

Abstract— We propose an integrated framework for the formal

analysis of web services based applications involving both static and

dynamic analysis techniques. The proposed framework consists of

three main components: A library of patterns, representing both

recommended and undesired services related properties along with an

efficient classification of the compiled patterns according to their

effect on the behavior of web services based applications; a set of

static analysis techniques that use tools like code inspection,

abstraction extraction, and model inference to detect property

patterns in the source code of the applications under test; and a set of

dynamic analysis techniques directly mainly to verify web services

based applications against property patterns that cannot be detected

using only the source code of applications. In this paper, we elaborate

the work completed on the development of an approach to dynamic

analysis of web services based applications, we describe the formal

model used to depict the behavior of an application based on it

observed execution traces, and we outline the workflow of a goal

based inference approach to derive behavioral models.

Keywords—Dynamic Analysis of Web Services, Goal based

reengineering, Inference of Behavioral models, Automata Models,

Property Patterns, Education.

I. INTRODUCTION

USINESSES are increasingly adopting service orientation

to shape the architecture of their enterprise solutions and

to increase the efficiency of their software applications. At

the foundation of this ever more popular paradigm, web

services are heavily used to enhance decentralization, platform

independence, and language portability. The power of services

resides mainly in the high degree of dynamism and flexibility

they exhibit throughout their lifecycle: publication, discovery,

and binding are all dynamic activities that make a service an

evolving entity capable of adapting to continuously changing

and new requirements. In addition, compositions of services,

which can also be dynamic, have added to the power of

services in building larger enterprise solutions for

heterogeneous businesses. Examples of such uses of service

computing include e-commerce and education, where

universities try to take advantage of available web services and

cloud based applications to enable their communities to

perform business and academic activities and projects.

May Haidar is with the Computer Science Department at Fahad Bin Sultan

University, Tabuk, KSA, P.O. Box 15700, 71454. Tel: 00966551827096; (e-

mail: mhaidar@ fbsu.edu.sa). She is also with the department of Computer

science and Operational Research at the University of Montreal.

Hicham H. Hallal, is with the Department of Electrical Engineering, at

Fahad Bin Sultan University, Tabuk, KSA, P.O. Box 15700, 71454 (e-mail:

hhallal@fbsu.edu.sa).

However, the fast paced growth of service implementation

and deployment in various contexts has resulted in a growing

gap between the development and verification of services

based applications.

On one hand, static analysis techniques [8, 11, 34] remain

insufficient to detect behavioral flaws and defects that are

exhibited only when services, especially composite ones, are

executed. In particular, such techniques face two major

problems: difficulty of generating executable models that can

be used in the analysis, and limited coverage of defects that are

exhibited only during runtime, e.g., concurrency incurred

problems. On the other hand, dynamic and runtime techniques,

which depend mainly on monitoring, can only claim to detect

errors and flaws in the observable behavior of an application

featuring the running of a service of the dynamic composition

of several services.

Currently, formal methods have become a reliable solution

to automate the analysis of various systems. In particular,

formal techniques are being increasingly used to perform

different development activities such as requirement definition

and elucidation, modeling and model transformation, testing,

and property verification [14, 15, 17]. Nowadays, formal

verification techniques are used in several domains including

communication systems [15], software and program analysis

[12], and web based applications [8, 16].

As an example, model checking [6], which is usually used to

verify the model of a concurrent system against formally

specified properties can be fully automatic and produces

counterexamples that point to the violations when a model

does not satisfy a given property.

Historically though, the adoption of model checking based

techniques on large scales remained relatively limited due

mainly to problems like the lack of formal models, the inherent

state space explosion problem, and the lack of proper

justification for its use especially for classes of properties

whose verification does not explore concurrent behavior of the

models [6, 14]. However, the recent extensive work on model

driven techniques in the development and analysis of systems

coupled with the advances realized in the manufacturing of

powerful computing devices have contributed to significant

alleviation of the historic limitations and made the use of

model checking in the verification of distributed applications

both practical and justifiable.

In the case of composite Web Services, the reasoning about

the use of model checking is similar. While analyzing simple

web services does not necessarily require the use of model

checking techniques, the use of model checking in the analysis

Using Goals to Infer Formal Behavioral Models

from Web Services Applications

May Haidar, Hicham H. Hallal

B

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 19

of web services featuring underlying dynamically composite

services is clearly needed and justified. The latter is

specifically true for services whose composition is specified

through WS-BPEL [28] (Web Services Business Process

Execution Language) and WSCI [4] (Web Services

Choreography Interface) As to the lack of models, especially

in the case of inaccessible code, the focus concentrates on

inferring behavioral models from observable traces that an

application/system produces when it is used. Once a model is

available, model checking can be used to verify the model of

the application under test against predefined properties. When

the specified properties do not require the use of model

checking, other less complex techniques like search based

methods or even manual inspection are applied to analyze the

inferred models.

In this paper, we discuss the development of an integrated

formal framework where both static and dynamic analysis

techniques complement each other in enhancing the property

testing process of an existing web services based application.

In particular, we elaborate the work completed on the

development of an approach to dynamic analysis of web

services based applications, we describe the formal model

used to depict the behavior of an application based on it

observed execution traces, and we outline the workflow of a

prototype toolset to implement the proposed approach along

with applicable optimizations.

This paper is organized as follows. Section 2 presents a

review of the basic notions and concepts in service computing.

Section 3 discusses the formal framework for the analysis of

web services based applications. Section 4 focuses on the

approach to infer behavioral models of WS applications from

executions. In section 5, we discuss the related work in the

area of formal analysis of WS applications. Finally, in Section

6, we conclude the paper and discuss potential extensions of

this work.

II. SERVICE COMPUTING

Service computing views business entities as service

providers and models business processes as compositions of

multiple services. Service-Oriented Architecture (SOA) and

Web services are two related concepts in Service computing.

The SOA/WS triangle represents the common principle of

SOA and Web services are depicted in Fig. 1. The service

providers first publish their service descriptions into a

registration server. The service requestors can look up the

registration to choose suitable services. Then the service

requestors can directly interact with the service providers by

sending messages to them.

A Web service is defined by the W3C as a software system

designed to support interoperable machine-to-machine

interaction over a network [32]. It has an interface described in

a machine-friendly format (mainly WSDL). Other systems

(including similar services) interact with the Web service in a

manner prescribed in its description using SOAP-messages

(Fig. 3), typically conveyed using HTTP with an XML

serialization in conjunction with other Web-related standards.

