

Abstract—In this paper, we describe a distributed deep learning

platform named BAIPAS, a Big Data and AI based Predication and
Analysis System. Recently, research on deep learning using big data
has been actively carried out. For deep learning to use big data, it takes
a lot of time to learn with the training data. To reduce training time,
there is a method that uses distributed deep learning framework.
However, due to the size of storage, there is a problem that the full
training data can’t be used for deep learning. When the big data is in
external storage, training takes a long time because it requires
additional training time due to network I/O and bottlenecks for data to
be loaded during deep learning operations. To solve this problem, we
propose BAIPAS with data locality module as a way to reduce training
time with big data. In a cluster environment consisting of a master
server and worker servers, the master server distributes training data to
worker servers using optimal scheduling method. The goal of BAIPAS
is support to enable to make effectively deep learning model, to easy
install and monitoring of the platform. In order to provide fast training
speed, data is distributed and stored in worker-server storage using
data locality module, and then training is performed. The data locality
module analyzes the training data and the state information of the
worker servers. This distributes the data scheduling according to the
available storage space of the worker server and the learning
performance of the worker server. The worker server quickly performs
training using training data (subset data) stored in the local storage.
However, if each worker server conducts deep learning using the
distributed training data, model overfitting may occur, which does not
occur when the method of learning uses full training data set. To solve
this problem, we applied a data shuffling method that moves already
learned data to another worker server when training is performed. In
this way, each worker server can contain the full training data set.
BAIPAS uses Kubernetes and Docker to provide easy installation and
monitoring of the platform. The master server used remote commands
to install the distributed deep learning platform and the libraries and
source code associated with the platform on the slave servers. It also
monitored the resources of the slave servers to support efficient deep
learning operations. It also provides pre-processing modules,
management tools, automation of cluster creation, resource
monitoring, and other resources; so developers can easily develop
deep learning models.

This research was supported by the Korea Institute of Science and
Technology Information (KISTI).

Mikyoung Lee is with the Korea Institute of Science and Technology
Information, Daejeon, 34141 Korea (e-mail: jerryis@kisti.re.kr).

Sungho Shin is with the Korea Institute of Science and Technology
Information, Daejeon, 34141 Korea (e-mail: maximus74@kisti.re.kr).

Sungkyun Hong is with the University of Science and Technology, Daejeon,
34113 Korea (e-mail: xo@kisti.re.kr).

Sa-kwang Song is with the Korea Institute of Science and Technology
Information, Daejeon, 34141 Korea. He is also with the professor of University
of Science and Technology, Daejeon, Korea (corresponding author to provide
phone: +82-42-869-0757; fax: +82-42-869-1133; e-mail: esmallj@ kisti.re.kr).

Keywords—Distributed Deep Learning Platform, Data Locality,
Data Shuffling, Deep Learning Platform, Big Data

I. INTRODUCTION
A few years ago, since the advent of Google's AlphaGo[1, 2],

many people have become interested in deep learning
technology. Recently, deep learning technology has been
actively researched in many fields, such as image processing,
video recognition, speech recognition, natural language
translation, autonomous vehicles, and artificial intelligence
robot. Also, it is applied to various research fields such finance,
medicine, art, natural science and so on. Deep learning deals
with big data and is now being used as an alternative option to
support existing research methods in many areas.

The performance of existing machine learning is well below
the level of people, and training from data takes a long time
because of hardware limitations. However, machine learning is
being used in more fields as the range of problems that can be
processed by machine learning has widened. This is due to the
recent development of deep learning, the activation of big data,
and the development of hardware. The biggest advantage of
deep learning is that you can make the best decisions based on
massive amounts of data. Deep learning trains data on its own
like a human being and finds optimized values when there is
more data available and training is repeated. Much computing
power is needed to improve the accuracy of data analysis. This
is because, as the size of the learning model increases, the
amount of data that needs to be computed increases.

