

Abstract—The authors' aim is the Logical Model and Language

Support for Patterns in DBMS (Database Management System) and
builds on the previous work of the authors. Patterns are mentioned
usually in the extraction context. Little stress is posed in their
representation and management. This paper is focused on
representation of the patterns, manipulation with patterns and query
patterns. Crucial issue can be seen in systematic approach to pattern
management and specific pattern query language which takes into
consideration semantics of patterns. Example of implementation of
the abstract pattern model is proposed. Query language for
manipulating with patterns is introduced on Time Series data.

Keywords—Pattern type, Association Rule, Cluster, Time Series,
Query Language.

I. INTRODUCTION
ROWING possibilities of fast and cheap data collection
and its storing in large databases go hand in hand with

requirements for effective manipulation and interpretation of
such data. Ways of data storing, models which provide bases
for such ways, are the defining factors for effective
manipulation and information collection, knowledge
respectively. There are increasing requirements to capture
behavior of objects in a database, to capture data semantics, or
mutual relations between data and possibilities of knowledge
inference from data stored in databases. The crucial factor is
the ability of abstraction, i.e. modelling at such a level of
abstractions so that the model could cover as many particular
situations as possible, possibly being universal. An interesting
idea is to store knowledge in a form of behavior patterns. The
question is: Can a behavior pattern be written universally? Can
we create a model that would offer such a high level of
abstraction? An interesting answer for this question can be
found in [1], which presents a model of behavior patterns as a
basis for a layer between raw data and the language for data
interpretation. This approach distinguishes between models of

This work was supported by the University of Ostrava grant

SGS10/PřF/2017. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do
not reflect the views of the sponsors.

Z. Telnarová is with the Department of Informatics and Computers,
Faculty of Science, University of Ostrava. 30. dubna 22, Ostrava, the Czech
Republic. (e-mail: Zdenka.Telnarova@osu.cz).

M. Žáček is with the Department of Informatics and Computers, Faculty of
Science, University of Ostrava. 30. dubna 22, Ostrava, the Czech Republic.
(e-mail: Martin.Zacek@osu.cz).

data and models of patterns [2].
The paper follows up formal definitions and tries to outline

implementation of a general model aiming at effective storing
while using various techniques of recognized or user-defined
patterns in a database.

Pattern-base system can be characterized according to [3]

by the following properties:
1) Abstraction. Patterns providing the user with a meaningful

abstraction of raw data.
2) Efficiency. By specific model system improves the

efficiency of both traditional transactions and advanced
processing on patterns.

3) Flexible querying. Query language manipulating with
patterns has to be modified in terms of improvement
possibility to retrieve and compare patterns.

II. ABSTRACT PATTERN TYPE
Definition

A patter type PT is a quintuple [N, SS, D, MS, MF]: where
N is unique identifier of the pattern type; SS is Structure
Scheme - distinct complex type; D is Domain - s a set type;
MS is Measure Schema – a tuple of atomic types; MF is a
Mapping Formula - a predicate over SS and D.

Each patter is instance of a specific patter type. Structure

schema depends on specific pattern type as is shown later for
several specific pattern types. There is different structure for
association rule, cluster, time series, etc. Definition below
comes from the same quoted work.

Definition

A patter p over a pattern type PT is a quintuple [PID, S,
AD, M, MF]: where PID is a unique identifier S is Structure
(instance of Structure Scheme); AD is the Active Domain, a
relation which instantiates the set type of Domain; M is
Measure – valid values of the respective structure and measure
schema of PT; MF is mapping formula – predicate
instantiating the respective mapping formula of PT

As we mentioned Structure Scheme depends on specific

patter type. It occurs useful to define pattern class as a
collection of semantically related patterns which are instances
of specific pattern type. For example we can have pattern class
AssociationRule as collection of all instances of the specific
pattern type Association Rule.

