
  
Abstract—In this paper, we describe a distributed deep learning 

platform named BAIPAS, a Big Data and AI based Predication and 
Analysis System. Recently, research on deep learning using big data 
has been actively carried out. For deep learning to use big data, it takes 
a lot of time to learn with the training data.  To reduce training time, 
there is a method that uses distributed deep learning framework. 
However, due to the size of storage, there is a problem that the full 
training data can’t be used for deep learning. When the big data is in 
external storage, training takes a long time because it requires 
additional training time due to network I/O and bottlenecks for data to 
be loaded during deep learning operations. To solve this problem, we 
propose BAIPAS with data locality module as a way to reduce training 
time with big data. In a cluster environment consisting of a master 
server and worker servers, the master server distributes training data to 
worker servers using optimal scheduling method. The goal of BAIPAS 
is support to enable to make effectively deep learning model, to easy 
install and monitoring of the platform. In order to provide fast training 
speed, data is distributed and stored in worker-server storage using 
data locality module, and then training is performed. The data locality 
module analyzes the training data and the state information of the 
worker servers. This distributes the data scheduling according to the 
available storage space of the worker server and the learning 
performance of the worker server. The worker server quickly performs 
training using training data (subset data) stored in the local storage.  
However, if each worker server conducts deep learning using the 
distributed training data, model overfitting may occur, which does not 
occur when the method of learning uses full training data set. To solve 
this problem, we applied a data shuffling method that moves already 
learned data to another worker server when training is performed. In 
this way, each worker server can contain the full training data set. 
BAIPAS uses Kubernetes and Docker to provide easy installation and 
monitoring of the platform. The master server used remote commands 
to install the distributed deep learning platform and the libraries and 
source code associated with the platform on the slave servers. It also 
monitored the resources of the slave servers to support efficient deep 
learning operations. It also provides pre-processing modules, 
management tools, automation of cluster creation, resource 
monitoring, and other resources; so developers can easily develop 
deep learning models.  
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I. INTRODUCTION 
A few years ago, since the advent of Google's AlphaGo[1, 2], 

many people have become interested in deep learning 
technology. Recently, deep learning technology has been 
actively researched in many fields, such as image processing, 
video recognition, speech recognition, natural language 
translation, autonomous vehicles, and artificial intelligence 
robot. Also, it is applied to various research fields such finance, 
medicine, art, natural science and so on. Deep learning deals 
with big data and is now being used as an alternative option to 
support existing research methods in many areas. 

The performance of existing machine learning is well below 
the level of people, and training from data takes a long time 
because of hardware limitations. However, machine learning is 
being used in more fields as the range of problems that can be 
processed by machine learning has widened. This is due to the 
recent development of deep learning, the activation of big data, 
and the development of hardware. The biggest advantage of 
deep learning is that you can make the best decisions based on 
massive amounts of data. Deep learning trains data on its own 
like a human being and finds optimized values when there is 
more data available and training is repeated. Much computing 
power is needed to improve the accuracy of data analysis. This 
is because, as the size of the learning model increases, the 
amount of data that needs to be computed increases. 

Currently an issue has arisen about storage of training data in 
deep learning using big data. When the capacity of the entire 
amount of training data exceeds the storage capacity of the node, 
it is necessary to learn using a subset of the entire training data. 
To solve this problem, large capacity external storage (NAS, 
Luster, HDFS, etc.) is used, but it slows down training speed 
due to network I/O and bottlenecks. We are developing a deep 
learning model using image data with a size of over several 
hundreds of TB, and we aim to develop a platform that shortens 
training time and improves learning effectiveness. Therefore, it 
was very important find a way to reduce the time needed to train 
with large amounts of data.  

This paper introduces the BAIPAS platform using data 
distribution and shuffling to train a large amount data in a 
distributed deep learning environment. 
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II. RELATED WORK 

A. TensorFlowOnSpark  
TensorFlowOnSpark (TFoS) [3, 4], developed by Yahoo, is a 

framework that enables distributed TensorFlow training and 
inference on Apache Spark clusters. TensorFlowOnSpark 
enables distributed deep learning on a cluster of GPU and CPU 
servers. This can be used on the platform, with minor code 
changes, to run existing TensorFlow programs. TFoS supports 
all TensorFlow functions, including synchronous /asynchronous 
learning, model/data parallelism, and TensorBoard. It provides 
architectural flexibility for data ingestion to TensorFlow 
(pushing vs. pulling) and network protocols (gRPC and RDMA) 
for server-to-server communication. Its Python API makes the 
integration with existing Spark libraries like MLlib easy. The 
speakers will walk through multiple examples to outline these 
key capabilities, and share benchmark results about scalability. 
This provides fast training through server-to-server 
communication. It has the advantage of using HDFS and Spark. 
However, TFoS is undergoing frequent system upgrades, 
making it unsuitable for stable use. 