Fig. 1 The SOA/WS triangle

The W3C Web service technical stack in Fig. 2 lists some of

the supporting techniques and specifications for Web services.

The communication layer normally uses Internet protocols,

such as HTTP, SMTP, and FTP. A given message may even

involve multiple kinds of message transport. WSDL is

exploited at the interface layer to indicate the end point of a

service and to describe the operations of a service and the

types and number of parameters for invoking an operation.

UDDI [28] is a service discovery protocol that supports

service registration and look-up.

Transport: HTTP, SMTP, FTTP, …

Messaging: SOAP

Service Description: WSDL

Publication and Discovery: UDDI

extends HTTP

extends HTML

extends URI

Fig. 2. The technical stack for Web services

Web service processes are business processes composed by

individual Web services. W3C and OASIS have released

several XML-based description languages to model Web

service processes. These languages can be classified into

orchestration and choreography languages. Orchestration

languages hold the point of view of a service requestor (c.f.

WS-BPEL[27]). They model how the requestor calls external

services and how to process the response internally. In another

word, orchestration languages model the internal behavior

within a service requestor. Complementarily, choreography

languages model how the services interact with each other

outside of the services. The behavior of a Web service is

strictly bounded in the sense that it is owned and accessible

within the corporation, but hidden from any other corporation.

Therefore, the internal behavior of a Web service is not

observable for another, except through its emitted messages

and communication ports. The choreography languages

describe the observable behaviors among a group of Web

services. It can be from the individual service point of view

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 20

that the global model is projected on a single service (c.f.

WSCI [4]), or from the global system point of view (c.f. WS-

CDL [24]). Both choreography and orchestration languages

describe the data flow and the control flow of a business

process. Control flow expresses the execution order of the

actions in constructs of sequence, branching, parallel,

synchronization etc. Data flow is about process relevant data

and how these data are interchanged and manipulated by the

actions. The two flows are intertwined such that the control

flow is triggered by certain status of data and data is

manipulated by the actions defined in the control flow.
As a particular type of Web services, we consider the REST

Web services, which have become one of the most important

technologies for Web applications [14, 29]. REST, which

stands for Representational State Transfer, represents an

architectural style for networked hypermedia applications. It is

primarily used to build Web services that are lightweight,

maintainable, and scalable.

<?xml version='1.0' ?>

<env:Envelope xmlns:env="http://www.w3.org/2002/12/soap-envelope">

<env:Header>

<m:reservation xmlns:m=http://travelcompany.example.org/reservation

env:role=http://www.w3.org/2002/12/soap-envelope/role/next

env:mustUnderstand="true">

<m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>

</m:reservation>

<n:passenger xmlns:n=http://mycompany.example.com/employees

env:role=http://www.w3.org/2002/12/soap-envelope/role/next

env:mustUnderstand="true">

<n:name>Åke Jógvan Øyvind</n:name>

</n:passenger>

</env:Header>

<env:Body>

<p:itinerary xmlns:p="http://travelcompany.example.org/reservation/travel">

<p:departure>

<p:departing>New York</p:departing>

<p:arriving>Los Angeles</p:arriving>

<p:departureDate>2001-12-14</p:departureDate>

</p:departure>

<p:return>

<p:departing>Los Angeles</p:departing>

<p:arriving>New York</p:arriving>

<p:departureDate>2001-12-20</p:departureDate>

</p:return>

</p:itinerary>

</env:Body>

</env:Envelope>

Envelope

Header

Body

Fig. 3 Example of a SOAP message.

The architecture of REST based application follows the

client/server model, where the communication between the

components of the application uses mainly stateless HTTP as

the underlying protocol. In the REST architectural style, data

and functionality are considered resources accessible

using Uniform Resource Identifiers (URIs), typically links on

the Web (Fig. 4). Clients and servers exchange representations

of resources by using a standardized interface and protocol

[14]. Services based on REST are called a RESTful services

and are bound by major constrains such as the uniform

interface, which induces desirable properties including

performance, scalability, and modifiability. Such properties

enable services to work best on the Web.

III. FORMAL FRAMEWORK FOR THE ANALYSIS OF WEB

SERVICES BASED APPLICATIONS

In this section, we discuss the formal framework proposed

to enhance the hybrid (static and dynamic) analysis of web

services based applications. The intended framework encloses

three main components that are deemed essential to

automation in the field of formal analysis (verification,

validation, or testing) of software applications.

A. Library of Property Patterns

Patterns are commonly used in the development and

analysis of software applications, and service oriented

architectures as well, since they introduce clever and insightful

ways to solve common problems. Along with patterns, the

term antipattern is also defined as the solution to a problem

that does not work as intended (in terms of correctness and/or

efficiency) [12].

HTTP Request

POST http://MyService/Person/

Host: MyService

Content-Type: text/xml; charset=utf-8

Content-Length: 123

<?xml version="1.0" encoding="utf-8"?>

<Person>

 <ID>1</ID>

 <Name>M Vaqqas</Name>

 <Email>m.vaqqas@gmail.com</Email>

 <Country>India</Country>

</Person>

HTTP Response

HTTP/1.1 200 OK

Date: Sat, 23 Aug 2014 18:31:04 GMT

Server: Apache/2

Last-Modified: Wed, 01 Sep 2004
13:24:52 GMT

Accept-Ranges: bytes

Content-Length: 32859

Cache-Control: max-age=21600, must-
revalidate

Expires: Sun, 24 Aug 2014 00:31:04
GMT

Content-Type: text/html;
charset=iso-8859-1

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Strict//

EN"
"http://www.w3.org/TR/xhtml1/DTD/xht
ml1-strict.dtd">

<html
xmlns='http://www.w3.org/1999/xhtml'
>

<head><title>Hypertext Transfer
Protocol -- HTTP/1.1</title></head>

<body>

...

Fig. 4. Request/Response Pair of a RESTful Application.

Following their definition, existing works [12] have

documented antipatterns in catalogs (similar to design

patterns) so that they can be avoided. In the proposed

framework, we intend to build on existing work in [12, 17, 18,

19] and compile a library of web services properties (patterns

and antipatterns) along with a classification that can make the

analysis of an application a more structural process. The

classification of properties will be hierarchical following the

categorization:

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 21

1) static/dynamic,

2) correctness/functional, and

3) style/performance.

