

Abstract — A natural language processing framework called
TextProc is described in this paper. First the frameworks software
architecture is described. The architecture is made of several parts
and all of them are described in detail. Natural language processing
capabilities are implemented as software plug-ins. Plug-ins can be
put together into processes that perform a practical natural processing
function. Several practical TextProc processes are briefly described,
like part-of-speech tagging, named entity tagging and others. One of
those is capable to perform plagiarism detection on texts in Slovenian
language, which is explained in detail. This process is actually used
in digital library of University of Maribor. The integration of digital
library with TextProc is also briefly described. At the end of this
paper some ideas for future development are given.

Keywords—natural language processing, text processing, text

mining, plagiarism detection, software framework, Slovenian
language

I. INTRODUCTION

EXTPROC (abbreviation of “text processor”) is a natural
language processing framework. The “natural language

processing” means that it is intended for processing of texts,
written in human language. The “framework” means that the
software is intended to be used as a building block for other
software applications that require natural language processing
capabilities. TextProc was implemented at Laboratory for
heterogeneous computer systems, Faculty of Electrical
Engineering and Computer science of University of Maribor.
Natural language processing capabilities are implemented as
software plug-ins. Because of this, the framework itself is
language independent, since all language dependencies are
limited to the plug-ins.

There are two main ideas for its implementation. First,
natural language processing is implemented in the form of
software plug-in once and then reused many times. An expert
in a specific natural language processing field implements a
plug-in. Later, other users can use it without knowledge of its
implementation. Plug-ins are also developed in such a way,
that it is possible to put them together into processes (we call
them TextProc processes), which perform a more complex
natural language processing operation. Second, the framework

assures an easy way to build and execute before mentioned
processes and also makes them available through several
software interfaces for integration. This way, TextProc
processes can be used in other applications, which make
TextProc even more useful. Some ideas are based on a similar
natural processing framework, called GATE (General
Architecture for Text Engineering) [1][2].

TextProc is implemented in C#, based on Microsoft .NET
Framework 1.1. The TextProc framework itself and some
plug-ins also use Microsoft SQL Server 2000 database or
better, although plug-ins can use any kind of database or other
data storage method. Output for TextProc is mostly in XML
format, so XSLT (XML transformation) together with web
technologies like XHTML, CSS and JavaScript are used.

The software architecture of TextProc framework is
described in the second chapter, together with detailed
descriptions of all modules in the architecture. Third chapter
introduces to TextProc plug-in types and explains the inner
working of a plug-in. Forth chapter presents the structure of a
TextProc document. It is used for intermediate and final
results. It is sent among plug-ins and defines the only way
plug-ins communicate with each others. Plug-ins can be put
together into processes that perform a practical natural
processing function. Details about TextProc processes are
explained in fifth chapter, where some practical processes are
briefly mentioned. One such process is plagiarism detection,
which is explained in sixth chapter. Concluding remarks are
done in the last chapter.

II. ARCHITECTURE

TextProc framework is made of several modules, as is
shown on Fig. 1. If we go from the bottom up, we first see the
TextProc plug-ins. TextProc knows five types of plug-ins,
where only one type is actually meant to implement natural
language processing algorithms. Other plug-in types perform
reading and writing operations on various data sources, like
databases, web pages and file systems. TextProc plug-in types
are described in detail in the next chapter.

Plug-ins must be implemented according to the software
interface that is defined in second module, called ITextProc,
where the letter “I” stands for “interface”. ITextProc also
defines the TextProc document object that contains the plain
text and all other data about the document, which is processed,

TextProc – a natural language
processing framework and its use as

plagiarism detection system

Janez Brezovnik, Milan Ojsteršek

T

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 5, 2011

293

including all results that plug-ins produce. This document is
then passed among the plug-ins. TextProc document is
explained in details later. ITextProc module also includes all
the functionality that has proven to be generally useful when
implementing plug-ins, like precise timers, HTML code
manipulation, simplified functions for hashing algorithms,
XML transformations, reading and writing files and more.

