class. 

As described in Section 3.C, our approach aims to enhance 

the reusability of packages by regarding a package as a virtual 

object and providing the user interface for the object. For 

example, if a method name is altered in the Point or Line class, 

the AntiLod class is affected in the case of the class diagram in 

Fig. 6, however in the case of the class diagram in Fig.8, only 

the classes in the model package are required to be modified and 

no other class in other packages is required to be modified. 

In addition, with this tool, the class diagram can be used to 

identify the portion of source code in which a violation is 

detected, or a message is forwarded. Therefore, this tool can be 

used not only to modify source code to dissolve dependency 

relationships but also to clarify how to alter the destination of a 

message. That is, reviewing the design allows the designer or 

implementer to decide that the destination of a message should 

be changed or not. 

VI. RELATED WORK 

This section discusses the effectiveness of our tool based on 

comparisons with existing tools, such as Eclipse Metrics Plugin 

[3] and REV-SA of Cooper et al. [5] 

A. An outline of Eclipse Metrics Plugin 

To measure the behavior of IDE (Integrated Development 

Environment) based on various metrics, several tools are 

available, including Metrics plugin for Eclipse[4], Eclipse 

Metrics Plugin [3], etc. 

Metrics plugin for Eclipse allows the user to visually display 

the types of dependency relationships observed among 

packages. Eclipse Metrics Plugin can be used to represent the 

degree of coupling in a package or for each Type as values. 

Using these tools allows the developer to monitor the metrics 

in real time even under development. Thus, useful information 

to determine the dependency of modules can be obtained during 

development. 

B. An outline of REV-SA 

According to Cooper, et al. [15], in order for an 

implementation of a system to exactly satisfy the specification, 

it must closely adhere to the design documents. Even if an 

implementation satisfies the requirements, they pointed out that 

a system implemented not closely adhering to the documents 

may lacks maintainability and support and maintenance of such 

a system may become very difficult. For this reason, the system 

REV-SA is generated by applying XMI (XML Metadata 

Interchange) to the class diagrams created at the time of 

designing and those created by reverse engineering of source 

code and by comparing them automatically. Then, we use the 

system REV-SA to evaluate whether the system is implemented 

adhering to the original design. 

C. The purpose and methodology of experiment 

In this experiment, we compared the degree of coupling 

among classes detected by Eclipse Metrics Plugin with the 

degree of coupling among packages detected based on our 

definition, and showed that the number of objects that must be 

recognized decreases when focusing on the packages. It also 

showed that the number of objects that must be recognized 

decreases when focusing on packages. 

We applied this tool to each package of org.apache.catalina.* 

selected from the source code of Version 5.5.20 of Apache 

Tomcat[17]. An outline of this product is shown in Table 3. 

 

Table 3. An outline of Apache Tomcat 

 

Number of classes 380 

Number of packages 18 

Programming language Java 

Target package org.apache.catalina.* 

Version 5.5.20 

D. Experimental result and consideration 

We performed two types of measurement by analyzing the 

source code of Tomcat with this tool and with Eclipse Metrics 

Plugin, respectively. Table 4 shows the numbers of message 

transferred between packages. The results in Table 4 show that 

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES 
Issue 1, Volume 5, 2011

128



 

 

every package has dependent portions with other packages.  

Eclipse Metrics Plugin uses the number of classes, or Ce 

(Efferent Couplings), referenced from the class being measured 

as the metrics to represent the degree of coupling. 

Eclipse Metrics Plugin shows smaller values for some 

packages such as org.apache.catalina.core since it returns the 

value of the class which has the maximum Ce value among 

classes in the target package. (For example, as for the package 

org.apache.catalina.core, a value of 82 for the StandardContext 

class is output.) On the other hand, our tool counts all 

destinations of messages sent from classes in a package, which 

depend on classes outside the package, and eliminates 

duplication to generate the total value. 

The result shows that, from the viewpoint of the whole 

program, the number of dependencies based on our definition is 

smaller, and the number of objects that the designer is required 

to recognize decreases.  

 However, showing the number of dependencies alone does 

not differentiate valid dependencies from invalid ones. The 

difference can be identified only by reading the source code. In 

addition, since the number of dependencies may be large 

depending on a package, it takes a long time and effort to find all 

of them manually. 