Such classification should help developers identify the

antipatterns to better avoid them, and testers detect them in the

application using the appropriate techniques. On the other

hand, documented properties, which would include BPEL4WS

and WISCI requirements in the form of property patterns, can

be instantiated in different contexts and for different purposes

like verifying correctness, security, and performance related

issues. The property library will be based on an easy to use

template that depicts mainly the type, formal model, and

example of a property.

For example, in a previous work [17,18], a pattern template

is defined and a set of 119 patterns and property specifications

are identified for the verification of Web applications (WAs).

Fig. 4 shows an example of such patterns. Each pattern is

specified in Linear Temporal Logic (LTL), which makes it

directly usable in many model checkers.

ID FGS6

Pattern

description

Banking information is entered no
more than once before
submitting form

Category Functional – General – Security and
Authentication

Page

Attributes

Banking_info: Boolean identifying
the presence of fields for banking
information
Submit: identification of page where
form submit action exists

LTL

Mapping

PrecedenceGlobally ((
(banking_info) W (banking_info W

(G  (banking_info)))), submit)

Comments

Source Newly introduced

Fig. 5 Example of a Web Applications Pattern

B. Static Analysis Techniques

The proposed techniques target mainly code and/or existing

specifications or textual descriptions of web services

(choreographies and orchestrations). Such techniques are

usually independent of specific input data sets or individual

execution paths, and are classified into:

a) Direct code inspection techniques, where suspicious code

segments are directly identified in the code (through

linear scanning for example).

b) Abstraction based techniques, where code representations

e.g., class diagrams are used to detect the exhibition of

certain predefined patterns (or antipatterns).

c) Model based techniques, where a model is extracted

from the code of an application to describe the

expected behavior of the application during runtime.

In the case of web services based applications; static

analysis techniques would be applied to the available

documents containing the descriptions of individual and

composite services. In doing this, we follow in the steps of the

work in [12]; the main deviation being the customization of the

antipattern library developed to handle mutlithreaded Java

applications to the context of web services and web services

compositions. In addition, the library will be extended to

cover patterns/antipatterns like the one shown in Fig. 5.

However, some complex faults cannot be detected with static

analysis approaches or only at a high cost (like deadlocks and

other errors that cannot be exhibited except when exploring

the concurrent behavior of the application). Moreover, static

analysis techniques are prone to producing significant numbers

of false warnings (mainly false positives) while not being able

to detect some behavioral errors like in the case of exception

handling. This justifies the need for the third component, a set

of dynamic analysis techniques.

C. Dynamic Analysis Techniques

Dynamic analysis techniques do not necessarily rely on

existing specifications or textual descriptions of an application

under test. Instead, they are applied to executable behavioral

models that are derived from the application’s observed

executions (traces or logfiles). Such approach to analysis is

particularly efficient in the case of web services based

applications; often characterized by their readiness to compose

web services, especially dynamically. Moreover, such

applications usually feature large architectural structures of

applications, which make writing complete specifications

inefficient and rather impractical, along with high degrees of

concurrency in the behavior of the composite applications.

Dynamic analysis techniques include extracting behavioral

models of applications from observed executions and verifying

them (mainly using exhaustive simulation like in model

checking) against behavioral properties specifying defects that

cannot be detected using static analysis techniques. Existing

dynamic approaches are of two types:

1) Offline (postmortem), where recorded executions of an

application are stored and later used in modeling and

verifying the application under test.

2) Online (runtime), where an application under test is

analyzed in real time as the executions are generated.

In this work, we focus on an offline dynamic analysis

approach, which we elaborate in the following section.

Nevertheless, the readiness of the proposed framework to

handle online analysis of applications is guaranteed given

several existing solutions including adopting a sliding window

approach that involves taking snapshots of the application

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 22

during consecutive time periods and building different models

for each period so that verification is performed on the built

models; or an incremental approach to constructing the

behavioral model of the application so that verification can be

performed on the model after each iteration.

It is also important to note that the dynamic approach in this

paper relies on model checking, where models are derived

from the observed behavior of the application. Thus, the

approach could be seen as passive testing. Since results of

verification could be compromised when a WSUT does not

meet the assumptions described previously, this approach does

not eliminate the need for traditional testing and should be

considered as a complimentary activity rather than an

alternative. For instance, a potential enhancement of the

approach consists of testing the application using test cases

derived from the model checking counter-examples. This helps

ensure verifying whether properties are indeed violated. Also,

behavioral models derived by this approach enable

model based test generation [14].

Consequently, the approach proposed in this paper is based

on the use of model checking to test user-defined properties of

applications built using web services compositions whose

source codes are inaccessible. The model of an application

under test is obtained from traces of the web services

execution while properties of interest relate to both the

business logic and ergonomics of the web services. More

specifically, the proposed approach breaks down into the

following main steps:

1) Modeling the Web services composition in a language

acceptable by a chosen model checker. As described

earlier, we use the execution traces of the web services

composition recorded using an appropriate monitoring

tool, e.g., a proxy server that is capable of intercepting

HTTP and SOAP communications. The traces are then

converted into a communicating automata model

representing the behavior of all the components of the

web services based application. This decision to use an

automata based model goes in line with the choice of the

model checker Spin [21, 22] as the verification core of

the proposed approach. Spin is an open source model

checker that has been used for verification of systems on

both the design and implementation levels. The language

used in Spin is Promela, which is a C-like high level

programming language used to describe executable

models depicted as finite state automata.

2) Specifying properties of interest. These properties can

represent both desired and undesired behaviors of the

web services. Properties will be mainly user defined and

expressed in the property specification language of Spin,

LTL. The use of the Spin model checker provides an

added flexibility to specify properties for verification.

Spin supports writing properties in Linear Temporal

Logic (LTL). Our approach consists of providing LTL

formal representations of the patterns in the library of

property patterns described in Section 2.1.

3) Checking the obtained model against the given properties.

To do so, Spin computes the composition of all the

component automata in the derived model and builds a

graph containing the global states of the application. The

graph is then intersected against the language of a

property for containment. The details of the verification

process using the Spin model checker can be checked in

[21, 22].

In the following, we discuss the proposed approach to

formally modeling web services based applications.

IV. FORMAL MODELING OF WEB SERVICES BASED

APPLICATIONS

The purpose of building a formal model for a web service

under test (WSUT) is to verify whether the service

composition exhibits certain predefined properties using model

checking techniques. It is assumed in this paper that the

properties specified in a temporal logic of a chosen model

checker are composed of atomic propositions and for each

SOAP/HTTP service request, the value of each proposition is

uniquely determined by the content of the service response.