B. BigDL  
BigDL [5, 6] is distributed as a deep learning library for 

Apache Spark and is highly scalable. It is an open source 
distributed deep learning framework for big data platform 
developed by Intel. With the help of BigDL, we can write 
directly into a spark program on a Spark or Hadoop cluster to 
run the deep learning application directly. It provides rich 
training support and uses Intel's Math Kernel Library (MKL) to 
ensure high performance. Using BigDL, we can load a 
pre-trained Torch or Caffe model into Spark. It is a very useful 
library that we can use if we want to add deep learning to large 
data sets stored in a cluster. BigDL also provides 100+ basic 
neural networks building blocks allowing users to create novel 
topologies to suit their unique applications. Thus, with Intel’s 
BigDL, the users are able to leverage their existing Spark 
infrastructure to enable Deep Learning applications without 
having to invest into bringing up separate frameworks to take 
advantage of neural networks capabilities. However, it does not 
support various advanced models.  

C. TensorFrame 
TensorFrames [7, 8] was developed by Databricks, and 

provides a bridge between Spark and the TensorFlow 
framework. This involves native embedding of TensorFlow in 
Spark Dataframes. If TensorFlow is used directly in Spark, it is 
inefficient because of the need to go through the process of 
object conversion. However, with TensorFrames much better 
performance is possible when working with TensorFlow on 
Spark. TensorFrames uses Spark's DataSet/DataFrame API and 
has in-depth knowledge of the memory-efficient data 
representation in Spark, minimizing memory redundancy 
between the two frameworks. TensorFrames can be run in 
Python and Scala. However, this has the disadvantage of 
providing data parallelism only in the distributed training stage. 

 

III. PLATFORM CONFIGURATION 

A. Platform Install  
The library installation required for the BAIPAS Deep 

Learning Platform is shown in Fig. 1. The operating system 
installed on the platform was Linux CentOS. We installed the 
Nvidia driver to accelerate the use of GPU in the Linux 
environment. Docker [9] (a tool for building a virtual 
environment) and Nvidia-Docker (a docker addition module) 
were installed to utilize the host's GPU in a virtual environment. 
Our platform used Kubernetes to execute and monitor 
commands in a distributed environment using a master and slave 
servers. Kubernetes [10] is powerful container management 
software developed by Google. It monitors, replicates, and 
deploys Docker containers. 

 
 

 

Fig.  1. Platform diagram  
 
CUDA [11] is a GPGPU technology for accelerating the use 

of GPUs. It installs CuDNN [12] to support the CUDA-based 
Deep Neural Network library. We installed the TensorFlow 
deep learning library [13] to support distributed deep learning. 
After all the basic essential libraries were installed, the modules 
developed by the BAIPAS Deep Learning Platform were 
installed. These consisted of a data preprocessing module, a 
data distribution module, and the cluster monitoring and 
automatic management modules. In addition, training and 
serving are provided by TensorFlow, and the library necessary 
for the platform is developed directly and provided to the user. 
This is a system that generates various prediction models and 
makes inferences. 

B. Configuration of Clusters 
The clusters of BAIPAS built on each server are shown in 

Fig. 2. One of the 10 nodes was used as a master server, and nine 
were configured as slave servers. A distributed deep learning 
platform was installed in the virtual container of each slave 
node. Each virtual container using Docker included 
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TensorFlow, related library images, and platform modules. 
Nodes in a cluster are easily scalable. We install the Kubernetes 
on the node to be added and register it as a slave server to the 
master server. Then, we only need to install the 
platform-specific image on the docker of the node where the 
master server is added. 

 

Fig.  2. Configuration of clusters 
 

IV. DISTRIBUTED DEEP LEARNING PLATFORM 

A. Overview 
The goal of our platform is to quickly and effectively 

support making prediction models using big training data. We 
focused on quick training with big data, easy installation and 
maintenance of the platform. 