The Logical Model and Language Support for
Patterns in DBMS

Zdeňka Telnarová, Martin Žáček

G

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 1

Definition

A pattern class is a triplet [Name, PT, Extension]: where
name is a unique identifier of the class;PT is a pattern type;
Extension is a finite set of the patterns with pattern type PT.

III. SPECIFIC PATTERN TYPES
Though we consider pattern types as a general concept

some of concrete types depending of pattern recognition
algorithm can be shown. Let us mention only a few of them
like Association Rule, Interpolating Line, Time Series, cluster,
etc.

A. Pattern type Association Rule
N: AssociationRule
SS:TUPLE (head: SET(STRING), body: SET(STRING))
D: BAG (transaction: SET(STRING))
MS: TUPLE (confidence: REAL, support: REAL)
MF: ∀ x (x∈ head ∨ x∈ body ⇒ x ∈ transaction)

Confidence describes what percentage of the transactions

including the head also include the body. Support describes
what percentage of the whole set of transactions include the
body.

Instance of the Pattern AssociationRule

PID: 1
S: (head = {‘Programing with PL/SQL’},
 body= {‘Databases’, ‘Programing with SQL’})
AD: ‘Select name AS transaction FROM subjects ‘
M: (confidence = 0.75, support = 0.55)
MF: {transaction: ∀ x (x∈ {‘Programing with PL/SQL‘}
 ∨ (x∈ { ‘Databases’, ‘Programing with PL/SQL’}
 ⇒ x ∈ transaction)}

This pattern describes situation when student that assigns

for Databases and Programing with SQL also assigns
Programing with PL/SQL with confidence 0.75 and support
0.55.

Merit for this approach can be seen in the fact that many
algorithms and techniques how to mind association rules have
been developed. This technique has many practical
applications. Patterns instance is easy to devote in SQL.

B. Pattern type Cluster
N: Cluster (two dimensional)
SS:TUPLE (center: TUPLE (x: REAL, y: REAL),
 radius(r: REAL))
D: BAG (a: INTEGER, b: INTEGER)
MS: precision: REAL
MF: (BAG.a - TUPLE.center.x)2 +
 + (BAG.b - TUPLE.center.y)2 <= TUPLE.radius.r2

Instances of the Pattern Cluster
Let us have customers and know their age and incomes.

Via cluster analysis we have obtained clusters, each cluster

contains customer with similar age and income. For example
we can obtain these clusters:

Cluster 1 Cluster 2
age income age income
30 33 43 60
31 31 47 60
29 29 45 59
30 27 49 61

The actual patterns for data from BAG can be described

this way.

PID: Cluster1
S: (TUPLE(center(x: 30, y: 30), radius(r: 3))
AD: ‘Select age, income FROM customers ‘
M: Precision: 1
MF: (age - 30)2 + (income - 30)2 <=32

PID: Cluster2
S: (TUPLE(center(x: 45, y: 60), radius(r: 2))
AD: ‘Select age, income FROM customers ‘
MF: Precision: 0.75
MF: (age - 45)2 + (income - 60)2 <=22

This approach benefits from the techniques based on N-
dimensional representation of data. The source of data is a set
of N-dimensional elements. It depends on the characteristics of
the data whether this approach is profitable to use. If we have
data as a set of N-dimensional elements then the merit is
obvious.

IV. IMPLEMENTATION OF THE ABSTRACT MODEL IN ORACLE
To be able to store patterns in pattern base it is necessary to

create a structure of the pattern base. Pattern base can be
modeled by simple meta-meta model shown on FIGURE 1.
Patter_type is a general structure - entity which instances are
specific types of patterns. Specific types can be added to
pattern base according to the situation when some other
specific type occurs in reality. This new instance of
pattern_type creates specification for particular pattern it
means concrete structure of attributes and their domains. For
example Association Rule can be instance of patter_type and
this specification concretizes the structure of the entity pattern.

