

Abstract—An interesting possibility to develop system

programmer thinking of students of computer science is integration
digital technology to non-trivial pencil and paper cipher system. The
computer support gives us the opportunity of experimenting and
creative modifications of the original idea. The paper describe
introducing method of system approach, modeling and computer
simulation to learning of algorithm development and programming
for student of Computer Support of Archives specialization. The
approach is based on creation of simulation program for encryption
and decryption different types of ciphers. The paper describes the
principles of polygraphic Delastell’s cipher BIFID and its variation
as well as possibilities of encryption and decryption of the cipher
using the computer simulation program.

Keywords—Algorithmic thinking, Delastell’s cipher, education,
historical encryption, programming.

I. INTRODUCTION
HE ability to create mathematical model and transform it
to algorithm as well as to computer simulation program

develops system thinking, skills and imagination. Regarding
this fact the courses of algorithm development and
programming are an inseparable part of study skills of students
specializing in “Informatics” at high schools and secondary
schools [1].

Learning of algorithm development and programming was/is
often explained by the mathematical tasks, which can be
clearly described, defined and developed by algorithm.
Altogether, the exercises are based on rewriting the
mathematical equations and formulas using algorithms and
practicing the standard algorithm. The complexity and
integration of system approach to learning of algorithm
development and programming is missing [2]. Students, who
do not have sufficient mathematical experience, do not
understand algorithm as well as programming task. In such
type of learning the students cannot see the context with
problems that occur in real life. Learning of algorithm
development escapes them, and the result is indifference or

Stepan Hubalovsky is assoc. prof. at University of Hradec Kralove,

Department of informatics, Faculty of Science, Hradec Kralove 500 38,
Rokitanskeho 62, Czech republic, stepan.hubalovsky@uhk.cz.

Michal Musilek is assistant professor at University of Hradec Kralove,
Department of informatics, Faculty of Science, Hradec Kralove 500 38,
Rokitanskeho 62, Czech republic, michal.musilek@uhk.cz.

resistance to the algorithm and subsequent programming.
Rather than rewriting the mathematical task in the learning

of programming the new method based on introducing the
system approach, modeling and simulation is used in learning
of students of Computer Support of Archives specialization at
Faculty of Art, University of Hradec Kralove (see e.g. [3] –
[7]).

The mentioned approach is demonstrated by case study of
using of polygraphic Delastell’s cipher BIFID and its
variation. The computer simulation of the case studies is
realized and visualized in Java Script programming language.

II. THEORETICAL BACKGROUND

A. Principles of Polygraphic Substitution Cipher BIFID
Polygraphic substitution cipher BIFID [8] combines

fractionation of substitution tables with transposition. The
result is polygraphic substitution cipher. The specified cipher
operations are performed with a group of five digits in the
basic variant, i.e. the substitution is clearly intended for a
group of five symbols by used encryption table (generally
called Polybius square) and by agreed manner of transposition
of given numerical mid-text. Below example will clarify the
situation.

The following message has to be encrypt by polygraphic
ciphers BIFID: "Both men are employed on the Faculty of
Science." The message has to be first rewritten to five-letter’s
groups, ignoring the spaces between the words and the last
group is complete to five characters:

BOTHM ENARE EMPLO YEDON
FACUL TYOFS CIENC EKLMN

Encryption table (Polybius square) will be input based on

passwords University of Hradec Kralove, where letters I and J
are connected (as is common in English) to one field of square
– see Table 1:

Table 1 Encryption table

 1 2 3 4 5
1 U N I/J V E
2 R S T Y O
3 F H A D C

Principle
and Computer Simulation Model

of Variation of Delastell’s cipher BIFID
M. Musilek and S. Hubalovsky

T

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 9, 2015

ISSN: 2074-1316 186

4 K L B G M
5 P Q W X Z

First, the text will be encrypt into to numeric mid-text:

BOTHM ENARE EMPLO YEDON
42234 11321 14542 21321
35325 52315 55125 45452

FACUL TYOFS CIENC EKLMN
33314 22232 31113 14441
13512 34512 53525 51252

The cipher text is reached from the mid-text in the second

phase of encryption. The principle of the creation of the cipher
from the mid-text is as follows:

Twice two letters are taken from the first row of five-digit
group;

Then last letter of the first row is connected with the first
letters of the second row;

Finally twice two letters are taken from the second row.
For the second phase of the encryption the same table as in

the first phase will be used:

42234 11321 14542 21321
35325 52315 55125 45452
LTKWO UHETE VXOPO RHVXQ

33314 22232 31113 14441
13512 34512 53525 51252
AFKCN STTMN FUCCO VGENQ

It is clear from the example that this type of encryption is

more complicated than the encryption of other substitution
ciphers, (simple substitution, bigram substitution of type
Playfair cipher or Four-square cipher).

The complexity of the BIFID cipher can be proved by
increasing of information entropy of the ciphertext, e.g. if this
cipher is generally worse decipherable.

B. Index of Coincidence and Information Entropy
The text of the first chapter of the novel Oliwer Twist by

Charles Dickens has been chosen to calculate the information
entropy. Table 2 shows frequency analysis of the plain text.

Table 2 Frequency of characters in plain text

The effectiveness of encryption algorithm may be calculated

based on index of coincidence. The index of coincidence was
introduced to cryptanalysis by William Frederick Friedman [9]
(1891-1969). If the frequencies of individual letters of the
alphabet is ni, the number of different characters forming the
alphabet k and total number of characters of the analyzed
text N, then the index of coincidence define IC is given by
formula (1):

 ∑
= −⋅

−⋅
=

k

i

ii

NN
nn

IC
1)1(

)1(
 (1)

The approximate formula is used in cryptoanalysis that

gives a more accurate value of the IC, for long analyzed text.
We have also used the following approximate formula,
because we analyzed the texts of length of the thousands of
characters. The value of pi is the relative frequency (posteriori
probability) of occurrence of the ith character of alphabet:

 ∑
=

=
k

i
ipIC

1

2
 (2)

Another variable that we can be used for measurement of

the effectiveness of an encryption algorithm informatics
entropy is so called Shannon entropy Claude Elwood Shannon
(1916-2001)). The index of coincidence of the information
entropy H is defined as follows:

 ∑
=

⋅−=
k

i
ii ppH

1
2log (3)

Where pi is again the relative frequency of occurrence of the

ith character of alphabet.
The index of coincidence for given plaintext (Oliver Twist

by Charles Dickens) is IC = 0.0657, informatics entropy text is
H = 4.16.

After application of the above procedure to BIFID cipher
and to Polybius square obtained by using password University
of Hradec Kralove, the frequency of the character is shown in
Table 3.

Table 3 Frequency of characters in cipher text

A B C D E F G
382 104 132 248 646 114 97
H I J K L M N
324 323 0 32 194 99 326
O P Q R S T U
370 106 3 300 302 432 130
V W X Y Z
56 114 11 72 2

A B C D E F G
316 129 179 125 189 246 50
H I J K L M N
427 288 0 111 109 83 326
O P Q R S T U
269 184 137 238 290 392 223
V W X Y Z
135 137 71 147 118

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 9, 2015

ISSN: 2074-1316 187

The index of coincidence of the ciphertext is IC = 0.0500,

text informatics entropy increases to H = 4.47. For
comparison, the plaintext was encrypt by bigram substitution
cipher Playfair using the same Polybiova squares. The resulted
ciphertext has length of 5080 characters whose extension was
due to completion of double consonants. The index of
coincidence is H = 0.0524 and informatics entropy text is
H = 4.39, which is consistent with the expectation that bigram
substitution will have for the same plaintext higher index of
coincidence and lower informatics entropy than polygrams
substitution.

Ideally random text, which uses 25 English letters (the letter
J is not present even in our chosen plaintext, nor in any of the
cipher text), is minimal coincidence index IC = 1/25 = 0.0400
and informatics maximum entropy H = log225 = 4.64.

Let us summarize the values of the statistical characteristics
of the four previously mentioned texts in Table 4.

Table 4 Values of coincidence index IC and informatics entropy H.