These propositions refer to attributes that are user defined and

have to be checked (and of course reflected in a model).

Attributes can be of various types, for instance: a numerical

type to count the occurrences of a certain element, a string

type to denote the domain name of a response. To build a

formal model of a web service composition whose source code

is accessible, one may use abstraction techniques developed in

software reverse engineering following a the static, white box

approach [17, 24] as described in the previous section.

However, the source code is not always available, or access to

the code could breach copyrights or trade secrets (especially

when verification is performed by a third party). Moreover, a

web service composition can be written using different

languages and even different paradigms which make static

analysis difficult to perform.

When the code is not available for modeling, one can build

a formal model following a dynamic, black-box based

approach, by executing the application and using only the

observations of an external behavior of the service

composition over a certain period of time. Verification of such

models (resulting from finite trace of an application) is called

run-time verification [15, 26]. In case of web services that rely

on the SOAP or HTTP protocol considered in this work, an

observable behavior consists of requests and responses,

assuming that the flow of requests and responses between a

client side and a server in the WSUT is observable. One

possible way of achieving this is to use a proxy server [16]. A

proxy server monitors the traffic between the client and the

server and records it in proxy logs. The proxy logs, i.e., traces,

contain the requests for composing services and the responses

to these requests.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 23

In the next section, we present our approach to derive

automata based models from traces of web services.

A. Workflow of the Approach

Fig. 6 shows the workflow of the proposed approach. The

main components are:

 Monitoring module. It intercepts SOAP/HTTP requests and

responses during the navigation of the WSUT performed by

the user/crawler.

 Analysis module. It takes the intercepted traces as input and

generates an automata model in XML/Promela.

 Model checker, Spin. It verifies user defined properties

against the generated model and produces a counterexample

for each violated property.

With this approach, a behavior of a WSUT, called an

execution session, aka Request/Response Sequence (RRS)

[16], is interpreted as a possible sequence of web services

responses intermittent with the corresponding requests.

Usually, many of these requests are triggered by the user’s

actions (clicking links, submitting forms), while others can be

triggered by the service itself.

2

u1

u0

u2

f1

b

v1

v0

f2

s0

s1

a

f1 f2

s2

c

c

c

c

c

c

u1

u0

u2

f1

b

v1

v0

f2

s0

s1

a

f1 f2

s2

c

c

c

c

c

c

Communicating Automata Model

Formal
Specifications

System in
XML/PROMELA

SPIN
Model Checker

Property Results:
1. Satisfied
2. Violated

Properties
to Check

Monitor /

Interceptor

SOAP/HTTP Reader

Graphical
User Interface

Service Analyzer
& Modeler

XML/Promela
Generator

SOAP/HTTP
Requests /Responses

Fig. 6. Workflow of the approach

B. The Parameterized Finite Automata Model

Following [14], we adopt the definition of a parameterized

finite automaton which extends the definition of a Finite

Automaton by augmenting states with parameters and

transitions with guards.

Definition 1 [13]. A PFA A over L, P, and D is a tuple <, Q,

q0, A>; where  is a finite set of actions; Q  (L  2P) a finite

set of states, where each (parameterized) state q = (lq, Pq), lq 

L and Pq  P; q0  Q an initial state; and A a finite set of

transitions in which a transition is a tuple (q, (a, gq), q)

denoted q -(a, gq)A q, where q and q are states and (a, gq) is

a guarded action such that a   and gq is a predicate on Pq.

An execution of a PFA A is a finite sequence q0(a,

g0)q1…qn, where q0 is the initial state, qi is a state for i = 1, …n

in Q, and each tuple (qi, (aj, gi), qi+1) is a transition in A,

where gi is True. We denote the set of all the executions of A

by Ex(A). For each transition qi -(aj, gi)A qi+1 of A, there can

be more than one combination of parameter values that satisfy

the guard gi. Therefore, we consider two types of PFA

executions:

 Symbolic, where the predicates in the transition guards are

literals of the form: v  p, p  v or p  X, where v  Dp ,

and X  Dp.

 Concrete, where the predicates in the transition guards are

literals of the form: p = v, where v  Dp.

This distinction is extended to PFAs as follows [14]:

A symbolic PFA is a PFA such that each guard on a transition

is a DNF formula in which each conjunct is a literal gp

expressed as v  p, p  v, or p  X, where p  P; v  Dp, and

X  Dp.

A concrete PFA is a PFA such that each guard on a

transition is a DNF formula in which each conjunct is a literal

gp expressed as p = v, where p  P and v  Dp.

A concrete PFA can have only concrete executions while a

symbolic PFA can have both symbolic and concrete

executions.

Given two parameterized finite automata A1 = <, Q1, q01,

A1> and A2 = <, Q2, q02, A2,>, A1 and A2 are said to be

compatible if and only if q01 = q02. The merge of two

compatible PFAs A1 and A2, denoted A1 ⊔ A2, is defined as the

parameterized finite automaton <, Q, q0, >, where  = 1

2, Q Q1 Q2, q0 = q01 q02, and is defined as

follows:

 if q -(a, gq)A1 q and a  -(a, gq) q.

 if q -(a, gq)A2 q and a  -(a, gq) q.

 if q -(a, gq)A1 q, q -(a, gq)A2 q then q -(a, gq 

gq) q.

 if q -(a, gq)A1 q, q -(a, gq)A2 q, and q  q then q -

(a, gq) q and q -(a, gq) q.

The intersection of two compatible PFAs A1 and A2, is also

defined and denoted as A1 ⊓ A2. It is a PFA <, Q, q0, >,

where  = 1 2, Q Q1 Q2, q0 = q01 q02, and is

defined as follows: if q -(a, gq)A1 q, q -(a, gq)A2 q, such

that gq  gq  0 then q -(a, gq  gq) q.

The merge and intersection operations are associative; they

can be applied to finitely many PFAs. The merge (intersection)

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 24

of n PFAs A1 … An is a PFA A = A1 ⊔ … ⊔ An (A1 ⊓ … ⊓ An)

over the set of actions  = 1 … n ( = 1 … n).

Merge and intersection apply to both symbolic and concrete

PFAs, so the merge of two symbolic (concrete) PFAs is a

symbolic (concrete) PFA.