ITextProc

GUI
Demo

TextProc

Users

Other

applications

TextProcCore

WS

Fig. 1: TextProc architecture

Both ITextProc and plug-ins are implemented as .NET

assemblies, also known as DLL files (Dynamic-Link Library).
ITextProc must be used by plug-in developers for proper
implementation. When a plug-in is developed and compiled,
the resulting DLL is copied into a special folder of the
TextProc framework. If the plug-in is properly implemented,
the framework loads it and makes it available for use in
TextProc processes.

TextProcCore module implements everything in TextProc
framework that is not implemented in already mentioned
modules or it isn’t a part of GUI (Graphical User Interface)
directly. Its main purpose is to manage and run TextProc
processes that are made of plug-ins. This module (together
with ITextProc and plug-ins) can also be used directly for
integration with 3th party applications, if they are capable to
load and run .NET assemblies. With just a few lines of code a
developer can load and run a selected TextProc process and
receive the result. Results can be in the form of the TextProc
document object or as XML. Since XML can be transformed
using XSLT, the end result that the developer receives can be
almost in any form, making development of 3th party
applications as easy as possible. This presents the first possible
method of integration.

Previously mentioned modules are enough to run TextProc
processes, but to use TextProc directly by the user it requires

additional user interfaces. TextProc provides two user
interfaces: a desktop application and a web application.

TextProcGUI is a desktop application and is the main user
interface for TextProc. Its primary purpose is to enable
creation, management and execution of TextProc processes. It
is intended for execution of long running processes on a large
collection of documents. It also enables management of
processes, available via TextProcDemo and TextProcWS
(described later). The main window of the TextProcGUI is
shown on Fig. 2. In the “Log” section (bottom) the event log is
shown, where exceptions and other information is displayed,
like how long it took for process to finish. Some plug-ins also
write their statistics at the end of processing in the log window.

Fig. 2 Main window of TextProcGUI

In “Process” section a list is shown, where the first three

items are always shown: process, corpus and script. If the first
item is selected, then some basic settings of TextProc process
are shown (on the right of the list). From here TextProc
process can be started (with “Run” button) and the progress
can be observed. There are two progress bars: for progress of
the current document and for the entire corpus. If the “Corpus”
list item is selected, we get a list of documents that are about
to be processed. Documents can be loaded from the file system
or from various databases; currently Microsoft SQL Server
20xx and MySql databases are supported. If the “Script” list
item is selected, we get a multiline text input field, where a
simple domain specific scripting language can be used. The
script is explained in detail in later section.

All other list items in the “Process” list (below the line) are
plug-ins. Selecting one of them shows all settings of the
selected plug-in. Plug-ins can be added to the list and thus to
the TextProc process by right clicking on the list and selecting
a plug-in. A single plug-in can be added to the process
multiple times and each instance can have different settings.
Settings of a plug-in are actually all public properties of a C#
class that implements the plug-in interface. For now only
primitive data types are allowed.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 5, 2011

294

TextProc is also available over the web in two parts. First
part is a web application called TextProcDemo that is
primarily intended for presenting TextProc capabilities. It is
also used for validation of correct implementation of plug-ins
and processes. Some TextProc processes are published and
publicly available to everyone for testing purposes. Web page
for testing is shown on Fig. 3. TextProcDemo is currently
available only in Slovenian language; Fig. 3 was translated for
this paper.