Currently an issue has arisen about storage of training data in
deep learning using big data. When the capacity of the entire
amount of training data exceeds the storage capacity of the node,
it is necessary to learn using a subset of the entire training data.
To solve this problem, large capacity external storage (NAS,
Luster, HDFS, etc.) is used, but it slows down training speed
due to network I/O and bottlenecks. We are developing a deep
learning model using image data with a size of over several
hundreds of TB, and we aim to develop a platform that shortens
training time and improves learning effectiveness. Therefore, it
was very important find a way to reduce the time needed to train
with large amounts of data.

This paper introduces the BAIPAS platform using data
distribution and shuffling to train a large amount data in a
distributed deep learning environment.

BAIPAS: Distributed Deep Learning Platform
with Data Locality and Shuffling

Mikyoung Lee, Sungho Shin, Seungkyun Hong, and Sa-kwang Song

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 190

II. RELATED WORK

A. TensorFlowOnSpark
TensorFlowOnSpark (TFoS) [3, 4], developed by Yahoo, is a

framework that enables distributed TensorFlow training and
inference on Apache Spark clusters. TensorFlowOnSpark
enables distributed deep learning on a cluster of GPU and CPU
servers. This can be used on the platform, with minor code
changes, to run existing TensorFlow programs. TFoS supports
all TensorFlow functions, including synchronous /asynchronous
learning, model/data parallelism, and TensorBoard. It provides
architectural flexibility for data ingestion to TensorFlow
(pushing vs. pulling) and network protocols (gRPC and RDMA)
for server-to-server communication. Its Python API makes the
integration with existing Spark libraries like MLlib easy. The
speakers will walk through multiple examples to outline these
key capabilities, and share benchmark results about scalability.
This provides fast training through server-to-server
communication. It has the advantage of using HDFS and Spark.
However, TFoS is undergoing frequent system upgrades,
making it unsuitable for stable use.

B. BigDL
BigDL [5, 6] is distributed as a deep learning library for

Apache Spark and is highly scalable. It is an open source
distributed deep learning framework for big data platform
developed by Intel. With the help of BigDL, we can write
directly into a spark program on a Spark or Hadoop cluster to
run the deep learning application directly. It provides rich
training support and uses Intel's Math Kernel Library (MKL) to
ensure high performance. Using BigDL, we can load a
pre-trained Torch or Caffe model into Spark. It is a very useful
library that we can use if we want to add deep learning to large
data sets stored in a cluster. BigDL also provides 100+ basic
neural networks building blocks allowing users to create novel
topologies to suit their unique applications. Thus, with Intel’s
BigDL, the users are able to leverage their existing Spark
infrastructure to enable Deep Learning applications without
having to invest into bringing up separate frameworks to take
advantage of neural networks capabilities. However, it does not
support various advanced models.

C. TensorFrame
TensorFrames [7, 8] was developed by Databricks, and

provides a bridge between Spark and the TensorFlow
framework. This involves native embedding of TensorFlow in
Spark Dataframes. If TensorFlow is used directly in Spark, it is
inefficient because of the need to go through the process of
object conversion. However, with TensorFrames much better
performance is possible when working with TensorFlow on
Spark. TensorFrames uses Spark's DataSet/DataFrame API and
has in-depth knowledge of the memory-efficient data
representation in Spark, minimizing memory redundancy
between the two frameworks. TensorFrames can be run in
Python and Scala. However, this has the disadvantage of
providing data parallelism only in the distributed training stage.

III. PLATFORM CONFIGURATION

A. Platform Install
The library installation required for the BAIPAS Deep

Learning Platform is shown in Fig. 1. The operating system
installed on the platform was Linux CentOS. We installed the
Nvidia driver to accelerate the use of GPU in the Linux
environment. Docker [9] (a tool for building a virtual
environment) and Nvidia-Docker (a docker addition module)
were installed to utilize the host's GPU in a virtual environment.
Our platform used Kubernetes to execute and monitor
commands in a distributed environment using a master and slave
servers. Kubernetes [10] is powerful container management
software developed by Google. It monitors, replicates, and
deploys Docker containers.

