

Abstract—Although, programming classes have been taught with

variety of ways and different tools to increase the student retention,
women and minorities are still underrepresented in computer science
and the awarded degree numbers are still way behind from the 2000 -
2006 numbers. In order to address this problem, a drag-on-drop
programming environment is created to teach introductory level
object oriented programming course for the students who have no
prior programming experience. The framework eliminates one of the
main challenges, if not the most, namely syntax issues with creating
the programming statements automatically. With that way the
students focus more on the logical issues of the task, instead of
spending time on correcting typos and syntax errors. The applied
survey to the student who is majored in another program but taking
the Introduction to Programming course revealed that 88 percent of
them found the application beneficial. Survey completed by non-
Computer Science (CS) majored women students indicates that this
new application will increase the interest level in computer science,
while 82 percent of the non-CS majored women students prefer to
use this application instead of current programming environment.

Keywords—Computer Science, Drag-on-Drop, Java
Programming, Visual Programming.

I. INTRODUCTION
lthough, overall the total number of enrolled majored
students and awarded degrees in computer science is
increasing in the last couple of years, it is still behind the

numbers from the period of 2000 and 2006 [1]. Moreover, the
11% female population in computing area is almost half of the
all women population in science and engineering field [1].
According to the research done by [2, 3], frustration while
programming, math involvement, and spending most of the
time in front of the computer are some of the reasons why
students don’t pursue a degree in the computing area. Besides
those, the belief that computer science is a competitive field is
also an extra discouraging reason for female students which
push them away from computing major. Because of these, the
lack of students in the computing area creates a good amount

S. Silessi is with Sam Houston State University, Huntsville, TX 77341

USA (e-mail: sgs008@ shsu.edu).
C. Varol is with Sam Houston State University, Huntsville, TX 77341

USA (corresponding author to provide phone: 936-294-3930; fax: 936-294-
4312; e-mail: cvarol@ shsu.edu).

H. Varol is with Sam Houston State University, Huntsville, TX 77341
USA (e-mail: hxv002@ shsu.edu).

of unfilled jobs in the IT sector where there is dire need to
have skilled employees. Therefore, in order to attract more
students and increase the retention, different strategies have
been used [4, 5]. Some departments offered scholarships [5],
companies provided paid internship opportunities and summer
trainings [5], and faculty promoted their departments with
teaching in different styles and exposing the students with
exciting research projects [6, 7, 8, and 9]. The effort put by the
faculty varies among the level and style being used, while
some of those studies target introductory level computer
programming courses [7, 10]. The main rationale behind this is
that some students change their majors after taking the first
course from computer science [11]. Also, introductory level
programming instructors support the fact with claiming the
students are having hard time when they take their first
programming course. Therefore, in order to promote the
computer science field, the introductory level programming
courses need to be more appealing to the students rather than
being so difficult that they lose interest in this field of study.

Each student’s learning style and cycle is different from
each other. Therefore, finding and applying one technique and
tool in the programming language courses is a challenge.
However, based on the reasons that the students change their
major from computer science to another field can yield to a
framework that will help student retention. Therefore, a new
programming editor for Java is created which helps lessen the
frustration experienced by beginner programmers. The new
editor employs a drag-and-drop feature to improve students’
ability to programming while allowing them to grasp main
concepts. The editor is designed to generate automatic
statements and related syntax according to the programmer’s
need while minimizing the time spent on fixing the errors.

In order to test the editor, a preliminary survey was
conducted on the students in the Programming Fundamentals I
course in the first quarter of the semester. After which, we let
the students use the editor closer to the end of the semester
once they had been programming with a plain text editor. Then
we administered a post-test survey to see how they felt about
the new editor, what they preferred and what helped them the
most. According to the surveys, 88 percent of the non-CS
majored women students found the application useful.
Moreover, survey completed by non-CS majored women
students indicates that this new application will increase the
interest level in computer science and 82 percent of them

Non-Computer Science Majored Women
Students Perspective on a Pictorial

Programming Environment
Shannon Sillessi, Cihan Varol, and Hacer Varol

A

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 2, Volume 7, 2013

44

prefer to use this editor instead of the current programming
environment.