Pattern_type entity is abstract entity that is specified only
by definition of attributes and description of their meanings
through informal text specification. Pattern entity (as a
instance of pattern_type entity) has formal declaration
according to concrete specification belongs to specific
pattern_type. FIGURE 2 shows example of data type model
for abstract data type in Oracle for patter_type Association
Rule.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 2

N: AssociationRule
SS:TUPLE (head: SET(STRING), body: SET(STRING))
D: BAG (transaction: SET(STRING))
MS: TUPLE (confidence: REAL, support: REAL)
MF: ∀ x (x∈ head ∨ x∈ body ⇒ x ∈ transaction)

Method_1 is implementation of selecting data from specific

database, Method_2 is implementation of mapping formula
(predicate over SS and D).

Figure 3 is an example of data model for generation of
schema for storing patterns. This model is based on Oracle
abstract data type collention (set of strings for head and body)
and object (Method_1 and Method_2).

V. PATTERN TYPE TIME SERIES
A time series is a set of timestamped data entries. A time

series allows a natural association of data collected over
intervals of time. For example, summaries of stock market
trading or banking transactions are typically collected daily,
and are naturally modelled with time series [4].

A time series can be regular or irregular, depending on

whether or not the time series has an associated calendar.
1) A regular time series has an associated calendar. In a

regular time series, data arrives predictably at predefined
intervals.

2) An irregular time series does not have an associated
calendar. Often, irregular time series are data-driven,
where unpredictable bursts of data arrive at unspecified
points in time or most timestamps cannot be characterized
by a repeating pattern.

Data generation for a time series begins with individual

transactions. Each transaction has a timestamp and sufficient
information to identify that transaction uniquely. Individual
transaction data is typically rolled up to produce summary data
for a meaningful time period.

Using of this approach depends of the characteristics of the
data. This approach assumes data with timestamp. If we have
timestamped data entries pattern type time series is the most
useful, so the merits are evident. Many applications work with
time series for example when we work with historical data.

A. Time Series as Historical Data
1) The data-collection model for historical data has the

following characteristics:
2) At daily intervals, historical data is updated with daily

summary data (main update cycle).
3) At some period after the main update cycle, corrections of

the daily summary data may need to be applied.
4) Queries may be executed at any time, even during the

update cycle.
5) Queries do not observe the current day's summary

information until after the main update cycle has
completed.

Fig. 1 meta-meta model for pattern.

Fig. 2 Model of abstract data type in Oracle.

Fig. 3 Data model uses Oracle abstract data types.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 3

This historical data is modelled using multiple regular time
series.

Example of historical data

An organization needs to keep data about employees’
salaries. All employees are paid weekly. Initially, the
following EMPLOYEE entity was modelled.

Additional requirements now specify that the organization
needs to keep a historical record of how and when employees’
salaries have changed during their employment.

To model salary changes over time, add a SALARY
HISTORY entity.

The UID of the Salary_history entity is the related
Employee id and the salary_start_date.

The UID of the Salary_history entity is the related
Employee id and date.

SQL DDL statements

CREATE TABLE Employee
 (id NUMBER NOT NULL ,
 first_name VARCHAR2 (15) NOT NULL ,
 last_name VARCHAR2 (15) NOT NULL);
ALTER TABLE Employee ADD CONSTRAINT
Employee_PK PRIMARY KEY (id);

CREATE TABLE Salary_history
 (date DATE NOT NULL ,
 daily_salary_amount INTEGER NOT NULL ,
 Employee_id NUMBER NOT NULL);
ALTER TABLE Salary_history ADD CONSTRAINT
Salary_history_PK PRIMARY KEY (Employee_id, date) ;
ALTER TABLE Salary_history ADD CONSTRAINT
Salary_history_Employee_FK FOREIGN KEY (Employee_id
) REFERENCES Employee (id) ;