Fig. 1. Platform diagram

CUDA [11] is a GPGPU technology for accelerating the use

of GPUs. It installs CuDNN [12] to support the CUDA-based
Deep Neural Network library. We installed the TensorFlow
deep learning library [13] to support distributed deep learning.
After all the basic essential libraries were installed, the modules
developed by the BAIPAS Deep Learning Platform were
installed. These consisted of a data preprocessing module, a
data distribution module, and the cluster monitoring and
automatic management modules. In addition, training and
serving are provided by TensorFlow, and the library necessary
for the platform is developed directly and provided to the user.
This is a system that generates various prediction models and
makes inferences.

B. Configuration of Clusters
The clusters of BAIPAS built on each server are shown in

Fig. 2. One of the 10 nodes was used as a master server, and nine
were configured as slave servers. A distributed deep learning
platform was installed in the virtual container of each slave
node. Each virtual container using Docker included

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 191

TensorFlow, related library images, and platform modules.
Nodes in a cluster are easily scalable. We install the Kubernetes
on the node to be added and register it as a slave server to the
master server. Then, we only need to install the
platform-specific image on the docker of the node where the
master server is added.

Fig. 2. Configuration of clusters

IV. DISTRIBUTED DEEP LEARNING PLATFORM

A. Overview
The goal of our platform is to quickly and effectively

support making prediction models using big training data. We
focused on quick training with big data, easy installation and
maintenance of the platform.

Fig. 3. BAIPAS distributed deep learning platform conceptual
diagram

We designed the BAIPAS to ensure fast training speed.
BAIPAS is an optimal deep learning platform that improves
learning efficiency of big data. The platform performs learning
by distributing data to the local repository of each worker server
to process large amounts of data. Therefore, the problem of
slow learning due to network I /O and bottleneck is solved. It
has the function to preprocess the data in a format suitable for
Tensorflow. It also maximizes efficiency of CPU/GPU in
platform by using high-speed operation support library. This
platform improves the accuracy of the deep learning model by

data shuffling method. This template is related to the creation of
distributed clusters and the configuration of the distributed
environment in TensorFlow. Users can easily install, use and
operate this platform. The master server used remote commands
to install the distributed deep learning platform and the libraries
and source code associated with the platform on the slave
servers. It also monitored the resources of the slave servers to
support efficient deep learning operations. It also provides
templates for model developers to easily develop a distributed
deep learning model.

B. Data Locality
The distributed deep learning method implemented in

BAIPAS is different from the data parallelism method used in a
general distributed deep learning framework. Data parallelism
[14] is the process of distributing data across different nodes,
which operate on the data in parallel computing environments.
This is similar to training with distributed data in parallel on
multiple worker servers. It is training with the entire data set.
However, worker servers on BAIPAS train using different
subsets of the same data set (see Fig. 4). When training, each
worker server is able to train using the entire data set by use of a
shuffling method that moves subsets of the trained data among
the servers.

Fig. 4. Data locality module

Our goal was to solve the slow learning speed due to network
I/O and bottleneck through distributed training data in each
node. This is a method for efficient storage considering the size
of the entire data set, the space available for storing the worker
server, and the performance of the worker server. The
movement of the subsets was handled by the data locality
module, and it operated as follows.

1) Analyze status information of training data and worker
servers

The master server stores status information, such as the data

name, data size, data format, total number of data sets, and total
size of the data set. It stores state information of the worker
servers, such as the size of the worker server, the amount of
available storage space, CPU/GPU information, total number of
worker servers, and available space information. We use the

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 192

analyzed state information for distribution scheduling.

2) Data distribution scheduling

The idea of basic data distribution scheduling is to equally

distribute the training data among all the worker servers.
However, there are some things to consider: the total size of the
data set, the available space on the server's local storage, and the
CPU/GPU performance of the server.

 First, if the performance and available local storage
space of each worker server are the same, and the total
size of the data set is smaller than the sum of the
available space, each data subset is sequentially
distributed to each server's local storage and stored.

 Second, when the size of the learning data is too large,
the worker server distributes as much of the data as can
be stored and proceeds with learning. The worker
server deletes the learned data in the shuffling step and
shuffles unallocated data from the external storage to
itself to proceed with learning.

 Finally, the speed of learning depends on the
performance of the CPU/GPU and the number of
GPUs. Thus, the amount of data distributed is in
proportion to the learning performance of the worker
server. The faster the learning performance, the more
data is given. Then, the remaining data is distributed
according to the ratio of the available storage space on
the worker server with the highest performance.