In Section 2, we will describe what has been done
previously in the field of Computer Science to address this
issue, and what applications have been created to aid novice
programmers with learning to program. In Section 3, after
evaluating the advantages and disadvantages of the current
programming environments, we will describe how our findings
contributed to the creation of the new editor called Dragon
Drop. In section 4, the test case of the editor and results will
be revealed and the paper will be finalized with discussion and
conclusion section.

II. RELATED WORK
Research in related work has determined several projects

were developed to aid students in grasping the concepts and
syntax essential to completion of their programming
assignments. Karel Software was a success at the high school
level in helping students transition into the world of coding
with a programming tool called Alice [12]. Alice is a 3D
programming environment made for entry-level programmers
that allows the users to use scripts to create and control the 3D
environment [12]. It’s based on the python programming
language and uses many of its features in the available scripts
to control the 3D objects in the program and interact with
input from the user [12]. The built-in commands of the
language are separated into two groups: one group moves the
objects in the environment in different directions and views,
and the other controls the nature of objects destroying and
creating [12]. In conventional 3D programming, one must
know how to structure the methods, decisions and looping in
order to perform these actions [12]. Alice uses GUI
(Graphical User Interface) controls and gives a visual
representation to make operations easier to understand without
the user’s prior knowledge of 3D programming [12].

Joey C.Y. Cheung, and et. al., proposed another approach
for junior high school students called Bricklayer. Bricklayer is
a text-enhanced graphical programming environment designed
to stimulate the learning interests of students while also
encouraging them to learn both programming logic and syntax
[13]. It allows specific syntax statements to be generated
immediately where the students can view them as they drag a
block to a particular place [13]. This action allows students to
instantly know what happens in the coding while they are
creating a story or animations [13]. The programming tool is
written in JavaScript so it can be run over a web browser, and
the source code is generated in the C language [13]. What
makes this programming environment unique is that it requires
students to drag and drop the separate ‘If,’ ‘Then’ and ‘End If’
components of a conditional statement individually into the
construction area in order to give students a more realistic
view of programming concepts. This would make it easier for
them to make the switch to conventional textual programming
later on [13]. Bricklayer also gives the user the ability to copy
source code and past it into another text editor for further
modification [13].

Among the more popular development environments for
programming courses is the mid-weight IDE called BlueJ,
developed by Michael Kolling and John Rosenberg. BlueJ
features a graphical class structure display that illustrates the
relationships between each class [14]. Using BlueJ as a
programming tool requires the instructor to be more involved
in teaching the students an understanding of the concepts and
syntax of programming, but proves to be more effective than
the strictly text-based approach [15]. There is, however, no
visual representation of objects [14].

Faculty and students at Washington University have
developed a programming GUI by the name of Jpie, in the
pursuit of making programming available to people who would
normally quit or not be interested at all by having them focus
on actually creating software rather than learning the
intricacies of the language that they are using [16]. Jpie
achieves this goal by making most abstractions and constructs
of the language into visible representation for the students to
use directly [16]. It uses reflection in Java to allow live
modifying of the software to get out of the compile-then-build-
and-see-if-it-works mentality [16]. Jpie uses constructs called
‘capsules’ which includes all variable declarations, variable
accesses, methods, and constructors. Each of these capsules is
visually coded to show its type and its color for scope,
demonstrating exactly what parts of the program it affects. It
also utilizes drag-and-drop operations for “get” and “set”
commands [16].

Developed at both Kent and Deakin University with Sun
Microsystems’ support is Greenfoot. Greenfoot is an
interactive development environment for Java created with the
purpose to educate high school and undergraduate level
students in programming [14]. Using Greenfoot, users have the
support to develop graphical applications in 2D, particularly
games [16]. Greenfoot began with Michael Kolling from the
BlueJ team, and Poul Henriksen [17]. Its integration is an
expansion on other existing tools, namely BlueJ, for the
development environment. Greenfoot is a highly visual and
interactive tool meant to reduce overall time needed to learn
each of the currently available tools that Greenfoot is based on
[14].