Finally, the implementation relation between two PFAs A1

and A2 is defined as an execution inclusion relation: A1

implements A2, denoted A1 ⊑ A2, iff for every execution E1 in

Ex(A1) there exists an execution E2 in Ex(A2) such that for

every transition q1 -(a, gq1)A1 q1 in E1 there exists q2 -(a,

gq2)A2 q2 in E2 such that gq1  gq2. The implementation

relation can be used to relate symbolic PFAs, concrete PFAs,

and a concrete PFA to a symbolic PFA.

C. Modeling WS Execution Sessions Using PFA

We discuss how to infer a PFA model from traces collected

by monitoring a WS. The proposed approach consists of the

following steps:

1) Represent each session as a concrete PFA ATr

2) Merge the concrete PFAs of all sessions to form one

concrete PFA ATC.

3) Infer a symbolic PFA ATS such that ATC ⊑ ATS.

First, we describe how to represent a session of a single

window non-framed HTTP application by a PFA. Apart from

the default page displayed in the browser, the trace T of an

application is a sequence <Rq1, Rp1>… <Rqn, Rpn>, where

each <Rqi, Rpi> is a request response pair. From this sequence,

we assume that the following sets can be determined: LT =

{URL1, …, URLn} the set of state labels, where each label

URLi is the URL of the page identified in the response Rpi in

the trace; PT = {p1, …, pm} the set of parameters, where each

parameter represents a page attribute appearing in a response

Rpi; and DT = {D1, …, Dp} the set of parameter domains,

where each domain Di includes the values recorded for a

parameter pi in the trace. Consequently, knowing LT, PT, and

DT, we use the definitions of PFA and concrete PFA to

represent T by a concrete trace PFA AT = <, Q, q0, >,

where

 Rq1, …, Rqn} is the set of actions. Each Rqi is either

a link clicked or a form filled on the previous page

represented by Rpi-1 except for Rq1 which is equal to the

URL of the home page of the application.

 QT = {q1, …, qn} is the set of states. For i > 0, each

parameterized state qi = (li, Pi), where li  LT, and Pi  PT

the collection of parameters of the page returned in the

corresponding Rpi.

 qT0 = q1 is the initial state.

 T is the transition relation, a set of tuples (qi, (Rqi+1, gqi),

qi+1), where qi and qi+1 are states in QT and (Rqi+1, gqi) is the

guarded action such that gqi is a DNF consisting of one

conjunction on the elements of Pi, and each conjunct in gqi

is a literal gp expressed as pj = vj, where pj  PT and vj 

Dj.

By construction, the set Ex(AT) contains one execution (the

trace itself). Therefore, it could be argued that T be mapped

into a concrete execution of a PFA rather than a concrete PFA.

We prefer mapping traces into automata rather than executions

since it makes operations such as merge and intersection

directly applicable without any need to adapt them to

executions.

Next, we infer a PFA model of a WS from a collection of

execution sessions. We do so by merging the concrete trace

PFAs representing the collected sessions. The resulting PFA

has a set of states that represent all the pages of the application

visited in all the traces, a set of transitions that contains all the

transitions of the individual PFAs, and, in particular, a set of

executions that includes all their executions. Formally, this can

be stated as follows: Given a collection of m concrete PFAs A1

= <1, Q1, q1, > … Am = <m, Qm, q0m, m> that represent

m traces collected from the same WS and are compatible since

all sessions are recorded by browsing the application starting

from its home page, the merge of the PFAs is a PFA denoted

AC = <C, QC, q0C, C > such that

 C= 1 ...m= , where i = Rq1i, …, Rqni} is the set

of actions representing all the links clicked and forms filled

in the trace Ti;

 QC = Q1 Qm
the set of states representing all the

pages visited in all traces, where each state qi = (li, Pi = Pi1

... Pim);

 q0C = q01 = q0m = (URL1, P1), where URL1 and P1 are the

URL of the home page of the application and its set of

parameters, respectively;

 C =   …  m is the transition relation, where each

transition is a tuple (qi, (Rqi+1, gqi), qi+1): qi and qi+1 are in

QC, and (Rqi+1, gqi) is the guarded action, where gqi is a

DNF in which a conjunct is a literal g{p} such that p = v,

where p  Pi and v  Dp.

Notice that the PFA AC represents more behavior than the

collection of the individual concrete session PFAs. In order to

avoid redundant application of merge for repeated sessions, a

check can be made whether a new concrete session PFA

implements the existing PFA of a collection of sessions, i.e.,

the behavior recorded in the new session is already modeled.

Then, merge is applied only to session PFAs that violate the

implementation relation.

Finally, we want to find a symbolic PFA that represents the

same behavior modeled in the PFA obtained by the merge

operation. This problem can be stated as follows: Given a

concrete PFA AC, obtained by merging a collection of concrete

session PFAs, infer a symbolic PFA AS such that AC ⊑ AS.

The implementation of this step follows the approach

detailed in [14], where the objective becomes to transform a

set of equalities on a parameter (in the concrete PFA) into a

single inequality, an interval or an enumeration on the same

parameter (the case of the symbolic PFA). The works in [14]

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 25

adopt the C4.5 data mining algorithm to infer the desired

symbolic PFA through deducing classification rules in the

form of decision trees using the concept of Information Gain

[14]. However, in this work, we introduce the following

improvement on the method adopted in [13] to cope with large

models that can result from exploring the web services based

applications by many users. We consider an approach to

reengineer customized behavioral models of WS applications

based on the actual executions of an application while being

accessed by real users or by testers. The reengineered models

are customized to depict the intentions of the users of a WS

application. By default, each user accesses a WS application to

fulfill a specific task: purchase a ticket, book a reservation,

buy food, execute a banking transaction, etc. The main idea in

the proposed approach is to reengineer models that depict the

different intentions (goals) of users who interact with the WS

application over a period of time. The behavior of the WS

application in response to user stimuli is still collected in

execution sessions observable through monitoring. Then, for

each predefined goal a model is reengineered that includes the

behavior recorded only in the traces that satisfy the goal.

D. Goals of WS based Applications

In general, a user interacts with a WS application with a

purpose in mind. It basically depends on the type of the

application and the functionality it offers. For example, we

consider an example WS application which consists of a small

flight reservation system [13, 14]. The customers can use the

application to buy tickets and make reservations with different

preferences. Hence, a user accessing the flight reservation

application would, most probably, want to buy an airplane

ticket to travel from one place to another. In this case, the

purpose is to “buy a ticket”. This can be identified as the goal

of the user in his access to the WS application. By default,

achieving the mentioned goal involves completing smaller

tasks before actually “buying the ticket” through a

confirmation issued by the WBA in the form of receipt, SMS

message to a mobile phone number or through an email

message. These smaller tasks might involve entering personal

information of the passenger for whom the ticket is being

bought, source destination information, financial and credit

card information, and finally consent for purchase and

payment. This means the bigger goal of “buying the ticket” is

broken down into smaller goals that are not necessarily an

expression of the functionality of the WS application.