Fig. 3: TextProcDemo

First, the user selects one of the available TextProc

processes. At the end of short description (in the dropdown
list) the output format is mentioned and mostly the output is in
XML format. XML can be transformed using XSLT, so the
next dropdown list includes all available transformations for
the selected process. Since TextProcDemo is intended for
testing purposes, most transformations produce a human
readable output, thus in XHTML format. The third input
expects commands in the form of a script. Most processes
don’t require a script, but some do. If the script is required for
process execution, then those lines of script (with default
values) are displayed when the process is selected, as is also
shown on Fig. 3. This way the user knows that the script is
required. The forth input is for the text, that is about to be
processed. There is also an option to add data about used plug-
ins into the resulting XML. Full name and version of used
plug-ins is added, including execution times for each plug-in,
which can be used for plug-in performance comparison. Once
all the data is entered, we can press the “Run” button and the
results are shown in a new browser window. This way the

process settings and entered text remain entered and enable the
user to make small changes to settings or text for another run.
Since each result opens in a new window, it is also possible to
compare results of different process executions.

The second part of TextProc that is accessible on the web is
TextProcWS. This is a .NET web service that can be used to
run exactly the same TextProc processes as TextProcDemo.
Input parameters are also the same, where process and XSLT
file are determined by the identification numbers. Users can
get those numbers from dropdown lists on TextProcDemo web
page. In case of Fig. 3, the process identifier is 11 and XSL
file identifier is 1 (no XSL selected, result will be in XML
format).

III. TEXTPROC PLUG-INS

TextProc plug-ins are modules, that carry the natural
language processing and text mining functionality. They
enable the TextProc framework to grow. However TextProc
supports multiple types of plug-ins and only one type is
actually involved into natural language processing while others
are in a support role. Currently, TextProc supports five types
of plug-ins:

• InputPopulator,
• InputConnector,
• Converter,
• Processor,
• OutputConnector.

The main purpose of the InputPopulator is to populate the

corpus of a TextProc process with documents. TextProc
corpus can include documents from all kind of sources, but
each source has a different way of access. This plug-in type
takes care of content delivery of selected documents,
depending on the source. For instance, getting document from
a file system requires from a user to define the folder and file
type (file extension), while getting document from a database
requires a connection string and a SQL query. This plug-in
type is used only in TextProcGUI, when a user is preparing the
process corpus. Currently TextProc has 4 plug-ins of this type:
for getting document from a file system, from a Microsoft SQL
Server 20xx database, from MySql database and for filling the
corpus with empty documents. When the corpus is filled with
documents, it is filled with instances of the next plug-in type,
called InputConnector.

For each InputPopulator plug-in there is an InputConnector
plug-in; they always appear in pairs. When the corpus is
populated with documents, it is actually filled with instances of
InputConnector plug-ins. Each instance carries all the data
necessary to read the content from the document source. E.g.
for reading a file from file system, there is an InputConnector
instance that carries a single file name; for reading the content
from a database, there is an InputConnector instance that
carries a SQL query, which returns the text and so on. Real
implementations of these plug-ins in fact carry more data. As
said, instances of this plug-in type are stored in corpus and if

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 5, 2011

295

the process is saved, then the plug-in settings are stored in the
file; not the actual document content, but the data required for
content access. Process is saved as XML file and can be
viewed and edited in any text editor. A sample process XML
with only one document in the corpus can be seen on Fig. 6
(on next pages).

Since InputPopulator and InputConnector plug-ins always
appear in pairs, there are currently 4 plug-ins of type
InputConnector: for file system documents, for Microsoft SQL
Server database records, for MySql database records and for
empty documents. The last type is used in TextProc processes,
available at TextProcDemo web site. These processes include
an empty document that is filled with text, entered into the
input box.

The third plug-in type - called Converter - is intended for
converting various document formats into plaintext. TextProc
is only capable of processing plaintext, so documents formats
like PDF or DOC must first be converted to plaintext. At the
time all input was externally converted to plaintext, so there a
currently no plug-ins implemented of this type, since there was
no need for this. The idea was that plug-ins of this type would
register itself into TextProc as a converter for a specific
document MIME type, but such functionality was never
implemented.