Jeroo is an available narrative tool that provides an
integrated development environment, and an animation
window in which the student takes the role of protecting
animals called Jeroos on an island with dangers than can hurt
the animals [18]. The student configures the island and creates
programs to define how the Jeroos deal with the challenges of
their surroundings. This is a multi-language tool. Scratch is
another combination of narrative and visual programming that
uses drag-and-drop to piece program fragments together like a
puzzle [18]. It also allows for students to test out their program
while they are coding it. This is useful for more visual thinkers
[16].

There are many programming tools that follow a different
type of programming tool design [18]. If one is looking for a
flow-model tool, they have RAPTOR. It runs on the Microsoft
Windows operating system only and provides information in
the form of handouts on all the stages of programming up to
intermediate level [18]. JHAVE is a tool used for algorithm

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 2, Volume 7, 2013

45

visualization that is driven by visual representation of the code
and pop-up questions. Game Maker has its own proprietary
programming language that the students use to create their own
game, after first learning about the basics of programming
[18]. Baltie is a visual and tiered language tool [18]. This
program includes an interactive mode and icons for beginners,
then advances to a combination of icons and text commands or
text by itself as the user develops skill [18]. The environment
can be exported into Visual Studio.NET and has a large
knowledge base of tutorials.

In the pursuit of minimizing the problems with teaching
introductory and intermediate programming to fresh new
learners, developers have created various tools that all try and
tackle the task in their own approach (as shown above). These
tools have been categorized as the following: narrative tools,
visual programming tools (Baltie, Game Maker, JHAVE),
flow-model tools (RAPTOR), specialized output realizations,
and tiered language tools (Baltie). Narrative tools use a
storyboard structure to introduce programming. Visual
programming immerses the student in a graphical environment
which helps to graphically interact with segments of code,
minimizing the trouble with learning language syntax and
concentrating on a visual product [18]. Flow-model lets the
user develop the structure of a program and its pieces by
connecting the elements of the program in more of a
“blueprint” fashion [18]. Specialized output realization helps
to develop motivation by providing feedback in some kind of
multimedia form to reinforce understanding [18]. Lastly, tiered
language programming tools allow the user to define their
programming skill level in the support tool covering a wide
range of programming levels, using more complex features as
experience dictates [18].

Each of these tools has its own advantages, and they often
have advantages in common. Pertaining to the problem
statement, we propose what would be classified as more of a
visual programming tool to help the students starting out on
programming to have some kind of graphical representation of
the inner-workings of a whole program. The problem
statement reveals an advantage in and of itself: novice
programmers will have a way of learning the basics of
programming by learning and implementing the syntax through
visual representation. This is the main goal, and previous
iterations of a visual programming tool such as Alice and
Greenfoot have proven this approach to be effective in
strengthening a student’s grasp of fundamental concepts,
programming logic, base to intermediate syntax, and overall
level of confidence when using them to create programs [14].

Given the benefits of such tools, they are not without their
own issues. One disadvantage with programming tools such as
the ones listed above is that a student may end up too reliant
on the program and unable to smoothly make the transition to
more conventional coding, or for that matter, even another
programming tool. It is possible to go too far with the
visualization and make it too complex for entry level students
to understand them. Also, depending on the implementation, it
may be difficult to trace errors. Since part of the reason for
visual programming is to streamline the learning process and
have students create real, functional programs, it decreases the

margin for error. Students need to understand where an error
might be and how to fix it in an early stage if they hope to
advance to more challenging programming assignments.
Specifically, Alice has a problem with moving from closed
loop animation to an interactive loop’s response variable, as
the learning curve for that particular obstacle in syntax is
challenging for students who use it [19]. Some programs also
do not have the ability to display source code dynamically as
the user makes changes graphically, which can cause a hang-
up in transition from visual programming to conventional text-
based programming.

What seems to be a common approach among the
architecture of visual programming tools is first and foremost,
a friendly and interactive interface. Accompanying the
interface is a way to display source code that reflects what the
user is doing graphically. Furthermore, users should be able to
create, resume, and save their work in a fashion that will allow
them to compile and run their program in a way that resembles
conventional programming, so not to create too much of a gap
between visual and text-based. The beneficial features of the
visual elements must in some way identify and communicate
to the user which statements, methods, classes, or other syntax
they are manipulating- whether it be through icons, colors,
animations, audio, or whatever method is chosen. The
programming tool should provide easy manipulation of each of
these pieces of code, but given constraints on what the correct
coding requires with no errors. For example, the tool can
provide a message explaining that in order to use an object (or
variable), one must define it. Lastly, given the history of past
projects, the programming tool should be versatile. The
features of the tool are meant to help the user through the
learning process of the concepts and syntax that is required in
a beginner’s programming course, and some to intermediate
and higher. These features should be able to scale for program
complexity.