 

Fig.  3. BAIPAS distributed deep learning platform conceptual 
diagram 
 

We designed the BAIPAS to ensure fast training speed. 
BAIPAS is an optimal deep learning platform that improves 
learning efficiency of big data. The platform performs learning 
by distributing data to the local repository of each worker server 
to process large amounts of data. Therefore, the problem of 
slow learning due to network I /O and bottleneck is solved. It 
has the function to preprocess the data in a format suitable for 
Tensorflow. It also maximizes efficiency of CPU/GPU in 
platform by using high-speed operation support library. This 
platform improves the accuracy of the deep learning model by 

data shuffling method. This template is related to the creation of 
distributed clusters and the configuration of the distributed 
environment in TensorFlow. Users can easily install, use and 
operate this platform. The master server used remote commands 
to install the distributed deep learning platform and the libraries 
and source code associated with the platform on the slave 
servers. It also monitored the resources of the slave servers to 
support efficient deep learning operations. It also provides 
templates for model developers to easily develop a distributed 
deep learning model.  

B. Data Locality 
The distributed deep learning method implemented in 

BAIPAS is different from the data parallelism method used in a 
general distributed deep learning framework. Data parallelism 
[14] is the process of distributing data across different nodes, 
which operate on the data in parallel computing environments. 
This is similar to training with distributed data in parallel on 
multiple worker servers. It is training with the entire data set. 
However, worker servers on BAIPAS train using different 
subsets of the same data set (see Fig. 4). When training, each 
worker server is able to train using the entire data set by use of a 
shuffling method that moves subsets of the trained data among 
the servers.  

 
Fig.  4. Data locality module 
 

Our goal was to solve the slow learning speed due to network 
I/O and bottleneck through distributed training data in each 
node. This is a method for efficient storage considering the size 
of the entire data set, the space available for storing the worker 
server, and the performance of the worker server. The 
movement of the subsets was handled by the data locality 
module, and it operated as follows. 

1) Analyze status information of training data and worker 
servers  

 
The master server stores status information, such as the data 

name, data size, data format, total number of data sets, and total 
size of the data set. It stores state information of the worker 
servers, such as the size of the worker server, the amount of 
available storage space, CPU/GPU information, total number of 
worker servers, and available space information. We use the 
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analyzed state information for distribution scheduling. 
 
2) Data distribution scheduling 

 
The idea of basic data distribution scheduling is to equally 

distribute the training data among all the worker servers. 
However, there are some things to consider:  the total size of the 
data set, the available space on the server's local storage, and the 
CPU/GPU performance of the server.  

 First, if the performance and available local storage 
space of each worker server are the same, and the total 
size of the data set is smaller than the sum of the 
available space, each data subset is sequentially 
distributed to each server's local storage and stored.  

 Second, when the size of the learning data is too large, 
the worker server distributes as much of the data as can 
be stored and proceeds with learning. The worker 
server deletes the learned data in the shuffling step and 
shuffles unallocated data from the external storage to 
itself to proceed with learning.  

 Finally, the speed of learning depends on the 
performance of the CPU/GPU and the number of 
GPUs. Thus, the amount of data distributed is in 
proportion to the learning performance of the worker 
server. The faster the learning performance, the more 
data is given. Then, the remaining data is distributed 
according to the ratio of the available storage space on 
the worker server with the highest performance. 

C. Data Shuffling 
In our BAIPAS platform, each worker server has a subset of 

the entire training data set, so overfitting can occur during 
training. To solve this problem, we performed data shuffling by 
moving already learned data to another server during training in 
mini- batch units (see Fig. 5). This method allows all worker 
servers to learn from the full data set. Shuffling is an ongoing 
process during training. Therefore, no extra shuffling time was 
required. When training with the mini-batch unit was 
completed, the work was terminated, even if all of the data 
targeted for movement had not been moved. For learning the 
next mini-batch unit, training data was selected from the newly 
shuffled data. This method achieved the same model accuracy 
as learning from all the data. 

The data shuffling method is as follows. 

  First, the worker server performs learning by a 
predetermined amount of mini-batch size data stored in 
each server. 

  Second, to perform 1 epoch, n mini-batches are 
performed. During the training of mini-batch units, the 
data used in the previous mini-batches are moved. (File 
movement does not occur during initial learning.) 

  Third, the target data is sequentially moved to the next 
worker server (copy and delete) on a file basis. When 

one piece of data is copied to another server, the copied 
data is deleted from the corresponding server. 

  Finally, moving work progresses sequentially while 
mini-batch unit learning occurs. When learning ends, 
only move to the file that is copied now, and work is 
started from a new one. When the next mini batch is 
started, the moving operation is performed based on 
the new mini batch data set. 