B. Typical features of Time Series DBMS
Time Series DBMS are designed to efficiently collect, store

and query time series data with high transaction volumes.
Although that type of data could be managed with other
categories of DBMS (and some systems even provide
appropriate design patterns or even extensions for handling
time series), the specific challenges often benefit from
specialized systems by supporting:

Downsampling data: e.g. a sensors value is stored per
second and a query shall deliver the averaged value per
minute. A typical SQL-query needs a group by clause with an
expression similar to something like 'group by integer
division(time, 60)', whereas Time Series DBMS support
something like 'group by time (1 minute)'

Comparison with the previous record: e.g. a 'table' contains
stock prices (one tick per day). A query should deliver all
days, in which the price of a specific stock had increased. In a
relational system (and using standard SQL), we would have to
self-join the table and figure out how to match each record
with its previous one. That may be a non-trivial task and is
definitely not efficient. Time Series DBMS typically offer
specific features for that requirement.

Joining time series: Joins will put two or more time series
together, by matching timestamps. Those timestamps,
however, may not match exactly. Time Series DBMS often
provide features for that task.

For the one or other system, we found it difficult to decide
whether to add it as another Time Series DBMS, or to classify
it as a monitoring application (which we do not take care of).
We then applied as a rule of thumb, that for being a DBMS, a
system at least has to offer an API for inserting and querying
data and must not be specific to a single domain.

Oracle Time Series provides support for time series
domain-specific types, functions, and interfaces. The product
focuses on a set of time series data representation and access
mechanisms sufficient to support many applications and the
development of more specialized time series functions. The

Fig. 4 Employee table.

Fig. 5 Decomposition to the historical structure for weekly salary.

Fig. 6 Decomposition to the historical structure for daily salary.

Fig. 7 Decomposition to the historical structure for daily salary.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 4

objects option makes Oracle (from the version Oracle8i) an
object-relational database management system, which means
that users can define additional kinds of data - specifying both
the structure of the data and the ways of operating on it - and
use these types within the relational model. This approach
adds value to the data stored in a database.

Informix Time Series software consolidates and organizes
time-stamped data much more efficiently than traditional,
relational databases and provides the following benefits:

More efficient storage of data means that Informix Time
Series performance is an order of magnitude greater than that
of traditional, relational databases. Additionally, a real-time
loader is included that dramatically reduces data load times to
make data available to queries in real-time.

The inherent ability to store time series data with great
efficiency means Informix Time Series requires significantly
less storage space than traditional relational databases.
Informix Time Series often uses one third the storage space
that is required by a standard relational database.

Informix Time Series enables consistent, scalable
performance that helps yield highly predictable costs.
Benchmarks have illustrated that Informix Time Series keeps
storage requirements linear over time.

High availability. Informix can also replicate Time Series
data throughout a distributed, clustered environment.

The Time Series capability of Informix is “built-in” to the
server; no additional installations or licenses are required.

VI. LANGUAGE SUPPORT FOR PATTERN
The need to look up patterns in database is common for

many applications. Many applications require work with
sequential data. Query languages in databases are strong tool
for obtaining information from data. The question is how to
accommodate them to be able to handle complex queries on
sequences. There are two different approaches to query
patterns. It is based on the form of mapping formula:
1) predicate form of mapping formula,
2) mapping formula is expressed by procedure/function or

method of abstract data type (ADT).

If the mapping formula is a method of ADT or

procedure/function then evaluating formula means call the
method. In case mapping formula is a predicate we deal with
the declarative representation of the formula and module that
computes the formula by logic program is needed.

Tasks for query language:
Pattern matching – if new pattern is loaded into set of

patterns the question is whether this pattern is already found in
the storage. Another question is what data corresponds to new
loaded pattern.

Deduce new pattern based on existing – patterns can be
composed with part-of relationship.