III. METHODOLOGY
The goals of creating Dragon drop were aimed at the

students taking the Programming Fundamentals - I class.

Our goals are
• Minimize Syntax errors
• Ease of transition
• Show the immediate use

The diagram shown in Figure 1 illustrates the high level
architecture diagram of Dragon Drop. The JavaAppUI class
extends the predefined Java class JFrame. The JFrame class
contains the methods to implement a GUI window with a title,
border, menu bar, and user-specified components. The
JavaAppUI class is the main class of the application and
contains all the methods implementing the drag and drop
features. The JavaAppUI class creates an object of the
SourceString subclass, which extends the predefined Java
class SimpleJavaFileObject. Since the super constructor
cannot be invoked on the SimpleJavaFileObject class due to it
being private, the SourceString class is used to create a
constructor that overrides the private constructor in the

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 2, Volume 7, 2013

46

SimpleJavaFileObject class. Together, these classes allow for
dynamic compiling of Java files.

Fig. 1 the package diagram of Dragon Drop

A. Minimizing the Syntax Errors
The aim was to lessen the frustration experienced by novice

programmers by decreasing the amount of syntax mistakes
made while creating a program. To do this, we used buttons
that prompt the student for information needed to create the
code for them to remove the chance for syntax errors (Figure
2). We accomplished this based on the order the course
materials are given to the students. The program has several
available buttons for creating code that they would need the
most.

Fig. 2 prompt for information

This process still teaches the students to code syntax; the
code is not just created for the students. The students are
shown the source code before they drag it to the text area.
Once the student has entered the information required by each
button, the generated code is sent to a text window under the
buttons. The sequence diagram which describes the creation of
the code, editing the source code and compilation is shown in
Figure 3.

Fig. 3 sequence diagram of the editor

B. Immediate Gains
The next area of the program we addressed was showing

students the immediate process. The student can click the
button and after the input is entered the code is generated, and
immediately the student can see what the code looks like
without have to consult texts or references.

After the code is created for the students, they can drag the
code directly to the text area and as they view the code. The
student gains immediate gratification as the code is in the
program and ready for use. The student can compile
immediately and see how it affects the program.

C. Easy of Transition
The ease of transition is one of the most important parts

because as the students’ progress into next levels of
programming they will need to be able to transition to other
programming environments. We wanted to make sure that the

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 2, Volume 7, 2013

47

students have modern conveniences of some of the other
programming environments as well.

The text area is the same type of function that would be
found in a modern programming environment as well as
tabbing and the colour of the text for easy visual. The
transition to another program will be easier based on
familiarization of the environment. Although acting different
with the drag-and-drop functionality, it will look similar to
most other programming environments. The text after being
dragged to the text area is fully useable and ready for editing
(Figure 4).

Fig. 4 fully editable text area

IV. TEST CASE AND RESULTS

A. Survey
The test cases used to determine how Dragon Drop helps
students program and how they feel about programming was
first a preliminary survey taken in the first quarter of the
semester, and another taken closer to the end of the semester.
In the first survey, the questions were focused on students’
major, background, computer skills, the time spent on syntax
problems vs. logical problems and their interest in computer
science major. After which, we let the students use Dragon
Drop closer to the end of the semester once they had been
programming with a plain text editor. The testing phase of the
program was having the Introduction to Programming students
try out Dragon Drop. We replaced one of the labs the students
were required to accomplish with another one that tested all
phases of our application. Then we administered a post test
survey to see how they felt about Dragon Drop, what they
preferred and what helped them the most. Specifically, in the
second survey, the questions more focused on their feelings on
the Dragon Drop and their interest level in computer science.
Both surveys were done in a 1 to 5 point format, 5 being very
well liked and 1 being much disliked or little progress made.