 Plain
text

Cipher
text

Playfair

Cipher
text

BIFID

Ideally
random

text
IC 0.0657 0.0524 0.0500 0.0400
H 4.16 4.39 4.47 4.64

C. Modification of Delastell’s Cipher BIFID
Delastell’s cipher BIFID can be varied by number of

different ways. The first variation changes the dimensions of
Polybius square from 5 x 5 cells to 6 x 6. Table of 6 x 6
characters can be used for encryption of the 26 letters of the
English alphabet and 10 digits. Larger tables enable encryption
of larger alphabets. For example Cyrillic has 33 characters,
which requires the use of a square with 36 cells. The remaining
three cells have to be supplemented by other appropriate
symbols, e.g. exclamation mark, question mark and a plus
sign. Czech alphabet with accents consists of a total of 42
different graphemes. If the length of vowels is not distinguish,
remains 35 different characters and last cell can be
supplemented by e.g. exclamation point.

Samples of encryption tables - Polybius squares - for the
Russian and Czech alphabet are shown on the Table 5 and
Table 6.

Table 5 Encryption table for Russian alphabet

 1 2 3 4 5 6
1 А Л Е К С Н
2 Д Р В И Й !
3 Б Г Ë Ж З М
4 О П Т У Ф ?
5 Х Ц Ч Ш Щ +
6 Ъ Ы Ь Э Ю Я

Table 6 Encryption table for Czech alphabet

 1 2 3 4 5 6
1 A L E X N D
2 R V I K Y !
3 B C Č Ď F G
4 H J K L M Ň
5 O P Q Ř S Š
6 T Ť U V W Z

For both tables was chosen password "Александр

Великий", respectively "Alexander Veliký“.
Other variations of Polybius cipher are based on

permutations of used transposition. The letters can be
associated not only horizontally but also upward and
downward – see [*]. The message “Both men are employed on
the Faculty of Science." Is in this case encrypt as follows:

• The first phase is in all three cases the same.
• The second phase is as follows for horizontal

association - read horizontally in the first group 42, 23,
41, 53, 25; in the second group 11, 32, 15, 23, 15, etc.:

42234 11321 14542 21321
15325 52315 55125 45452

LTKWO UHETE VXOPO RHVXQ

33314 22232 31113 14441
13512 34512 53525 51252

AFKCN STTMN FUCCO VGENQ

• For association obliquely upwards - read obliquely

upward in the first group 12, 52, 33, 24, 54; in the
second 51, 23, 32, 11, 51, etc.:

42234 11321 14542 21321
15325 52315 55125 45452

NQAYX PTHUP XZVSP KWLPS

33314 22232 31113 14441
13512 34512 53525 51252

IAPVT HLWNS PFPTW XVYPR

• Finally, association obliquely downwards - read

obliquely downward in the first group 45, 23, 22, 35,
41; in the second 12, 13, 31, 25, 15, etc.:

42234 11321 14542 21321
15325 52315 55125 45452

GTSCK NIFOE EKQMO OVCSV

33314 22232 31113 14441

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 9, 2015

ISSN: 2074-1316 188

13512 34512 53525 51252

ACFNK YORHT AENEC ULMLE

Another way haw to complicate work to codebreakers is to
use two encryption tables. This alternative example is shown
on the example - see Table 7. To convert the letters into pairs
of digits the Polybius square with password "University of
Hradec Kralove" is used. The retransfer of pairs of numbers to
Polybius square the password "Thales of Miletus" is used – see
Table 8.