Meta querying – query deals not only with patterns but also
with pattern type. This idea is very new. It was mentioned in

[5] and introduced binary pattern operators.
Although most commercial Data Base Management Systems

support extensions to provide a library functions that can be
called from a SQL query there is still lack of expressive
power, flexibility and integration with database query
languages. Some systems for improving this situation were
proposed like SQL extension called SEQUIN [6] for querying
sequences or extension of the relational algebra with sequence
operators for sorted relations called SRQL. Another quite
interesting approach can be seen in SQL-TS language which
adds to SQL constructs for specifying sequential patterns.

VII. SQL-TS LANGUAGE
According to the [7] SQL-TS for TimeSeries adds to SQL

simple constructors for sequential patterns [8]-[9] like
CLUSTER BY and SEQUENCE BY. A CLUSTER BY clause
specifies what data is processes separately. A SEQUENCE BY
clause specifies according what attribute the data must be
traversed by ascending. Definition of the pattern is a part of
the FROM clause in SELECT statement. The AS clause is
used to specify a sequence of tuple variables from the
specified table.
The statement is similar to common SELECT statement with
GROUP BY and ORDER BY clauses.

Example of the SELECT with CLUSTERED BY and
SEQUENCE BY clauses:

The statement selects employees that daily_salary_amount
went up by 5% or more one day and then down by 10% or
more the next day.

SELECT X.id
FROM Salary_history
 CLUSTER BY id
 SEQUENCR BY date
 AS (X, Y, Z)
WHERE Y.daily_salary_amount > 1.05*
X.daily_salary_amount
 AND Z. daily_salary_amount<0.9*Y. daily_salary_amount

In the figure 7 we can see the effect of SEQUENCE BY and
CLUSTER BY statement.

Tab. 1. the data is group by Emplyee_id and in each group is

ordered by date
Employee_id daily_salary_amount date
… … …
100 200 1/1/15
100 205 1/2/15
100 190 1/3/15
…
101 300 1/1/15
101 290 1/2/15
101 340 1/3/15
…

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 5

X, Y, Z in the statement represents [10] three tuples that

immediately follow each other. Tuple variables can be used in
WHERE clause for definition of the conditions and also in
SELECT clause for definition of output. Using tuple variables
we avoid creation of complex SQL query that requires three
joins. Another benefit from this way of querying sequential
data is much easier way to optimize the query. In general a star
denotes a sequence of one or more tuples that satisfy all
conditions in WHERE clause.

Example of the SELECT expressing recurring patterns by
using a star operator

The star operator is used to specify a sequence in which the
value of specified attribute tends to decrease or increase
according to specified condition.[11]

SELECT X.Employee_id, X.date AS start_date,
Z.previous.date as end_date
FROM Salary_history
CLUSTER BY Employee_id
SEQUENCE BY date
AS (X, *Z, Z)
WHERE Y.daily_salary_amount < Y.previous.
daily_salary_amount
AND Z. previous. daily_salary_amount <
0.5*X.daily_salary_amount

VIII. CONCLUSION
The article focuses on the logical model and language

support for patterns. In the chapter I. the motivation of using
abstract pattern types is presented. In the chapter II. needed
definitions of the pattern types and patterns as instances of the
pattern types are introduced. Specific pattern types
association rules and clusters are described in chapter III.
Chapter IV. focuses on the implementation issues. For the
implementation Oracle SQL was used. Chapter V. gives its
thought to time series pattern type and to its specific
occurrence historical data. The main attention of the article is
devoted to time series patterns and time series as historical
data are discussed. Implementation in Oracle is attached.
Chapter VI. And chapter VII concern with language support
for patterns. In terms of language support SQL-TS language is
presented and there is an example of select statement to
illustrate CLUSTERED BY and SEQUENCE BY clauses.