C. Data Shuffling
In our BAIPAS platform, each worker server has a subset of

the entire training data set, so overfitting can occur during
training. To solve this problem, we performed data shuffling by
moving already learned data to another server during training in
mini- batch units (see Fig. 5). This method allows all worker
servers to learn from the full data set. Shuffling is an ongoing
process during training. Therefore, no extra shuffling time was
required. When training with the mini-batch unit was
completed, the work was terminated, even if all of the data
targeted for movement had not been moved. For learning the
next mini-batch unit, training data was selected from the newly
shuffled data. This method achieved the same model accuracy
as learning from all the data.

The data shuffling method is as follows.

 First, the worker server performs learning by a
predetermined amount of mini-batch size data stored in
each server.

 Second, to perform 1 epoch, n mini-batches are
performed. During the training of mini-batch units, the
data used in the previous mini-batches are moved. (File
movement does not occur during initial learning.)

 Third, the target data is sequentially moved to the next
worker server (copy and delete) on a file basis. When

one piece of data is copied to another server, the copied
data is deleted from the corresponding server.

 Finally, moving work progresses sequentially while
mini-batch unit learning occurs. When learning ends,
only move to the file that is copied now, and work is
started from a new one. When the next mini batch is
started, the moving operation is performed based on
the new mini batch data set.

However, the shuffling does not sequentially send and
receive files as shown in Fig 5. Data shuffling is possible while
both servers are training. In addition, if data is shuffled at a
maximum of 100%, all the data can be learned, but there is a
possibility that the data will not be completely shuffled.

Fig. 5. Data shuffling concept

V. EXPERIMENTS

A. Training Speed Test
We compared the training speed of the BAIPAS and

distributed TensorFlow that load training data from external
storage. The test environment is as follows. One parameter
server and 3 worker servers were used in the experiment. Each
server has 2 GPUs (12 Gbytes) and 128 Gbytes of memory. We
selected DCGAN with a slow learning speed as a test algorithm.
The training data used in the experiment was 61 Gbytes in size
and the number of instances was 10,000. The mini-batch size
was 20, the iteration was 500, and the epoch was 24 times.

Fig. 6. BAIPAS(L) vs. Distributed TensorFlow(R) test concept

In the test results as shown Table1, the learning time of the

mini-batch unit was 36.53 seconds for distributed TF learning

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 193

using external storage. The training time of BAIPAS was 30.98
seconds. BAIPAS had a faster average training time than
distributed TF because of the network I/O and the bottleneck.
Several nodes simultaneously access external storage and load
data so bottlenecks occur. The remaining nodes wait until the
node that has preempted the resource finishes the work, so if the
number of nodes is large, the learning time is longer.

Table 1. Distributed TF vs. BAIPAS learning time results

 Distributed TF BAIPAS
Server 1 34.39852295 30.70884229
Server 2 32.44939505 31.79591312
Server 3 42.7465349 30.46060936

Average speed 36.5314843 30.98845493

Fig. 7. Learning speed test results

B. Platform Stability Test
We tested the distribution and training speed of large amount

of data of BAIPAS. This task is to determine platform stability
and issues. We tested the problems and weaknesses of BAIPAS
by learning massive typhoon satellite images.

Fig. 7. CNN based algorithm to recognize the eyes of the typhoon

The test environment is as follows. Three parameter servers

and 6 worker servers were used in the experiment. Each server
had 2 GPUs (12 Gbytes) and 128 Gbytes of memory. We used a
CNN-based algorithm to perform the task of recognizing the
eyes of the typhoon. The total size of the data was about 2 TB
and the number of data items was 90,715. Epoch was run 20
times. The mini-batch size was 40.

The test results were as follows (see Table 2). It took about 25
hours to distribute the data to the six worker servers. The
training time required for each node was 50 hours and 5
minutes.