Table 7 Direct encryption table

 1 2 3 4 5
1 U N I/J V E
2 R S T Y O
3 F H A D C
4 K L B G M
5 P Q W X Z

Table 8 Reverse encryption table

 1 2 3 4 5
1 T H A L E
2 S O F M I
3 U B C D G
4 K N P Q R
5 V W X Y Z

BOTHM ENARE EMPLO YEDON
42234 11321 14542 21321
15325 52315 55125 45452
NFKXI TBEFE LYIVI SBLYW

FACUL TYOFS CIENC EKLMN
33314 22232 31113 14441
13512 34512 53525 51252
CUKGH OFFRH UTGGI LQEHW

Interesting variation is to encrypt text instead of group of

five letter by words. After “words” encryption the text is
redistributed to five-groups. Leave text in groups
corresponding to the lengths of individual words would be too
much guidance, the codebreakers would have the work very
easy. They would know not only the length of all words in the
text, but also the same word would always replace the same
group of letters. After the division into five-letters groups,
there is no additional information on the length of words in the
text. We get the ciphertext index of coincidence IC = 0.0511
and informatics entropy H = 4.45. The strength of the cipher is
therefore somewhere between five-group BIFID cipher and
Playfair cipher.

The challenge for Informatics is automatic decrypting such
ciphers. Regarding the fact the length of each word is
unknown, the word of different length has to be try and in
vocabulary has to be used to check whether the group voice
makes sense.

Finally, the most complicated method is to encrypt by
groups with random length, e.g. a length of a finite set of odd
natural numbers {3, 5, 7, 9, 11, 13}. Such a sequence can be
easily produced by normal dice, which generates integers from
the set {1, 2, 3, 4, 5, 6}. The odd sequence of numbers is
reached from the dice number by multiplication by two and
add by one. In this case the creation of algorithm that
efficiently decrypt the ciphertext to the original message -
plain text by using a dictionary of a given language is non-
trivial task, very suitable for the application system approach.

Recently described cryptosystem is very interesting. From
the code breaker it is a classic pencil and paper cipher system,
supplemented only by dice. The decoders has to use for
decryption a special computer program with dictionary
databases containing words of the language appropriately
modified (e.g. the Czech language with the removal of
diacritics) and sorted according to the length.

III. COMPUTER SIMULATION PROGRAM
The web page for encryption and decryption of the

Delastell’s cipher BIFID is created in JavaScript. Each
function realized the separate task. The algorithm of the
program is clear directly from the program code based on
algorithm.

A. Description of program code
The first part of the program code is declaration of the

variables. Generally they are arrays of different lengths with
names square, used, writecharacter, top, bottom:

<script type="text/javascript"
language="JavaScript">
<!--
var square = new Array(25);
var used = new Array(27);
var writecharacter= new Array(27);
var top = new Array(50);
var bottom = new Array(50);

Array writecharacter is responsible for conversion of

the number to alphabet character:
writecharacter =
"*,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S
,T,U,V,W,X,Y,Z".split(",");

Backward conversion is given by function order:
function order(character)
{
var p;
if (character == "A") {p = 1};
if (character == "B") {p = 2};
if (character == "C") {p = 3};
if (character == "D") {p = 4};

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 9, 2015

ISSN: 2074-1316 189

if (character == "E") {p = 5};
if (character == "F") {p = 6};
if (character == "G") {p = 7};
if (character == "H") {p = 8};
if (character == "I") {p = 9};
if (character == "J") {p = 10};
if (character == "K") {p = 11};
if (character == "L") {p = 12};
if (character == "M") {p = 13};
if (character == "N") {p = 14};
if (character == "O") {p = 15};
if (character == "P") {p = 16};
if (character == "Q") {p = 17};
if (character == "R") {p = 18};
if (character == "S") {p = 19};
if (character == "T") {p = 20};
if (character == "U") {p = 21};
if (character == "V") {p = 22};
if (character == "W") {p = 23};
if (character == "X") {p = 24};
if (character == "Y") {p = 25};
if (character == "Z") {p = 26};
return(p);
}

 The procedure order() is used not only for cipher

BIFID, but also for many other substitution ciphers. The same
is also for function preppasword, that all letters in the text
string converted to uppercase, remove accents, omitting any
spaces and punctuation, and also removes duplicates. To
remove duplicates the nested loop is used:
for (j = 0; j < i; j++)
 {
 if (bezdk.charAt(i) ==
bezdk.charAt(j)) {add = 0};
 }