The students who completed the surveys were from a
variety of different majors and programming backgrounds.
Many were beginner while some are intermediate
programmers. All students were required to test Dragon Drop
and give feedback. The details about the student distribution
are given in Figure 5. The results on average were positive and
the application was well received with few bugs.

0
20
40
60
80

100
120

Student
Population

Women
Student

Population

CS Major

Other Major

Fig. 5 participants

B. Student Diversity and Computer Programming
Experience
Programming Fundamentals – I course is both a core course

for Computer Science majored students but also an elective
course for Math, Physics, Criminal Justice, and Computer
Animation majored students. Therefore, more than half of the
students participated in the survey were majored in a different
area than Computer Science. As shown in Figure 5 above,
almost 4 out of 5 women students who participated in the
survey are not-CS majored students. Since almost all of the
students are holding a high school degree from the state of
Texas some of them had the opportunity to take Java
programming course prior to entering to the college. Other
than the education gathered from the school, because of their
interest some of them also had programming skills while
started to take the Programming Fundamentals – I course. The
detailed student numbers about prior programming experience
are shown in Figure 6.

0

5

10

15

All Student Women Student

CS Major

Other Major

Fig. 6 prior programming experience

C. Main Challenges in Programming Course
After the students had initial experience with programming

and conducting couple of labs, we wanted to see the main
challenges that they face in this class and compare it to the
survey that is conducted at the end of the semester. Since the
students who had prior experience with programming
languages are not faced vital challenges throughout the
semester, their reflection is omitted. In the first survey, as
shown in Figure 7, the students who don’t have any prior

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 2, Volume 7, 2013

48

programming experience claimed that the main challenge is
the time spent on fixing syntax errors, followed by defining
variables, and then the logical issues, true for all CS major,
other major, and non-CS majored women students. However,
as shown in Figure 8, throughout the semester the main
problem shifted to logical problems in favour of 72 percent for
the non-CS majored women students.

0%

20%

40%

60%

80%

Syntax
Problems

Defining
Variables

Logical
Issues

CS Major

Other Major

Other Major
(WS)

Fig. 7 main challenges at the beginning of the course

0%
10%
20%
30%
40%
50%
60%

Syntax
Problems

Defining
Variables

Logical
Issues

CS Major

Other Major

Other Major
(WS)

Fig. 8 main challenges at the end of the course

D. About the Dragon Drop and Student Interest in
Computer Science
Another question asked between the two surveys was how

the students felt about Computer Science in general. As
reflected in Figure 9, in the first survey, only 4 percent of the
non-CS majored women students had a very high interest in
Computer Science. The students were frustrated at the class
and the field in general about programming. After the second
survey, 38 percent of the non-CS majored women students felt
very good about the field of Computer Science. 88 percent of
the non-CS majored women students agreed that the Dragon
Drop application will address the syntax problem and decrease
the time spend in debugging and will yield to an increase in the
interest in Computer Science major.

As shown in Figure 10, 68 percent of the non-CS majored
women students claimed that this application will be useful for
throughout the course, from the first java program to array
concepts, including primitive data types, conditional
statements, loops, methods and objects. On the other hand, 12
percent of the non-CS majored women students do not see a
need for the application. The remaining 20 percent of the non-
CS majored women students indicated the usefulness of the
tool for the first weeks of the semester, which includes the

topics from first java program to loop structures. Those
students claim that after the first initial weeks, the students’
will have fewer errors to fix in their coding. When we look at
final grades obtained from the course, the non-CS majored
women students who provided the opinion to use the Dragon
Drop throughout the semester had an average of 74, the
women students who like to see the tool to be used in the first
part of the semester had an average of 81, and the rest of the
students who doesn’t see a need for the tool to be used in the
class had an average grade of 87 as shown in Figure 11.

0%

10%

20%

30%

40%

First Survey Second Survey

Other Major
(WS)

Fig. 9 interest in computer science among non-CS majored women
students

0

10

20

30

40

50

60

70

80

Throughout the
semester

First weeks of
the semester

No Usefulness

Fig. 10 usefulness of dragon drop among non-CS majored women
students

65

70

75

80

85

90

Throughout the
semester

First weeks of
the semester

No Usefulness

Fig. 11 final course grade average for non-CS majored women

students

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 2, Volume 7, 2013

49

The Figure 11 proves the fact the application is correctly
addressed for the women students who struggled more in this
class. Moreover, in a separate question, 86 percent of the
students who do not have any prior programming experience
claimed that this application would be much more useful at the
beginning of the semester compared to the end of the semester.
Also, 82 percent of the non-Computer science majored women
students prefer to use this application instead of current
programming environment.