 

Table 4. Comparison of the degree of coupling between our 

tool and Eclipse Metrics Plugin 

The name of package 

The degree 

of coupling 

measured 

with our 

tool 

Eclipse  

Metrics 

Plugin 

org.apache.catalina.ant 7 14 

org.apache.catalina.authenticator 27 35 

org.apache.catalina.connector 48 55 

org.apache.catalina.core 103 82 

org.apache.catalina.deploy 1 16 

org.apache.catalina.launcher 2 5 

org.apache.catalina.loader 13 62 

org.apache.catalina.mbeans 52 39 

org.apache.catalina.realm 25 41 

org.apache.catalina.security 5 18 

org.apache.catalina.servlets 21 50 

org.apache.catalina.session 24 39 

org.apache.catalina.ssi 14 27 

org.apache.catalina.startup 39 46 

org.apache.catalina.users 8 26 

org.apache.catalina.util 19 24 

org.apache.catalina.valves 26 28 

Thus, the tool can generate output that shows if a specific 

class in a package has dependency relationships with other 

classes in other packages. 

Eclipse Metrics Plugin allows the user to specify the upper 

limit of allowable values for metrics. The default upper limit of 

allowable values is set to 25. In the above case, if the default 

allowable value is applied, twelve packages out of seventeen 

packages have a value exceeding the upper limit, which results 

in generating a warning message. 

A possible cause of the result is the size of 

org.apache.catalina.core that consists of 28 classes and has 

about 600 KB of source code. On the contrary, 

org.apache.catalina.launcher consists of only one class and its 

file size is nothing more than 4 KB. Considering the difference 

in size, it is natural to exceed the threshold value. It is possible 

but not easy to specify the threshold value per package. 

Therefore, our tool does not aim to judge the validity of a 

package according to the threshold value, but it aim to present 

the information that shows which class sends a message to 

which class. Fig. 8 shows the dependency relationships among 

packages based on the result generated by the tool for the 

package org.apache.catalina.users that consists of nine classes 

and has about 55 KB. 

 
Fig. 10. The dependency relationship of 

org.apache.catalina.users 

 

As shown in this figure, output can be generated, which shows if 

a specific class in a package has dependency relationships with 

other classes in other packages. 

REV-SA advises the user to modify the design document by 

confirming the user if the implementation satisfies the user's 

requirements or not, focusing on aggregation and multiplicity. 

However, just reverse-engineering the source code may cause 

a problem that the class diagram becomes complicated. 

Therefore, to reduce the complexity, our tool presents only the 

dependency relationships among packages. 

Taking advantage of the result makes it possible to clarify the 

dependency relationships among packages, comprehend the 

dependency relationships without reading the source code, and 

present the information of which classes need to be redesigned. 

E. Summary of consideration 

In this study, we assume that indispensable dependency 

relationships should be intentionally selected by the designer or 

implementer. For this purpose, we proved that the number of 

target objects to be recognized can be reduced by focusing on 

the dependency relationships among packages. In addition, 

since it is difficult to comprehend the overall structure of a 

program only by pointing out violated portions, we present the 

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES 
Issue 1, Volume 5, 2011

129



 

 

dependency relationships among packages to promote an 

understanding of the overall structure. If the implementation is 

consistent with the design, it is easy to modify programs since 

the portion that requires correction can be easily understood 

from the viewpoint of overall program structure. 

As a result, such implementation makes it easier to do future 

program modification, including changes in the specification. 

VII. CONCLUSION AND FUTURE DIRECTION 

In terms of proper software design, since it is essential to 

perform proper modularization, we decided to focus on the 

module independency which is one of the metrics of 

modularization. Because the Law of Demeter was proposed in 

the time of C++, we extended its definition to include “friend” 

so that it may be applicable to Java. Furthermore, we proposed a 

measure to reduce the complexity in detecting dependency 

relationships by applying the Law of Demeter to a package 

rather than a class.  

We implemented our tool as a plug-in of Eclipse to discover 

dependency relationships among packages based on the 

definition discussed in this paper. 

As a result, the tool makes it possible to scan the dependency 

relationships among packages and detect violations. 

Then, the list of message destinations is generated to clarify 

the position of the modified portion from the viewpoint of the 

overall program structure and allow the designer and 

implementer to select the indispensable dependency 

relationships. 

As a result, such implementation makes it easier to do future 

program modification, including changes in the specification. 

It is not possible to use the tool properly if the packages are 

not modularized adequately. Therefore, it is necessary for 

novice programmers to learn how to adequately modularize 

packages in advance. It is possible to naturally modularize 

packages by referring to the coupling information of each 

package and by modularizing the package with this tool.  