Spaces and punctuation are removed by setting the value of

the variable add to zero. The password is created only by
characters which has value of variable add equal to one:
function preppassword()
{
pswrd = document.formular.heslo.value;
paswd = pswrd.toUpperCase();
bezdk = "";
noveh = "";
n = paswd.length;
for (i = 0; i < n; i++)
{
character = paswd.charAt(i);
if (character == "Á") {character = "A"};
if (character == "É") {character = "E"};
if (character == "Ě") {character = "E"};
if (character == "Í") {character = "I"};
if (character == "Ó") {character = "O"};
if (character == "Ú") {character = "U"};
if (character == "Ů") {character = "U"};
if (character == "Ý") {character = "Y"};
if (character == "Č") {character = "C"};
if (character == "Ď") {character = "D"};
if (character == "Ň") {character = "N"};
if (character == "Ř") {character = "R"};
if (character == "Š") {character = "S"};

if (character == "Ť") {character = "T"};
if (character == "Ž") {character = "Z"};
bezdk += character;
pridat = 1;
for (j = 0; j < i; j++)
{
if (bezdk.charAt(i) == bezdk.charAt(j))
{pridat = 0};
}
if (bezdk.charAt(i) == " "){pridat = 0};
if (bezdk.charAt(i) == "."){pridat = 0};
if (bezdk.charAt(i) == ","){pridat = 0};
if (bezdk.charAt(i) == ";"){pridat = 0};
if (bezdk.charAt(i) == "!"){pridat = 0};
if (bezdk.charAt(i) == "?"){pridat = 0};
if (pridat == 1) {noveh += character};
}
document.formular.heslo.value = noveh;
}

The following procedure create can be used not only for

cipher BIFID, but also for all ciphers based on Polybius
square. This function fills the cells of table 5 x 5 characters by
letters of passwords and when these letters are finished the
function fills the remaining letters of the alphabet. Because the
scripting language cannot use multi-dimensional arrays only
one-dimensional array is used. The index of element in the
square table corresponds to the sum of quintuple of the serial
number of the table row (rows are numbered from 0 to 4) and
the serial number of the column (are numbered from 0 to 4).
Letters in Polybius square are thus saved in the one-
dimensional array with indexes from 0 to 24:
function create()
{
preppassword();
pswrd = document.form.password.value;
paswd = pswrd.toUpperCase();
n = paswd.length;
for (j = 1; j < 27; j++) {used[j] = 0};
if (document.form.skip[0].checked)

{ used [10] = 1};
if (document.form.skip[1].checked)

{ used [17] = 1};
if (document.form.skip[2].checked)

{ used [23] = 1};
if (document.form.skip[3].checked)

{ used [26] = 1};
for (i = 0; i < n; i++)
{
square[i] = paswd.charAt(i);
j = order(square[i]);
used[j] = 1;
};
for (i = n; i < 25; i++)
{
other = 1;
for (j = 1; j < 27; j++)
{
if ((used[j] == 0) && (other == 1))
{
square[i] = writechar[j];
used[j] = 1;
other = 0;

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 9, 2015

ISSN: 2074-1316 190

}
}
}
}

The following procedures show shows cipher square called

by method alert:
function show()
{
create();
output = square[0] + " " + square[1] +
 " " + square[2];
output += " " + square[3] + " " +
 square[4];
output += "\n" + square[5] + " " +
 square[6] + " "
output += square[7] + " " + square[8] +
 " " + square[9];
output += "\n" + square[10] + " " +
 square[11] + " ";
output += square[12] + " " + square[13]
 + " ";
output += square[14] + "\n" + square[15]
 + " ";
output += square[16] + " " + square[17]
 + " ";
output += square[18] + " " + square[19];
 + "\n";
output += square[20] + " " + square[21]
 + " ";
output += square[22] + " " + square[23]
 + " ";
output += square[24];
alert(output);
}

Help procedure clear sets value of all elements of

temporary arrays top and bottom to zero:
function clear()
{
for (i = 0; i < 50; i++)
{
top[i] = 0;
bottom [i] = 0;
}
}