This reasoning about goal definition and classification is

similar to the work in [13] where the intentions of the user of a

web application are classified into two types:

1) Action intentions, which are perceived on a low level.

Each action can be a mouse click, keyboard typing, or

any other basic action performed on a computer.

2) Semantic intentions, which correspond to what the user

wants to achieve at high level. A semantic intention may

involve several basic actions on a computer to

accomplish it.

Our reasoning is also similar to the reasoning made in the

field of automated planning, where hierarchical decomposition

of goals is considered to devise and implement proper plans

especially in the presence of contingencies.

We consider the following classification of goals in a WS

application:

1) Non functional goals: They relate to completing low

level tasks in the WS application. The completed tasks

do not need to satisfy a functional requirement of the

application. They include tasks like filling personal

information on a page, entering login information,

navigating from one page to another using various

controls (buttons, links, form submissions, etc).

2) Functional goals: They relate directly to satisfying a

functional requirement of the WS application.

Examples include buying a ticket, reserving a hotel

room, buying a book, etc. Each functional goal is

achieved through the completion of at least one non

functional goal. In other words, each functional goal

can be broken down into a sequence of one or more

non functional goals that should be achieved in a

certain order (usually defined by the developers of the

application).

In this paper, we focus on functional goals and describe how

to use them in reengineering customized models of the WS

application with respect to the various goals that can be

achieved when using the application. We describe in the

following section the model checking based approach where

execution sessions from a WS application that satisfy a

specific pre-defined goal can be used to infer a behavioral

model of the application.

E. Goal based Modeling of WS Applications

In this section, we describe the goal based modeling of WS

applications. The proposed approach is an extension of the

inference approach presented in [14]. Fig. 7 shows the goal-

based approach, i.e., modeling is based on knowing the goals

of the users of the application under test. A new step in the

workflow is added to filter out sessions that do not satisfy the

desired goal.

Each recorded trace of the WS application is checked

against the representation of a goal for satisfaction. The check

is performed in the model checker Spin [21], where the trace is

modeled by a PROMELA process and the desired functional

goal is specified using the Linear Temporal Logic (LTL)

formalism. Notice that since the trace of a WS application is a

sequence of pages interleaved with HTTP/SOAP requests, the

check for goal satisfaction can be performed more easily

through a simple search to match the goal. However, we

choose to use model checking in order to keep the approach

more generic and capable to treat more sophisticated traces

where a total order between components of a trace is not

always present. In some cases, such as in [15], the traces

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 26

collected from a system under test can be partially ordered sets

of events and the simple search to match the goal becomes

insufficient.

F. Goal Specification

LTL is the main language for property specification in the

model checker Spin [21]. Other forms of specification like

automata (never claims) are possible but not considered in this

work. Following the discussion in Section 4.4, we consider

that each functional goal is a sequence of smaller non-

functional ones.

As an example, consider the function goal “purchase a ticket

for a minor” that is adopted with minor modifications from

[14]. Such goal involves several steps including:

1) Providing the name of the passenger

2) Providing the age

3) Providing name of the guardian traveling with the child

4) Providing the source and destination information

5) Providing seating preferences

6) Providing payment information

7) Confirming purchase

However, formulation of the goal does not require an LTL

formula that involves all the non-functional steps. Instead, one

can choose key steps to use as indicators of the goal. For

example, “purchasing a ticket for a minor” must always

involve the two non-functional goals: “providing guardian

information” and “confirming the purchase”. For simplicity,

we denote the functional goal A and the two non-functional

goals b (for providing guardian information) and c (for

confirming the purchase). In addition to the decomposition of

A into b and c, we know that b must always come before c. In

LTL, this specification of A can be expressed in several forms.

For illustration purposes, we show one of the simplest forms:

!c U b, which reads: NOT c UNTIL b.

This means that c does not happen until after b.

Business Application

Monitor

Model
Inference Engine

Execution
Traces

Executable Model

Testing
&Validation Visualization

ServerServer

Request

Response

Client ServerServer

Request

Response

Client

Users/TestersUsers/Testers

Change
ManagementCustomization

Goal Based
Filtering

Goals

Fig. 7. Modified model inference approach.

On the other hand, a single session that features purchasing

a ticket for a child is visualized in Fig. 8. The session is

represented as an automaton (concrete PFA), where states

represent the pages visited in the WS application to fulfill the

goal and the transitions are the transitions between the pages.

After selecting the session to be added to the model, the

existing framework for model inference [14] is used to deduce

a model based on the filtered trace and any traces chosen

previously.

Fig. 9 shows the model of the WS application corresponding

to the goal A generated from 200 traces. The presented model

includes, in addition to states and transition, the conditions on

the data submitted to the WS application in order to reach the

goal. Notice that even though some customers were interested

in buying a ticket for a child, they entered wrong information

that led them into rejection. This is due to the formulation of

the goal itself, which states the confirmation has to come after

setting a guardian while rejection is reached directly from

reservation. This example shows that proper definition of the

goals is the key to obtain the optimal model for the WS

application under test. On the other hand, the presented model

shows how the behavior of the application from all the

processed sessions (in this case 200 traces) is aggregated in a

single state diagram. While some traces would contribute new

states and transitions to the model, other traces might

contribute only new conditions on the transitions between

states.

Run time verification of webbed, and web service-based,

applications have gained a lot of attention in many research

activities both in academia and in the industry given the role

such applications have in the shaping of today’s economy

based on e-commerce and e-services. This work can be

evaluated in the context of enhancing existing solutions to

address the problem of applying formal analysis to web

services based applications.

V. RELATED WORK

This research is closely related to the work published in [14,

16, 17], where we have designed and implemented various

approaches to address the problem of modeling and analyzing

web applications. From this viewpoint, the current work can be

seen as extension of the previous works in [13, 14, 15, 16] to

cover the web services application domain. The proposed

extension is intended in the form of a formal framework that

integrates static analysis techniques and dynamic analysis

techniques along with a library of property patterns, relevant to

web services. The proposed library of patterns builds upon the

previous work in [12] and [18] with the intention to extend the

existing catalogs with properties related to the correctness,

style, and performance of web services based applications.