The idea how to store , manipulate and query patterns is not
very new but still important and there is many tasks that is
necessary to solve. Analogue to the storing, manipulating and
querying relations or object classis is obvious but the way is
not equal. Patterns have specific properties and characteristics
that are necessary to consider. There two approaches how to
manipulate with patters. The solution is either to store raw data
separately to patterns or to have common storage space. In
both cases pattern base management system for managing

patters is needed. One of the solution was introduced by
PSYCHO [12]. This approach deals with Pattern Bases
Management System (PBMS) engine where pattern base
consists of pattern types (meta data), patterns (data), class
definitions (meta data) and instances of classes (data). PBMS
has these modules: pattern definition language, pattern
modification language, pattern query language. In future we
would like to pay attention on pattern language based on
relational calculus and relational algebra in more detail. The
main requirement on the pattern language is to preserve
generality of the pattern model without reference to particular
pattern type.

REFERENCES
[1] S Rizzi, E. Bertino, B. Catania, M. Golfarelli, M. Halkidi, M. Terrovitis,

P. Vasiliadis, M. Vazirgiannis and E. Vrachos: “Towards a Language
for Patters”, In Proc. of the 22nd International Conference on
Conceptual Modeling (ER 2003), Chicago, 2003.

[2] Z. Telnarova, J. Schenk, “The logical model for pattern representation”.
In: International Conference of Numerical Analysis and Applied
Mathematics 2015, ICNAAM 2015, p. 120009. DOI:
10.1063/1.4951892.

[3] I. Bartolli et al., “Patterns for next-generation database systems:
preliminary results of the Panda project”. In Proc. 11th SEBD, Cetrano,
Italy, 2003.

[4] M. Žáček, “Introduction to time series”, In Pattern Recognition and
Classification in Time Series Data (pp. 32-52). IGI Global. 2017.

[5] 5. M. Terrovitis, P. Vassiliadis: Architecture for Pattern-Base
Management Systems, online,
http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.60.8704&type=s
c

[6] P. Seshadri, M. Livny, R. Ramakrishnan: Sequence query processing. In
Proceedings of ACM SIGMOD Conference on Management of Data,
1994

[7] R.Sadri, C. Yaniolo, A. Yarkesh, J. Adibi: Optimization of Sequence
Queries in Database Systems, Online
http://web.cs.ucla.edu/~zaniolo/papers/pods2001.pdf

[8] Miarka, R., & Žáček, M. (2011). “Knowledge patterns for conversion of
sentences in natural language into RDF graph language”. Paper
presented at the 2011 Federated Conference on Computer Science and
Information Systems, FedCSIS 2011, 63-68.

[9] R. Miarka, R., M. Žáček, “Representation of knowledge patterns in
RDF(S) „. Paper presented at the Proceedings of the 13th International
Conference WWW/Internet 2014, ICWI 2014, 147-154. 2014.

[10] Z. Telnarova, „Data modelling and ontological semantics“. International
Journal of Data Analysis Techniques and Strategies, 4(3), 237-255.
doi:10.1504/IJDATS.2012.047818.2012.

[11] Z. Telnarova. „Modeling and language support for the pattern
management“. Pattern recognition and classification in time series data
(pp. 86-106) doi:10.4018/978-1-5225-0565-5.ch004. 2016.

[12] B. Catania, A. Madalena, M. Mazza : (A Prototype System for Pattern
Management

Birth: Vaclavovice, 29.12.1955. Education: 1996-2001 Czech Republic,
Technical University of Ostrava, Faculty of Economics, Systems Engineering
and Informatics Ph.D.; 1992 – 1993 Czech Republic, University of Ostrava,
Pedagogical Faculty, Pedagogical specialisation; 1975 – 1980 Czech
Republic, Technical University of Ostrava, Faculty of Economics, System
Engineering and Informatics Master degree.
She has been working for University of Ostrava, Czech Republic, Faculty of
Science, Assistant professor, Department of Informatics and Computers.
Before she worked for Technical Secondary school as a teacher and for
Kancelarske stroje (Office machine) as mathematician, analyst.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 6