The most important plug-in type in TextProc is Processor.
This plug-in type is actually involved with natural language
processing and also text mining. Currently there are 39 plug-
ins implemented of this type. Processor plug-ins can be added
to the TextProc process or removed using TextProcGUI. They
are stored (with settings) as parts of the process XML file (as
shown in Fig. 6 on later pages). Plug-ins of this type are also
accessible via a script, that enables us to change plug-in
settings while the process is running. Using the script it is also
possible to skip a plug-in execution, thus disabling the plug-in
(or enable an already disabled one). More about the script will
be explained later.

The last type of plug-in is OutputConnector. It behaves
exactly the same as plug-in type Processor and is intended for
writing results. Plug-ins of this type are mostly used at the end
of a TextProc process, where results are written. For now there
are 5 plug-ins implemented of this type. In most cases, results
are written in XML format, since XML is excellent for
software interoperability and enables easy output formatting
later on (using XSLT). Other plug-ins of this type return
specific result formats that can’t be achieved using XSLT or
return statistics, not included in the XML file.

Implementation of a TextProc plug-in is quite easy. Fig. 4
shows the minimum source code (in C# programming
language) that successfully compiles as a TextProc plug-in,
although the given code doesn’t do anything. As seen, a
TextProc.ITextProc namespace must be used and the class
must be implemented according to IProcessor interface. The
class name must be the same as the plug-in name, that is the
same as the resulting DLL file. DLL file can include other
classes, but only the class with the same name as the DLL file

is considered as the plug-in implementation class. This class
must have two class properties. The first is ProcEnv that is set
by the TextProc process and includes a reference to processing
environment. This enables access to the entire corpus, event
log, progress indicators (on GUI) and other functionality. The
second property returns the type of the plug-in (this property it
is read-only). Any other properties defined in the class are
considered to be settings of the plug-in. Those are displayed in
TextProcGUI, can be changed via GUI or TextProc script and
are stored as part of the TextProc process XML (shown on
Fig. 6). For now, only primitive data types can be used for
class properties.

Fig. 4: Minimum source code of a TextProc plug-in

The rest of the code includes three methods. First is the

default class constructor. Second is the method Run, which
receives the current document that is about to be processed.
This method does the actual processing and is called for each
document of the corpus separately. When all documents are
processed, then the method Finish is called. This method is
intended to do any final work of the given plug-in, like storing
cumulative results or showing statistics of the entire corpus.

If we have a large set of plug-ins and each having its own
settings and meaning, it is important to document them well.
For this purpose TextProc supports several ways to document
plug-ins. The preferred format for plug-in documentation is
HTML, but plaintext files are also supported. The majority of

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 5, 2011

296

documentation is stored inside CHM file (Microsoft Compiled
HTML Help; it is simply a collection of HTML files stored
inside a single file). Documentation of plug-ins can be stored
as:

• a HTML file, stored inside the CHM file;
• a HTML file, stored in the same folder as the plug-in and

with the same name, except the file extension (.html) or
• a TXT file, stored in the same folder as the plug-in and

with the same name, except the file extension (.txt).

At the start of TextProcGUI desktop application, plug-ins
are loaded. For each loaded plug-in, the presence of the
documentation file is also checked. If documentation for a
specific plug-in is available, it is also shown on user request.
Practice has shown that the documentation for a TextProc
plug-in must include:

• description of what the plug-in does;
• a list of all settings with description of their meaning and

allowed values;
• a list of other plug-ins this plug-in depends on;
• description of any external files that plug-in receives via

settings.
Documentation for all plug-ins and the rest of the TextProc

framework is available in TextProcGUI via help options in the
menu and via help button at the plug-in settings screen (for
that specific plug-in). Documentation is also available on the
first page of TextProcDemo web site.