In addition, in this study we applied the Law of Demeter to 

packages. However, when the same Law of Demeter is applied 

to classes, since the number of target objects becomes bigger, it 

is necessary to develop the rule to reduce messages by 

identifying the role of the message between objects, otherwise it 

is not possible to comprehend the relationship of messages to 

achieve an appropriate degree of coupling.  

For future direction, we plan to handle the case in which a 

system that is implemented as specified in the design document 

causes a violation of the Law of Demeter. In such a case, we are 

going to prepare several measures, including exclusion of 

violation portion according to the intention of the designer. 

Another interesting issue is to generate a warning message when 

the system is deviated from the design on the way of 

implementation by comparing the design with the 

implementation in the XMI format. For this purpose, the design 

documents such as class diagrams need to be converted to the 

XMI format in advance. 

APPENDIX 

The following source code used in Chapter 5  

Model.Point 

 
 

Model.Line 

 
 

Lod.AntiLod 

 

1: package lod; 

2:  

3: import model.Line; 

4: 

5: public class AntiLoD { 

6: 

7:   java.awt.Graphics g; 

8: 

9:  void drawLine(Line line) { 

10:   g.drawLine( 

11:    line.getP1().getX(), // violation 

12:    line.getP1().getY(), // violation 

13:    line.getP2().getX(), // violation 

14:    line.getP2().getY()); // violation 

15:  } 

16: } 

1: package model; 

2:  

3: public class Line { 

  4: 

5:  private Point p1, p2; 

  6:  

7:  public Line(Point p1, Point p2) {  

8:   this.p1 = p1; 

9:   this.p2 = p2;  

10:  } 

11:   

12:  public Point getP1() { 

13:   return p1; 

14:  } 

15:  

16:  public Point getP2() { 

17:   return p2; 

18:  } 

19: } 

1: package model; 

2:  

3: public class Point { 

4:  

5:  private int x, y; 

6:  

7:  public Point(int x, int y) { 

8:   this.x = x; 

9:   this.y = y; 

10:  } 

11:   

12:  public int getX() {  

13:   return x;  

14:  } 

15:  

16:  public int getY() {  

17:   return y;  

18:  } 

19: } 

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES 
Issue 1, Volume 5, 2011

130



 

 

Model. LineWrapper 

 
 

Lod.Lod 

 
 

REFERENCES   

[1]  G.J Myers, Composite / Structured Design. Van Nostrand,  Reinhold, 

1978. 

[2] ISO/IEC9126-1. Software engineering { Product quality { Part1: Quality 

model. ISO, 2001. 

[3] Shyam R, Chidamber and Chris F. Kemerer, A Metrics Suite for Object 

Oriented Design. IEEE Transactions on Software Engineering, Vol.20, 

No.6, June 1994, pp.476-493.  

[4]  Martin Fowler. Refactoring: Improving The Design of Existing 

Code.Addison-Wesley, 1999. 

[5] C.Lewerentz F.Simon, F. Steinbruckner. Metrics based refactoring. 

InProc. European Conf. Software Maintenance and Reengineering, pp. 

30–38, 2001. 

[6] K.Kontogiannis L.Tahvildari. A metric based approach to enhance  
design quality through meta-pattern transformations. In Proceedings 

of7th European Conference on Software Maintenance and Reengineering, 

pp.183– 192, March 2003. 

[7]  Katsuhiko Hatano, Yoshinari Nomura, Hideo Taniguchi , Kazuo 

Ushijima. Development Environments and Automated Technologies) A 

Mechanism to Support Automated Refactoring Process Using Software 

Metrics <Special Issue> Object-Oriented Technologies.(in Japanease) 

Transactions of Information Processing Society of Japan, Vol.44, No.6, 

pp. 1548–1557,20030615. 

[8]  K. Lieberherr, I. Holland and A. Riel, Object-oriented programming: an 

objective sense of style. Conference proceedings on Object-oriented 

programming systems, languages and applications, San Diego California 

United States, September, 1988, pp.323-334.  

[9] K. Lieberherr, Adaptive Object-Oriented Software: The Demeter Method.  

PWS Pub., Boston, 1996. 

[10]  Larman, C., Applying UML and patterns: an introduction to 

object-oriented analysis and design. Prentice Hall, 1998.  