The proposed framework features a set of static analysis

techniques inspired by the work in [14], where multithreaded

Java applications are analyzed. The intended work on static

analysis involves adaptation of techniques like linear scanning

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 27

(code inspection), abstraction extraction and model inference

to the specifics of web services based applications.

The main contribution in this paper is the proposal to build

an automated approach to dynamic analysis of web services

based applications relying on modeling actual behavior of such

applications, formulating relevant properties to be verified

against the derived models, and using an existing model

checker to verify the application against the property

specifications. In recent years, a large body of research has

been produced with a focus on formal modeling of web

services based applications in order to induce automation in

the analysis of the developed applications against some

predefined properties specified from the description and

requirements texts.

Reservation

SetAge

Set-

Guardian

Set-

Category

Set-

Category
Three

Confirm

Fig. 8. Sample execution session for ticket purchase.

Derived models are often generated from textual

descriptions of applications (BPEL, BPEL4WS, and WSCI),

and can be used mainly to check static properties that relate to

the structure and content of the application, usually described

as a composition of services. Examples of such research

include the work of Foster et al. [8, 9], which models BPEL

descriptions as Finite State Process models, which can be

verified against properties that are mainly derived from design

specifications written in UML notations like the Message

Sequence Chart (MSC) or activity diagrams.

Properties sought for verification include mostly semantic

failures and difficulties in providing necessary compensation

handling sequences that are tough to detect directly in common

workflow languages like BPEL. Other attempts have been

described in the literature as well including the work of

Breugel and Koshkina [26, 31] who introduce the BPE-

calculus to capture control flow in BPEL descriptions and

programs.

The service descriptions in the proposed language allow for

checking against properties like dead path elimination and

control cycles. The verification, mainly formal model

checking, is performed in the toolset Concurrency Workbench

(CWB). However, as discussed in Section 3, proposed

verification approaches based mainly on the static analysis of

an existing source code, where different types of models like

EFA, Promela, and communicating FSMs [9, 16, 26] are used,

have their limitations and impracticalities. Consequently, more

efforts are being spent on performing run-time verification of

web service applications based on monitoring and model

extraction.

Also, [24] address the run-time monitoring of functional

characteristics of composed Web services, as well as for

individual services [27].

Meanwhile, inferring behavioral models of software

applications has been the focus of many research efforts over

decades, e.g., [1, 4, 7, 10, 21] where models are either inferred

mainly from system requirements [18, 15, 16], depicted as

scenarios, or extracted from execution traces [7, 9, 18, 19]

collected by monitoring. The approach presented in this paper

can be compared to the work in [9], [11], and [32]. In [13], a

method is proposed to learn HTTP request models for

intrusion detection, where the signatures of known attacks are

used in enhancing the learning. On the other hand, in [15], a

trace recorded during a browsing session is used to infer a

model of a web application.

The obtained model in [16] consists of communicating

automata representing windows and frames of the application,

thus resulting in a hierarchical model that describes the control

flow of the application, but does not address the data

variations that are revealed by traces collected in different

browsing sessions. In [32], the focus is mainly on predicting

simple low level intentions of users of applications based on

the features extracted from the user interaction such as user’s

typed sentences and viewed content. The work does not

consider high level goals and structured intentions that relate

more to the functionality of the application.

This work builds on the results obtained in [13] and [14] in

the sense that we reuse the formal framework for model

inference, which is capable of inferring models that depict

both the data and control flows of a WBA. The

implementation of the framework was completed using data

mining algorithms applied to random sets of traces generated

by actual use of the WBA. Here, we follow [13] and filter

execution sessions of WS applications before using them

based on satisfying a pre-defined goal specified as a property

tested on the recorded execution session. If the session

satisfies the goal, then it is added to the model. Otherwise, it is

ignored. The objective is to customize the model and reduce

its size to make it more useful in automation of specific tasks

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 28

like property testing, test derivation and test case generation.

Fig. 9. Model of the WBA for the goal “purchase a ticket for a child”

(200 traces).

VI. CONCLUSION

In this paper, we proposed an integrated formal framework

for the analysis and verification of Web services composition.

The framework features both static and dynamic analysis

techniques, which complement each other. We also discussed

the development of a library of patterns and antipatterns of

interesting specifications of web services. These specifications

will be automatically translated into formal specification

languages, currently LTL is being considered. We also

presented the component of the framework responsible for the

inference of behavioral models of WS applications and for the

run-time verification of such applications against the desired

properties.

Needless to mention that the inferred models, which depict

the data and control flows of an application, can be useful in

various development activities like testing and validation. The

adoption of goal-based reengineering of WS application

models allows us to customize the models to reduce the

complexity of handling them especially in automated

environments.

Based on our previous experience and the initial results

obtained in the use of our formal approach for run-time

verification, we believe that results of this proposed work are

promising.

Major improvements of the proposed approach include

extending the modeling technique to cover all types of WS

applications by adopting a decentralized monitoring approach,

where each service involved in the application can be

represented by its reported behavior. The challenge in this case

becomes the consolidation of different sessions produced by

different monitors and defining a global order on the recorded

messages or events. The future plans to advance this research

is to apply the proposed set of tools to specific application

domains where the use of web services based application is

witnessing significant growth as is the case in education. Many

universities are integrating multiple enterprise solutions

including legacy ones through the use of web services to avoid

rewriting large modules of existing applications. In this

context, verifying and testing the integrated solutions imposes

the use of dynamic analysis through inference of behavioral

models due to the lack of proper access to source code of

legacy systems.

Finally, the proposed approach can be extended through

combining multiple models to infer a global model of an

application, which offers more coverage of the behavior of the

application. In addition, multiple goals that are satisfied in

collected traces can themselves be used to reengineer partial

specifications of the original application.

REFERENCES

[1] G. O. Young, “Synthetic structure of industrial plastics (Book style with

paper title and editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New

York: McGraw-Hill, 1964, pp. 15–64.

[2] Andrews, J. Offutt J, R. Alexander, "Testing Web Applications by

Modeling with FSMs", Software Systems and Modeling, 4(3):326-345,

July 2005.

[3] D. Angluin, "Learning regular sets from queries and counterexample"s,

Information and Computation, v.75 n.2, 1987, pp.87-106.

[4] A. Arkin, S. Askary, S. Fordin, et al. "Web Service Choreography

Interface (WSCI) 1.0". Retrieved on April 10, 2005 from

www.w3.org/TR/wsci.