IV. TEXTPROC DOCUMENT

The idea of plug-ins in TextProc is that each plug-in
performs some work from areas of natural language processing
or text mining, using the results of other plug-ins. This requires
some kind of communication between the plug-ins. This is
done through a special object we call TextProc document. It is
a document structure, that caries all the results of the plug-ins.
When a TextProc process is executed, the used plug-ins are
executed in the given order, as is determined by the process
creator (user). At the start, TextProc document is created and
filled with plaintext. Plaintext can be read from all kinds of
sources and a plug-in of type InputConnector is responsible for
delivery of plaintext from a specific source. Plug-in of this
type is a part of TextProc document and not of the TextProc
process.

After the document object is filled with text, the first plug-in
in the process is executed (the method Run in called). It does
its job and saves its results in the TextProc document, which is
then passed to the next plug-in and so on to the end of the
process. Each subsequent plug-in can use the results of the
previous one. The last plug-in in the TextProc process is
usually of plug-in type OutputConnector, which is responsible
for storing the results. In most cases results are saved as
TextProc document in XML format. This can be written to a
file or to memory for further processing, as is the case when
using TextProcDemo or TextProcWS.

TextProc document contains the following data:

• Reference to the InputConnector plug-in that delivered
the plaintext content. As already mentioned, there are
multiple types of TextProc plug-in and one type is
responsible for plaintext delivery.

• Generic key-value data structure for storing various
metadata. Plug-ins can add on change this data. For
example, processing times of plug-ins are written to this
data structure (if requested). It is also used for plug-in
communication, when the data in question is not a part
of the result, like passing parameters and settings.

• Actual content as plaintext.
• Sets of tags. This stores the actual language processing

results.

Sets of tags are used for data exchange between plug-ins.
TextProc document can carry any number of sets that are
identified by name. Each set can carry any number of tags. A
tag is an object that points into the text and carries a set of
values (strings). Tag object is defined in ITextProc module
and contains the following data:

• Tag identifier (a number), unique per document.
• Position of first character in the plaintext that is tagged

by this tag.
• Position of the last character in the plaintext.
• Length of tagged text, calculated from positions of the

first and last character.
• Line number of the first tagged character.
• A set of child and parent tags. A tag can point to other

tags or be pointed to by other tags. This enables
building hierarchies like: a word is a part of a sentence
and a sentence is a part of a paragraph.

• A key – value collection of strings.

Fig. 5 shows an example of TextProc document after the

TextProc processing is completed. First we have a sample
plaintext. One of the first TextProc plug-in in the TextProc
process is usually a tokenization plug-in that breaks text into
words. This plug-in creates a set of tags, called Tokens. Each
set can contain any number of tags. Each tag points into the
text, that is on the first and last character of the string that is
tagged by a given tag. Each tag can carry any number of
properties and in our example it carries the property called TC
(token class) and a value. The current TextProc document is
then send to the next plug-in, responsible for detection of
clauses. It creates a new set, with tags that carry the type of the
clause. However this newly created tag doesn’t point directly
at the text, but on previously created tags with words. Again
the document is sent to the next plug-in and this time it tags
sentences in form of a new set (called Sentences) and with a
new tag that points to previously created clause tag. This way a
hierarchy of tags is created, which can be used by any
subsequent plug-in. As described, the TextProc document is
send to each plug-in in the TextProc process. Usually the last
plug-in in the process is of the type OutputConnector that is
responsible for writing the results. In most cases the whole

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 5, 2011

297

TextProc document is serialized as XML file.

Fig. 5: Sample TextProc document after processing

Since tags are in named sets, and values are in a key-value

collection, those names and keys must be known in advance.
Because of this, plug-in implementation somewhat depends on
implementation of other plug-ins. This means that the order of
plug-ins in a TextProc process is predetermined. For now,
correct order of plug-ins is not determined automatically and
must be taken care of by the user, who creates the process. To
somewhat mitigate this problem it is a good idea to give these
names as part of plug-in settings. This makes plug-ins more
reusable.