Main program action calls above procedures a realized

all steps needed to ciphering and deciphering:
function action()
{
create();
clear ();
document.form.topnumber.value = '';
document.form.bottomnumber.value = '';
otxt = document.form.plaintext.value + '
';
ot = otxt.toUpperCase();
n = ot.length;
j = 0;
codetext = "";
for (i = 0; i < n; i++)
{

character = ot.charAt(i);
if (character == "Á") {character = "A"};
if (character == "É") {character = "E"};
if (character == "Ě") {character = "E"};
if (character == "Í") {character = "I"};
if (character == "Ó") {character = "O"};
if (character == "Ú") {character = "U"};
if (character == "Ů") {character = "U"};
if (character == "Ý") {character = "Y"};
if (character == "Č") {character = "C"};
if (character == "Ď") {character = "D"};
if (character == "Ň") {character = "N"};
if (character == "Ř") {character = "R"};
if (character == "Š") {character = "S"};
if (character == "Ť") {character = "T"};
if (character == "Ž") {character = "Z"};

Important separation character of plaintext is the spacebar –

encryption of character array is run between the previous and
current space:
if (character == " ")
{
for (k = 0; k < j; k++)
{
if (k % 2 == 0)
{
l = k + 1;
if (l >= j)
{
codetext += square[5*(top[k]-
1)+1*(bottom[0]-1)];
}
else
{
codetext += square[5*(top [k]-
1)+1*(top[l]-1)];
};
};
}
if (j % 2 == 0) {k = 0} else {k = 1};
while (k < j)
{
codetext += square[5*(bottom[k]-
1)+1*(bottom[k+1]-1)];
k += 2;
}
codetext += " ";
document.form.codetext.value = codetext;
document.form.topnumber.value += '';
document.form.bottomnumber.value += '';
j = 0;
}
else
{
for (k = 0; k < 25; k++)
{
if (square[k] == character)
{
cod = k;
top [j] = Math.floor(kod / 5) + 1;
bottom[j] = (kod % 5) + 1;
document.form.topnumber.value += top
[j];

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 9, 2015

ISSN: 2074-1316 191

document.form.bottomnumber.value +=
bottom[j];
j++;
};
}
};
}
document.form.codetext.value = codetext;
}

Similarly, the procedure back realized decryption. The

procedure is similar to the procedure for encryption, but works
with other pairs of characters of inter-text composed of digits
indicating the serial numbers of rows of columns of encryption
key (i.e. password of Polybius square):
function back()
{
create();
clear();
document.form.topnumber.value = '';
document.form.bottomnumber.value = '';
otxt = document.form.plaintext.value + '
';
ot = otxt.toUpperCase();
n= ot.length;
j = 0;
codetext = "";
for (i = 0; i < n; i++)
{
character = ot.charAt(i);
if (character == " ")
{
for (k = 0; k < (j/2); k++)
{
bottom[k] = top[j/2+k];
top[j/2+k] = 0;
}
for (k = 0; k < (j/2); k++)
{
codetext += square[5*(top[k]-
1)+1*(bottom[k]-1)];
document.form.topnumber.value += top[k];
document.form.bottomnumber.value +=
bottom[k];
}
codetext += " ";
document.form.codetext.value = cedetext;
document.form.topnumber.value += '';
document.form.bottomnumber.value += '';
j = 0;
}
else
{
for (k = 0; k < 25; k++)
{
if (square[k] == character)
{
cod = k;
top[j] = Math.floor(kod / 5) + 1;
top[j+1] = (cod % 5) + 1;
j += 2;
};
}
};

}
document.form.codetext.value = codetext;
}

B. Error correction
Based on cipher table (Table 9) the letter B has coordinate 4

and 3, red number should not be 1, it should be 3.

Table 9 Cipher table

 1 2 3 4 5
1 U N I/J V E
2 R S T Y O
3 F H A D C
4 K L B G M
5 P Q W X Z

BOTHM ENARE EMPLO YEDON
42234 11321 14542 21321
15325 52315 55125 45452

FACUL TYOFS CIENC EKLMN
33314 22232 31113 14441
13512 34512 53525 51252

The third letter of cipher text change from K to B:

42234 11321 14542 21321
35325 52315 55125 45452
LTBWO UHETE VXOPO RHVXQ

33314 22232 31113 14441
13512 34512 53525 51252
AFKCN STTMN FUCCO VGENQ

C. Visualization of the simulation model
The web page shown on the Figure 1 represents

visualization of the simulation model.