[11]  D. L. Parnas, “On the Criteria to Be Used in Decomposing Systems into 

Modules,” CACM, Vol.15, No.12, pp.1053-1058, Dec. 1972. 

[12]  Eclipse. http://www.eclipse.org/ (2010/10/30) 

[13]  Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns.  

Addison-Wesley, 1994. 

[14]  Eclipse Metrics Plugin. 

http://www.stateofflow.com/projects/16/eclipsemetrics (2010/10/30) 

[15] David Cooper, Benjamin Khoo, Brian R. von Konsky and Michael Robey, 

Java implementation verification using reverse engineering. ACM 

International Conference Proceeding Series Vol. 56, Proceedings of the 

27th Australasian conference on Computer science, Vol. 26, 2004, pp. 

203–211. 

[16] Metrics plugin for Eclipse. http://metrics.sourceforge.net/ (2010/10/30)  

[17] Apache Foundation, Apache Tomcat.  http://tomcat.apache.org/ 

(2010/10/30) 

[18] Karl J. Lieberherr. Adaptive Object-Oriented Software:The 

DemeterMethod with Propagation Patterns. PWS Publishing Company, 

Boston,1996. ISBN 0-534-94602-X. 

 

 

Ryota Chiba He received a bachelor's degree in engineering from Shibaura 

Institute of Technology, Japan in 2007. He received a master's degree from 

Graduate School of Engineering, Shibaura Institute of Technology, Japan, in 

2009.At present, he is working in Japan National Statistics Center. 

 

Hiroaki Hashiura He received a bachelor's degree in engineering from 

Shibaura Institute of Technology, Japan in 2002. He received a professional 

degree in engineering management from Graduate School of Engineering 

Management, Shibaura Institute of Technology, Japan in 2005. He received 

Doctorate in engineering from Graduate School of Engineering, Shibaura 

Institute of Technology, Japan, in 2008. At present, he is postdoctoral fellow at 

Shibaura Institute of Technology. 

 

Seiichi Komiya He received the degree of the B. S(C), from Saitama 

University, Japan, 1969. He received Dr. Eng. from Shinshu University in 

March 2000. He was been working for Hitachi Ltd. as a software engineer 

during 1970-2001, and has been on loan from Hitachi Ltd. to 

Information-technology Promotion Agency Japan (IPA), a substructure of MITI, 

during 1984-1999. He has studied the frameworks to construct many kinds of 

CASE tools (e.g. an automatic programming system, a software collaborative 

distributed development environment, etc.), software specification/design 

process, CAI and Intelligent CAI at IPA. In IPA, he has been a principal 

researcher of Software Technology Center during 1988-1999, and was also an 

assistant to director general of Laboratory for New Software Architectures 

during 1991-1998. He works for Shibaura Institute of Technology as a full-time 

professor since April 2001. He was also a visiting professor of Tokushima 

University in 1993. He was also a visiting lecturer of Chiba University during 

1995- 2009, and a visiting professor of a graduate school of Shibaura Institute 

of Technology 1997-2001. He was a manager/a vice-chairman/a chairman of 

SIG-KBSE/IEICE during 1992-1994/1994/1996/1996-1998. He was also a 

member/a manager of editorial committee of IEICE transactions 

1994-1999/1998-1999. He was given a title of “IEICE fellow” from IEICE in 

2010. 

1: package lod; 

2:  

3: import model.LineWrapper; 

4: 

5: public class class LoD { 

6: 

7:   java.awt.Graphics g; 

8: 

9:  void drawLine(LineWrapper line) { // LineWrapper is 

friend 

10:   g.drawLine( 

11:    line.getP1X(), 

12:    line.getP1Y(), 

13:    line.getP2X(), 

14:    line.getP2Y()); 

15:  } 

16: } 

 

1: package model; 

2: 

3: public class LineWrapper { 

4:  

5:  private Line line; 

6: 

7:  public LineWrapper(Line line) {  

8:   this.line = line; 

9:  } 

10:   

11:  public int getP1X() { 

12:   return line.getP1().getX();  

13:  } 

14: 

15:  public int getP1Y() { 

16:   return line.getP1().getY(); 

17:  } 

18: 

19:  public int getP2X() { 

20:   return line.getP2().getX();  

21:  } 

22: 

23:  public int getP2Y() { 

24:   return line.getP2().getY();  

25:  } 

26: } 

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES 
Issue 1, Volume 5, 2011

131