V. TEXTPROC PROCESS

As already mentioned, TextProc plug-ins aren’t executed
alone as a single unit, but as a part of context we call the
TextProc process. This process can be created using
TextProcGUI desktop application and consist of several
components:

• a set of plug-ins used in the process,
• a set of documents to be processed (a corpus). Documents

can come from various sources and a TextProc process
can process them regardless of the source.

• TextProc process settings.
• A script.

In the TextProc process, plug-ins must be in a specific order

and the user that is creating the process must know what the
correct order is. Each plug-in also has its settings that are
stored as part of the process.

TextProc process itself also has its settings, also shown in
the TextProcGUI main window (Fig. 2 on previous pages).
Those settings are:

• a short description of what the process does. It is a good
idea to mention the output format.

• An option to enable or disable removal of already
processed documents from memory. While TextProc

process is running, TextProc documents are stored in
computer memory. If the plug-ins need only the current
document for processing, then there is no need to hold
the previously processed document in memory.

• An option to enable or disable memory profiling. If
enabled, then memory usage measurements for each
plug-in is added to the metadata of the TextProc
document. There is an OutputConnector type plug-in that
can write the memory usage report as HTML file.
Measurement of memory usage has a negative impact on
execution times of TextProc process and is therefore
enabled only if those measurements are needed.

• An option to make a beeping sound when the process is
completed. Useful when processing large corpuses on a
separate machine. This way the user is notified by a short
beep using computer system speaker. Useful only if the
process runs for a few hours, but not when running for
days. In this case a notification via email would be more
appropriate (it is not implemented).

TextProc script is a domain specific language that enables

us to make changes to settings of used plug-ins and to
manipulate with the process while the process is running. We
can:

• change plug-in settings;
• enable or disable a plug-in. If a plug-in is disabled, it is

skipped from any subsequent process executions;
• reset, start or end a process;
• store content of the event log to a file or clear the log;
• store and load a TextProc process. Loaded process is then

executed automatically.

With the script it is possible to automate experiments, where

a single process restarts itself multiple times with prerecorded
changes to plug-in settings. Such processes can then run for
days without human intervention.

When a created process is stored, it is written in XML
format. Fig. 6 shows a sample TextProc process. It has an
empty script, one document in a corpus (content is read from a
plaintext file) and two plug-ins, Tokenizer and XmlWriter.
Each plug-in has its settings. Since TextProc processes are
stored in XML and since XML is just a kind of plaintext, they
can also be edited with any regular text editor.

There are already many practical TextProc processes
available for use. The TextProcDemo web application alone
has 14 published processes, so let’s mention some of more
practical ones.

One process is capable to tag known named entities in
Slovenian language. Known entities are stored in a database
and it includes Slovenian personal names (first and family
names), towns, cities, rivers, hills, mountains, colors, names of
days and months.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 5, 2011

298

Fig. 6: Sample TextProc process in XML

There is also a TextProc process for tagging numbers,

written as words or as numerals. For instance, both “3” and
“three” are tagged. In both cases the tag also carries the
numeric value, for instance “twenty-three” has a value of 23. It
is capable to detect numbers written in both Roman and Arabic
numeral systems, also dates and other formats, written with
numerals.

Another useful TextProc process is a part-of-speech (or
PoS) tagger for Slovenian language. We didn’t implement our
own tagger; we integrated and existing one, a language
independent, freely available tagger, called TreeTagger [9].
This tagger must first be trained on a corpus and we used two
Slovenian corpuses, ELAN [7] and later also FidaPlus [8]. We
actually used TextProc to convert these two corpuses into
training corpus for the TreeTagger training component. The
TextProc process using TreeTagger is now also available via
TextProcDemo for testing and via TextProcWS for use.

TreeTagger is also able to perform lemmatization. Before
TreeTagger was available, we had a different approach to
lemmatization, now also available as a TextProc process via
TextProcDemo. Since we now have several ways to do
lemmatization, we created a special TextProc process that
performs lemmatization with all available methods we have
and display the results in a single table for comparison. This
process is also available via TextProcDemo.