V. CONCLUSIONS
Looking at the survey data by major, the highest marks for

interest in using Dragon Drop for the whole semester are from
the non-CS majors and especially from women students. The
fact that highest marks came from all non-CS majors suggests
one of the major goals of this program was a success. If the
non-majors prefer Dragon Drop over TextPad [20], they may
have felt it lessened their frustration and increased their
interest in Computer Science. What possibly might have
contributed to this was students seeing what could be
accomplished by their fellow students in Java, if they take the
time to learn.

With this application, it is evident that, non-CS majored
women students’ level of frustration will be decreased and
interest will be increased due to the ease of programming with
the application. However, when we evaluate whether the
students would prefer to use Dragon Drop over TextPad for
the whole semester, only about 12 percent of the CS majored
students preferred to use Dragon Drop over TextPad. This
number is relatively low considering those students have seen
other programming environments. Knowing this, it slowed
them down as they can type code much faster than buttons
allow. Moreover, the full statements generated by the
application may negatively affect the CS majored students. For
instance, since the students will have to take other upper level
programming courses, the more they need to debug at the
beginning will yield to less time spend in fixing common
syntax problems in the following programming courses. Also,
for a software developer position, the market will be
essentially recruit recent graduates who have not only good
code writing skills, but also a good debugger as well. In the
long run, this tool may hurt CS-majored students’ job search.
But also they claimed that the moving from this editor to
another editor won’t be a challenge because of the simpler user
interface and coloring schemes used in the application.

Overall, although the response for the initial survey was
satisfactory, still there are several issues that need to be
evaluated. As a future work, the application will be employed
as the core text editor for the non-CS majored students in
Programming Fundamentals I class. Learning outcomes will be
evaluated based on the women students’ performance, namely
test scores, lab work, total debugging time. Also, we will start
evaluating if having a Dragon Drop type of programming
environment can attract non-CS majored freshmen or
sophomore women students to change their major or include a
minor in Computer Science field.

ACKNOWLEDGMENT
The authors are to extend recognition to Olamide Kolawole,
David Key, and Brad Houck for being helpful during the
implementation stage of the Dragon Drop.

REFERENCES
[1] S. Zweben, “Computing Degree and Enrollment Trends”, 2010-2011

CRA Taulbee Survey, Computing Research Association. 2012.
Available: http://www.cra.org/govaffairs/blog/wp-
content/uploads/2012/04/CS_Degree_and_Enrollment_Trends_2010-
11.pdf

[2] S. Garner, “The Cloze Procedure and the Learning of Programming”, 8th
WSEAS International Conference on COMPUTERS, Athens, Greece,
2004

[3] S. Dehnadi and R. Bornat, “The camel has two humps” (working title)
[online], Middlesex University, UK, 2006 Available:
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

[4] J. Roberts and R. Styron, “Student Satisfaction and Persistence: Factors
Vital to student retention”, Research in Higher Education Journal,
volume 6: 1-18. 2011.

[5] J. M. Cohoon. “Toward improving female retention in the computer
science major”. Communications of the ACM, 2001.

[6] R. Hanzu-Pazara and Eugen B, “Teaching techniques –modern bridges
between lecturers and students”, 7th WSEAS International Conference
on Engineering Education (EDUCATION '10), Corfu Island, Greece
July 22-24, 2010, ISBN: 978-960-474-202-8

[7] D. T. D. Phuong, F. Harada, H. Takada, and H. Shimakawa,
“Collaborative Learning Environment with Convincing Opinions for
Novice Programmers”, 5th WSEAS / IASME International Conference
on ENGINEERING EDUCATION (EE'08), Heraklion, Greece, July 22-
24, 2008

[8] J.A. Marin-Garcia, and J. L. Mauri, “Teamwork with University
Engineering Students. Group Process Assessment Tool”, Proceedings of
the 3rd WSEAS/IASME International Conference on Educational
Technologies, Arcachon, France, October 13-15, 2007, pp. 391 – 396