Table 2. Platform stability test result

Node Name File # Data size Training Time
Chaos 32 15097 336.5GB 50:05:22.849968
Chaos 34 14960 333.4GB 31:57:17.088341
Chaos 35 14936 332.9GB 26:19:37.918942
Chaos 36 15239 339.6GB 8:29:04.113279
Chaos 37 15559 346.8GB 31:36:46.99236
Chaos 39 14924 332.6GB 45:54:34.454741

VI. CONCLSUIONS

In this paper, we introduced BAIPAS (Big data and AI based
Predication and Analysis System), a distributed deep learning
platform. When developing a deep learning model, it takes a lot
of training time to learn big data. Also, if the size of the data is
larger than the size of the storage, the full data can’t be stored
and learned. When training data stored in external storage,
training speed is slowed down by network I/O and bottleneck.

To solve this problem, BAIPAS is done by distributing data
to multiple worker servers in order to reduce the time required
for big data learning. Our goal was to reduce the network I/O
time required when training with big data stored on external
storage devices. Then, each worker server learns using the
subset training data stored in the local storage. Each worker
server shuffles the trained data to another worker server to learn
another subset of the full data set. To install the necessary
libraries and environments on the platform, it is possible to
install, operate, and utilize the necessary tools through the
master server without installing them directly on each worker
server. Therefore, the platform has easy extensible. BAIPAS
provides management tools, including clustering monitoring,
which make using it easy for developers of deep learning
models.

In the future, we will improve the performance of the
platform by improving the data scheduling method and
optimizing the training speed.

REFERENCES
[1] AlphaGo, https://en.wikipedia.org/wiki/AlphaGo
[2] D. Silver, A. Huang, and A. Guez et al., “Mastering the game of

Go with deep neural networks and tree search”, Nature 529, pp
484-489, doi:10.1038/nature16961, 2016.

[3] TensorFlowOnSpark,
https://github.com/yahoo/TensorFlowOnSpark

[4] Lee Yang, Jun Shi, Bobbie Chern, and Andy Feng, “Open
Sourcing TensorFlowOnSpark: Distributed Deep Learning on
Big-Data Clusters”,
http://yahoohadoop.tumblr.com/post/157196317141/open-sourc
ing-tensorflowonspark-distributed-deep, 2017.

[5] Sergey E. “BigDL: Distritubted Deep Learning on Apache
Spark”,

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 194

https://software.intel.com/en-us/articles/bigdl-distributed-deep-l
earning-on-apache-spark, 2017.

[6] BigDL, https://github.com/intel-analytics/BigDL
[7] Tim Hunter, “TensorFrames: Deep Learning with TensorFlow

on Apache Spark”,
https://databricks.com/session/tensorframes-deep-learning-with-
tensorflow-on-apache-spark, Spark summit, 2016.

[8] TensorFrames, https://github.com/databricks/tensorframes
[9] Docker, https://en.wikipedia.org/wiki/Docker_(software)
[10] David Bernstein, “Containers and Cloud: From LXC to Docker to

Kubernetes,” IEEE Cloud Computing, vol 1, issue 3, pp81-84,
2014.

[11] CUDA Nvidia. Cublas library.
https://developer.nvidia.com/cublas

[12] S. Chetlur, C. Woolley, P. Vandermersch, “cuDNN: Efficient
primitives for deep learning,” arXiv:1410.0759, 2014.

[13] M. Abadi, A. Agarwal, and P. Barham et al., “TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed
Systems,” arXiv:1603.04467v2, Google Research whitepaper,
2016.

[14] C. Chambers, A. Raniwala, F. Perry and et al. “efficient
data–parallel pipelines,” In ACM Sigplan Notices, volume 45, pp
363-375, ACM, 2010.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017

ISSN: 2074-1316 195

	I. INTRODUCTION
	II. Related Work
	A. TensorFlowOnSpark
	B. BigDL
	C. TensorFrame

	III. Platform configuration
	A. Platform Install
	B. Configuration of Clusters

	IV. Distributed deep learning platform
	A. Overview
	B. Data Locality
	1) Analyze status information of training data and worker servers
	2) Data distribution scheduling

	C. Data Shuffling

	V. Experiments
	A. Training Speed Test
	B. Platform Stability Test

	VI. Conclsuions