There is also a process published at TextProcDemo that is
capable to perform a basic kind of wikification. Wikification is
tagging the input text with links to Wikipedia, in our case the
Slovenian version. It is possible to download the entire
Wikipedia database and we did this for Slovenian an English
version and then restored both databases on our servers.
Current implementation is basic in the sense that it tags all
words available in Wikipedia, which is not very useful (too
many links, also on basic words and numbers). In the future it
will tag only relevant words, depending on the subject of the
input text.

TextProc is also capable to perform plagiarism detection
and it takes two TextProc processes to do this. A detailed
description of how it works is given in the next chapter.

VI. PLAGIARISM DETECTION

One of the most useful practical applications of TextProc
for now is plagiarism detection. It is also the only TextProc
process currently used by external software (described later).
Plagiarism occurs, when someone copies some content from
other authors and then claims it as his own original work.
Plagiarism is stealing and is therefore illegal. Plagiarism
detection is a method of finding content that has been copied
from others. A more detailed description of plagiarism, why it
happens and the problem it causes is available in [4] and [5].

Plagiarism detection in TextProc is implemented using two
TextProc processes. The first process transforms all
documents into a form, more suitable for plagiarism detection.
This transformation is performed using the following TextProc
plug-ins (each list item is a plug-in):

1. Text is tokenized, that is broken into words. This is a
generic plug-in and breaks the content up regardless of
its meaning. Because of this, certain content is broken,
that from a human perspective should not be, but this
problem is then solved by the second plug-in.

2. Some tokens are merged back together by a given set of
rules. For instance, a decimal number “3.14” is
separated by the first plug-in. The second plug-in
determines that the dot is not a sentence separator, so it
is merged back into one word.

3. All words are converted into lemma form (canonical or
dictionary form of the word). This is the most language
specific plug-in in the whole process. Lemmatization is
used because Slovenian language is heavily inflected; a
word can have a very different form, depending on
gender, case and number of the word.

4. Sentences and clauses are determined.
5. Paragraphs are determined.
6. Words in lemma form are merged into new sentences

without redundant spaces, tabs or line feeds that may be
present in the original text; only a single space
character is used as word delimiter. Also, words are
sorted alphabetically on the level of a clause. This way,
word order within clauses becomes irrelevant.

7. Newly constructed sentences are hashed using a hash
algorithm. Currently MD5 (Message-Digest algorithm
5) is used; several variants of SHA algorithm (Secure
Hash Algorithm) are already supported.

8. Previous plug-in in called again; this time it hashes
whole paragraphs.

9. Plaintext of documents and its hash values for sentences
and paragraphs are stored in a database.

This process is executed for each document separately. The
second process contains only one TextProc plug-in and all it
does is searches for hash values from one document that are
also present in other documents of the same corpus. The end

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 5, 2011

299

result is similarity report in XML format. Similarity is
calculated as quotient between the length of similar content
and length of entire document, expressed as percentage (for
both documents).

Plagiarism detection is currently been used by the Digital
library of University of Maribor (DKUM). TextProc has been
integrated with DKUM using web service, available as part of
TextProcWS. Each night (in times of least web traffic) DKUM
sends unprocessed documents to TextProc and requests
similarity reports in XML format. Those are then processed
and saved in DKUM’s database for later use. Reports are
saved in such a way that it enables progressive plagiarism
detection. This means that a similarity report for a new
document updates all reports of the older documents.
Similarity reports are then shown on the administrative pages
of DKUM, described in detail in [3].

Till now, plagiarism detection is done only between
documents in DKUM corpus. In future, other sources will be
added. This will probably bring the need to compare document
between corpuses, which is now missing. Current
implementation of plagiarism detection also lacks the ability to
determine citations that are allowed and are thus completely
legal. We are still working on these improvements, since they
are essential feature for good plagiarism detection.