[9] J. A. Betancur, C. Rodríguez, and I. Ezparragoza, “An undergraduate
collaborative design experience among institutions in the Americas”,
Proceedings of the 8th WSEAS International Conference on
Engineering Education (EDUCATION '11), Proceedings of the 2nd
International Conference on Education and Educational Technologies
2011 (WORLD-EDU '11), Corfu Island, Greece July 14-16, 2011, ISBN:
978-1-61804-021-3

[10] M. Blaho, M. Foltin, P. Fodrek, and J. Murgas, “Students perspective on
improving programming courses”, International Journal of Education
and Information Technologies, Issue1, Volume 6, 2012

[11] C. McDowell, L. L. Werner, H. E. Bullock, and J. Fernald, “Pair
programming improves student retention, confidence, and program
quality”. Communications of ACM 49(8): 90-95 (2006)

[12] W. Dann and S. Cooper, "Education Alice 3: Concrete to Abstract,"
Communications of the ACM 52.8, 2009.

[13] J. C. Cheung, G. Ngai, S. C. Chan, and W. W. Lau, "Filling the Gap in
Programming Instruction: A Text-Enhanced Graphical Programming
Environment for Junior High Students," Technical Symposium on
Computer Science Education, 2009.

[14] P. Henriksen and M. Kolling, "Greenfoot: Combining Object
Visualization with Interaction," Conference on Object Oriented
Programming Systems Languages and Applications, 2004.

[15] S. Kouznetsova, "BlueJ and Blackjack to Teach Object-Oriented Design
Concepts in CS1," Journal of Computing Sciences in Colleges 22.4,
2007.

[16] K. J. Goldman, "A Concepts-First Introduction to Computer Science,"
Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education, 2004.

[17] S. Fincher, S. Cooper, M. Kolling and J. Maloney, “Comparing Alice,
Greenfoot & Scratch.” Technical Symposium on Computer Science
Education, 2010.

[18] T. Daly, "Using Introductory Programming Tools to Teach
Programming Concepts: A Literature Review," The Journal for
Computing Teachers, 2009.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 2, Volume 7, 2013

50

[19] J. M. Lavonen, V. P. Meisalo, and M. Lattu, "Problem Solving with an
Icon Oriented Programming Tool: A Case Study in Technology
Education," Journal of Technology Education, 2001.

[20] Helios Software Solutions, TextPad. Longridge, England: Helios
Software Solutions, 2010.

Shannon Silessi is a M.S. student in the Department of Computer Science at
Sam Houston State University, Texas, USA. Her research interests are
Software Engineering and Information Assurance.

She earned her B.S. degree from Computer Science at Sam Houston State
University, Texas, USA in 2011.

Cihan Varol is an Assistant Professor of Computer Science at Sam Houston
State University. His research interests are in the general area
of information (data) quality, VoIP Forensics, and risk management with
specific emphasis on personal identity recognition, record linkage, entity
resolution, pattern matching techniques, natural language processing, multi-
platform VoIP applications, VoIP artifacts data cleansing, and quality of
service in business process automation. These studies have led to more than
30 peer-reviewed journal and conference publications, and one book chapter.

He received his Bachelor of Science degree in Computer Science from Firat
University, Elazig, Turkey in 2002, Master of Science degree from Lane
Department of Computer Science and Electrical Engineering from West
Virginia University, Morgantown, WV, USA in 2005, and Doctor of
Philosophy in Applied Computing from University of Arkansas at Little
Rock, Little Rock, AR, USA in 2009.

Hacer Varol is an Instructor at the Department of Computer Science at Sam
Houston State University. Her research interests are in the general area
of biomedical signal processing, educational technology, and space network
security.

She received her Bachelor of Science degree in Electrical and Electronics
Engineering from Firat University, Elazig, Turkey in 2003, Master of Science
degree from Applied Science department from University of Arkansas at
Little Rock, Little Rock, AR, USA in 2011, and currently pursuing doctorate
degree in Electrical Engineering from Lamar University, Beaumont, TX,
USA.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 2, Volume 7, 2013

51