However, the shuffling does not sequentially send and 
receive files as shown in Fig 5. Data shuffling is possible while 
both servers are training. In addition, if data is shuffled at a 
maximum of 100%, all the data can be learned, but there is a 
possibility that the data will not be completely shuffled. 

Fig.  5. Data shuffling concept 

V. EXPERIMENTS 

A. Training Speed Test  
We compared the training speed of the BAIPAS and 

distributed TensorFlow that load training data from external 
storage. The test environment is as follows. One parameter 
server and 3 worker servers were used in the experiment. Each 
server has 2 GPUs (12 Gbytes) and 128 Gbytes of memory. We 
selected DCGAN with a slow learning speed as a test algorithm. 
The training data used in the experiment was 61 Gbytes in size 
and the number of instances was 10,000. The mini-batch size 
was 20, the iteration was 500, and the epoch was 24 times. 

 

 
Fig. 6. BAIPAS(L) vs. Distributed TensorFlow(R) test concept 

 
In the test results as shown Table1, the learning time of the 

mini-batch unit was 36.53 seconds for distributed TF learning 
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using external storage. The training time of BAIPAS was 30.98 
seconds. BAIPAS had a faster average training time than 
distributed TF because of the network I/O and the bottleneck. 
Several nodes simultaneously access external storage and load 
data so bottlenecks occur. The remaining nodes wait until the 
node that has preempted the resource finishes the work, so if the 
number of nodes is large, the learning time is longer. 

 
Table 1. Distributed TF vs. BAIPAS learning time results 

 Distributed TF BAIPAS 
Server 1 34.39852295 30.70884229 
Server 2 32.44939505 31.79591312 
Server 3 42.7465349 30.46060936 

Average speed 36.5314843 30.98845493 
 

 
Fig. 7. Learning speed test results 

 

B.  Platform Stability Test 
We tested the distribution and training speed of large amount 

of data of BAIPAS. This task is to determine platform stability 
and issues. We tested the problems and weaknesses of BAIPAS 
by learning massive typhoon satellite images. 

 

 
Fig. 7. CNN based algorithm to recognize the eyes of the typhoon 

 
The test environment is as follows. Three parameter servers 

and 6 worker servers were used in the experiment. Each server 
had 2 GPUs (12 Gbytes) and 128 Gbytes of memory. We used a 
CNN-based algorithm to perform the task of recognizing the 
eyes of the typhoon. The total size of the data was about 2 TB 
and the number of data items was 90,715. Epoch was run 20 
times. The mini-batch size was 40. 

The test results were as follows (see Table 2). It took about 25 
hours to distribute the data to the six worker servers. The 
training time required for each node was 50 hours and 5 
minutes. 
 
Table 2. Platform stability test result 

Node Name File # Data size Training Time 
Chaos 32 15097 336.5GB 50:05:22.849968 
Chaos 34 14960 333.4GB 31:57:17.088341 
Chaos 35 14936 332.9GB 26:19:37.918942 
Chaos 36 15239 339.6GB 8:29:04.113279 
Chaos 37 15559 346.8GB 31:36:46.99236 
Chaos 39 14924 332.6GB 45:54:34.454741 

 

VI. CONCLSUIONS 
 

In this paper, we introduced BAIPAS (Big data and AI based 
Predication and Analysis System), a distributed deep learning 
platform. When developing a deep learning model, it takes a lot 
of training time to learn big data. Also, if the size of the data is 
larger than the size of the storage, the full data can’t be stored 
and learned. When training data stored in external storage, 
training speed is slowed down by network I/O and bottleneck. 

To solve this problem, BAIPAS is done by distributing data 
to multiple worker servers in order to reduce the time required 
for big data learning. Our goal was to reduce the network I/O 
time required when training with big data stored on external 
storage devices. Then, each worker server learns using the 
subset training data stored in the local storage. Each worker 
server shuffles the trained data to another worker server to learn 
another subset of the full data set. To install the necessary 
libraries and environments on the platform, it is possible to 
install, operate, and utilize the necessary tools through the 
master server without installing them directly on each worker 
server. Therefore, the platform has easy extensible. BAIPAS 
provides management tools, including clustering monitoring, 
which make using it easy for developers of deep learning 
models. 

In the future, we will improve the performance of the 
platform by improving the data scheduling method and 
optimizing the training speed. 
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