IV. CONCLUSION
Case study demonstrated in the paper highlights system

approach, modeling and simulation to learning of
programming of students of humanities. Students of
humanities are not able to learn algorithm development and
programming standardly based on mathematical task. The
presented approach is based on introducing of encryption
issues, which increase motivation of students of humanities
and develop their algorithmic thinking and skill for algorithms
creation.

ACKNOWLEDGMENT
This research has been supported by: Specific research

project Specific research project of University of Hradec
Kralove, Faculty of Science in 2015 No. 2108.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 9, 2015

ISSN: 2074-1316 192

Figure 1 The web page for encryption and decryption of the Delastell’s cipher BIFID

REFERENCES
[1] S. Hubalovsky, M. Musílek, “Automatic cryptoanalysis of the

monoalphabetical substitution as a method of the system approach
in the algorithm development thinking”. International journal of
applied mathematics and informatics. vol. 4, No. 4, 2010.

[2] V. Jehlicka, “Interdisciplinary relations in teaching of
programming”, in Proc. WSEAS/IASME Applied computing
conference 2010 (ACC'10), WSEAS Press, Timisoara, Romania,
2010. pp 33-39.

[3] P. Hanzalová, Š. Hubálovský, M. Musílek, “Automatic
cryptoanalysis of the short monoalphabetical substituted cipher text”.
Visualization, imaging and simulation (VIS '12). WSEAS Press,
2012.

[4] S. Hartmann, “The World as a Process: Simulations in the Natural
and Social Sciences”, In R. Hegselmann, et al., Modelling and
Simulation in the Social Sciences from the Philosophy of Science

Point of View, Theory and Decision Library. Dordrecht: Kluwer,
1996, pp. 77–100.

[5] J. A. Sokolowski, C. M. Banks, “Principles of Modeling and
Simulation – A Multidisciplinary Approach”, Wiley Publication,
New Jersey, 2009, pp. 121-141.

[6] J. Bailer, M. Daniela, “Tracing the Development of Models in the
Philosophy of Science”, Magnani, Nersessian and Thagard, 1999,
pp. 23-40.

[7] S. Hubalovsky, M. Musílek, “Automatic cryptoanalysis of the
monoalphabetical substitution as a method of the system approach in
the algorithm development thinking”, International journal of
applied mathematics and informatics, Vol.4, No.4, 2010, pp. 92-102.

[8] American Cryptogram Associaton, “The ACA and You – A handbook
for the members of the American Cryptogram Association.” ACA
2005

[9] D. Khan, “The Codebreakers. The Story of Secret Writing.” Scribner
1967.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 9, 2015

ISSN: 2074-1316 193

Michal Musilek was born in 1963 in Czech Republic. He obtained master
degree in education of mathematics and physics in 1988, in education of
computer science in 1993 and doctor degree in theory of education in
physics in 2009 all in Faculty of Education, University of Hradec Kralove,
Czech Republic. He works as assistant professor on University of Hradec
Kralove. His scientific activities are theory of education in informatics
includes children’s programming languages, using ICT in education of
mathematics and physics include computer modeling and simulation.
Stepan Hubalovsky was born in Trutnov, Czech Republic in 1970, he
obtained master degree in education of mathematics, physics and
computer science in 1995 and doctor degree in theory of education in
physics in 1998 both in Faculty of Mathematics and Physics, Charles
University in Prague, Czech Republic. He worked 5 years as master of
mathematics, physics and computer science on several secondary schools.
He works as assistant professor on University of Hradec Kralove from
2006. He interested in algorithm development, programming, system
approach, computer simulation and modelling. Assoc. prof. RNDr. Stepan
Hubalovsky, Ph.D. is member of Union of Czech Mathematicians and
Physicist.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 9, 2015

ISSN: 2074-1316 194