[5] S. Boroday, A. Petrenko, J. Sing, and H. Hallal, "Dynamic Analysis of

Java Applications for MultiThreaded Antipatterns", In Proceedings of

the Third International Workshops on Dynamics Analysis (WODA

2005). St-Louis, MI, USA, 2005.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 29

[6] E. M. Clarke, O. Grumberg, D. A. Peled, "Model Checkin"g. The MIT

Press, 2000.

[7] M. Dwyer, G. Avrunin, J. Corbett, "Patterns in Property Specifications

for Finite-state Verification", In Proceedings of the 21st Int.

Conference on Software Engineering, May, 1999.

[8] H. Foster, S. Uchitel, J. Magee, & J. Kramer, "Model-based Verification

of Web Service Compositions". In Proceedings of 18th IEEE

International Conference on Automated Software Engineering, 2003,

pp. 152-161. Montreal, Canada.

[9] H. Foster, "Tool Support for Safety Analysis of Service Composition

and Deployment Models". In Proceedings of the 2008 IEEE

International Conference on Web Services, 2008, pp. 716-723. IEEE

Computer Society.

[10] X, Fu, T. Bultan, & J. Su, "Analysis of interacting BPEL Web Services".

In Proceedings of the 13th International World Wide Web Conference,

2004, pp. 621-630. ACM Press.

[11] X. Fu et al, "Analysis of interacting BPEL Web Services". In 13th Int.

World Wide Web Conference, 2004.

[12] H. H. Hallal, E. Alikacem, W. P. Tunney, S. Boroday, A. Petrenko,

"Antipattern-Based Detection of Deficiencies in Java Multithreaded

Software", In Proceedings of Fourth International Conference on Quality

Software (QSIC'04), 2004, pp.258-267.

[13] H. H. Hallal, M. Haidar, "Goal Based Reengineering of Web Business

Applications", In Proceedings of the 11th Conference on Software

Engineering and Research Practice (SERP 12). 2012, USA.

[14] H. Hallal, A. Dury, A. Petrenko, "Web-FIM: Automated Framework for

the Inference of Business Software Models". In Services2009

Competition Conference Associated with ICWS 2009 International

Conference on Web Services, 2009, Los Angeles, USA.

[15] H. Hallal, S. Boroday, A. Petrenko, A. Ulrich, "A Formal Approach to

Property Testing in Causally Consistent Distributed Traces", Formal

Aspects of Computing, 2006, 18(1): 63-83.

[16] M. Haydar, A. Petrenko, and H. Sahraoui, H, "Formal Verification of

Web Applications Modeled by Communicating Automata",

In Proceedings of 24th IFIP WG 6.1 IFIP International Conference on

Formal Techniques for Networked and Distributed Systems (FORTE

2004), pp. 115-132. Madrid, Spain. [LNCS, vol. 3235]

[17] M. Haydar, "A Formal Framework for Run-Time Verification of Web

Applications: An Approach Supported by Scope Extended Linear

Temporal Logic". VDM Verlag, Germany, ISBN: 978-3-639-18943-8,

2009.

[18] M. Haydar, H. Sahraoui, and A. Petrenko, "Specification Patterns for

Formal Web Verification", In Proceedings of 8th International

Conference on Web Engineering (ICWE 08), 2008, Yorktown Heights,

New York, USA.

[19] M. Haydar, S. Boroday, A. Petrenko, and H. Sahraoui, "Properties and

Scopes in Web Model Checking", In Proceedings of 20th IEEE/ACM

International Conference on Automated Software Engineering (ASE

05), 2005, Long Beach, California, USA.

[20] M. Haydar, S. Boroday, A. Petrenko, and H. Sahraoui, "Propositional

Scopes in Lenear Temporal Logic", In Proceedings of 5th International

Conference on New Technologies of Distributed Systems (NOTERE

05), 2005, Gatineau, Quebec, Canada.

[21] G. Holzmann, "The SPIN Model Checker: Primer and Reference

Manual". ISBN-10: 0321228626. Addison-Wesley, September 2003.

[22] G. J. Holzmann, "The SPIN Model Checker". Addison-Wesley, 2003.

[23] S. Kallel, A. Char, T. Dinkelaker, M. Mezini, M. Jmaiel, "Specifying

and Monitoring Temporal Properties in Web services Compositions". In

Proceedings of the 7th IEEE European Conference on Web Services

(ECOWS), 2009.

[24] N. Kavantzas, D. Burdett, G. Ritzinger, "Web Services Choreography

Description Language", (WS-CDL) 1.0.

[25] R. Kazhamiakin, M. Pistore, and M. Roveri, "Formal Verification of

Requirements Using Spin: A Case Study on Web Services". In

SEFM’04: Proceedings of the Software Engineering and Formal

Methods, 2004, pp. 406–415.

[26] M. Koshkina, F. van Breugel, "Modeling and Verifying Web Service

Orchestration by Means of the Concurrency Workbench". SIGSOFT

Software Engineering Notes, 2004, 29(5):1-10. ACM.

[27] S. Nakajima, "Model-Checking Behavioral Specification of BPEL

Applications". In Proceedings of the International Workshop on Web

Languages and Formal Methods, 2006, 2(151):89-105, ENTCS.

[28] OASIS, OASIS Web Services Business Process Execution Language.

http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsbpel.

[29] Oracle, http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html

[30] J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O'Farrell, E. Litani, J.

"Waterhouse, Runtime Monitoring of Web Service Conversations".

IEEE Transactions on Services Computing, 2009, 99, 223-244.

[31] F. Van Breugel, M. Koshkina, "Dead-Path-Elimination in BPEL4WS",

In Proceedings of the 5th International Conference on Application of

Concurrency to System Design, 2005, pp. 192-201. IEEE Computer

Society.

[32] W3C. (2004). "Web Services Glossary". Retrieved on Oct 18, 2008

from http://www.w3.org/TR/ws-gloss/.

[33] Zheng, L, Fan, H. Liu, Y. Liu, W. Ma, L. Wenyin, "User Intention

Modeling in Web Applications Using Data Mining", World Wide Web:

Internet and Web Information Systems, 5, 181–191, Kluwer Academic,

2002.
[34] Lazic, Ljubomir, and Nikos Mastorakis. "Cost effective software test

metrics." WSEAS Transactions on Computers Volume 6, Number 7, pp.

599-619, 2008.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 30

http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html
http://www.w3.org/TR/ws-gloss/