There are also other ideas for improvements. For instance
we would like to detect numbers in text and replace them with
a text or tag like “[number]”. For plagiarism detection, actual
numeric values are irrelevant. If someone does plagiarism
deliberately, then they probably make small changes in
numbers, like adding a decimal, removing it, maybe changing
it or writing it differently. Replacing the number with a tag
makes such changes irrelevant and detectable. We already
developed a plug-in that is able to tag all kind of numbers. All
that we need now is to replace those numbers with a tag. This
replacement would be done somewhere before plug-in number
6 (new sentence creation) in the first TextProc process for
plagiarism detection.

VII. CONCLUSION

The existing capabilities of the TextProc natural language
processing framework were presented, including practical
applications of it. One of the first changes in TextProc will be
to port it to the new Microsoft .NET Framework version. It is
currently based on .NET 1.1, but the latest version is already
4.0. There are many new features in the latest .NET version
and also in the C# programming language that we use. By
porting to the latest version we expect both simplifications in
software development and performance gains. The latest .NET
version also brings significantly better support for parallel
computing, that might be useful for plug-in development or in
the TextProc framework itself.

TextProc has already seen some practical usage, especially
in the role of plagiarism detection system that is integrated into
an actual digital library. There are ideas to implement a
separate web application that would offer plagiarism detection

service to anyone, again based on TextProc. Actually this is
already possible by using TextProcDemo, but the current user
interface in generic for all TextProc processes and is thus not
appropriate for uploading large number of documents. A
specific web application will be implemented, including
registration, login, document management and report review
functionality, targeted at average users (non natural language
processing experts). There are also other existing applications
that we were already thinking to enhance them with TextProc.
One of them is a 2.0 version of proprietary question answering
system, currently in development (the first version is described
in [6]).

TextProcDemo has also proven to be very useful for testing
and presentation purposes, since it is easily accessible (over
the internet; no software installation is required). It is also easy
to use; users only need to select a process and enter some text.
Although results are mostly in XML format, those can be
transformed using XSLT into almost anything, including into
good looking, human readable format and some of those are
already available for use. With further plug-in development it
is easy to extend the capabilities of TextProc and its use in the
future.

REFERENCES

[1] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan. “GATE: A
Framework and Graphical Development Environment for Robust NLP
Tools and Applications”, Proceedings of the 40th Anniversary Meeting
of the Association for Computational Linguistics (ACL'02).
Philadelphia, July 2002.

[2] “GATE: General Architecture for Text Engineering”,
http://gate.ac.uk/, visited on October 2010.

[3] J. Brezovnik, M. Ojsteršek: “Advanced Features of Digital library of
University of Maribor”, International Journal of Education and
Information Technologies, NAUN, Issue 1, Volume 5, 2011, pp.34-41.

[4] S. Carmen Cismas: “Anti-Plagiarism Strategies for Environment
Engineering Students”, Recent Advances in Energy & Environment,
Proceedings of the 5th IASME / WSEAS International Conference on
Energy & Environment (EE’10), 2010.

[5] Z. Mahmood: “Students’ Understanding of Plagiarism and Collusion
and Recommendations for Academics” WSEAS Transactions on
Information science and applications, Issue 8, Volume 6, August 2009.

[6] I. Čeh, M. Ojsteršek, “Developing a Question Answering System for the
Slovene Language”, WSEAS Transaction on Information science and
applications, Issue 9, Vol. 6, 2009.

[7] “Slovene-English Parallel Corpus IJS – ELAN”, http://nl.ijs.si/elan/,
visited on December 2010.

[8] “FidaPlus: Corpus of Slovenian language”,
http://www.fidaplus.net/Info/Info_index_eng.html, visited on December
2010.

[9] H. Schmid: “TreeTagger - a language independent part-of-speech
tagger”, http://www.ims.uni-stuttgart.de/projekte/corplex/
TreeTagger/DecisionTreeTagger.html, visited on December 2010.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 5, 2011

300

