

Abstract—The key software engineering problems nowadays are:

lack of software developers, insufficient quality of software products,
and high software cost. Even widespread and well defined software
development methods, such as Rational Unified Process and Agile,
could not solve these problems. А method improving the software
development process through architecture-based and knowledge-
based automated software engineering is presented. The main
business objects and control objects of the method are described. The
automation process ontology including business, software and
infrastructure architecture objects is proposed. A tool for
specification of domain area facts and knowledge, problems and
problem solving algorithms is created. A technological process for
software development is proposed based on the described method.
The method actions include: (1) manual specification of the business
objects and control objects; (2) automated verification of the
specified objects; (3) automatic interpretation of the compiled control
objects that reuse pre-defined repository components; (4) automated
self-monitoring and self-control of the runtime process. The proposed
method efficiency is evaluated based on some quality and quantity
attributes.

Keywords—knowledge based automated software engineering
ontology; architecture-based; automated software engineering;
business architecture; software architecture; infrastructure
architecture; knowledge-based system; specification verification;
reusable components; self-control; self-monitoring;

I. INTRODUCTION
HE huge demand for software (for e-government, e-
commerce, e-business, mobile devices, embedded

systems, IoT, etc.) brings the most serious crisis ever in
software engineering. Issues such as lack of developers,
insufficient quality of software products, rising software cost,
and low customer satisfaction become increasingly common.

The IT standardization process is slowed down by the rapid
development of industries that are becoming dependent on
technology. As a result, developed software is substandard and
high-priced.

Software vendors replace the software products deployed on
own hardware, with those offered on common platforms, and
cloud technologies to reduce development, infrastructure, and
quality costs.

The overall IT spending in 2017 for data center systems,
devices, enterprise software, and IT services is 2,1 trillion
USD [9]. The enterprise software and IT services markets
form 60% of the overall IT spending worldwide. Together,

they are forecasted with the highest average annual growth for
the 2016-2021 period, namely 13% [9].

The demand for software developers is increasing
exponentially. According to the U.S. Bureau of Labor
Statistics, software developer jobs are expected to grow with
24% from 2016 till 2026, which is „much faster“ than the
average [24].

The existing widely used software development methods do
not offer sufficiently efficient technological processes, as well
as standardized and efficient development tools.

A possible solution to these problems could be the
Knowledge Based Automated Software Engineering (KBASE)
method presented in this paper. KBASE is a modified version
of the RUP, enriched with elements from Agile, cloud
computing, knowledge processing, and automated
programming.

II. RELATED WORKS
This article is part of a series of works related to the

elaboration of the KBASE method. In this section are
summarized some important results concerning the software
engineering technological processes, specification techniques,
architectures and platforms. They are organized in three parts -
topic review, review results and requirements to the KBASE
method based on the review results. KBASE case studies are
also presented.

A. Technological processes
Several methods for management of the software

engineering (SE) process are studied. The selected methods
can be organized in three groups:

(1) methods covering only the management aspects of the
SE process, called “shell” methods such as: PRINCE2
(Projects IN Controlled Environments, [1]); TEMPO
(TAXUD Electronic Management of Projects Online);
PMBOK (Project Management Body of Knowledge, [21]);

(2) methods covering partially the management and
technological aspects of rapid SE processes (the Agile family
of methods, [17]);

(3) methods covering to a great extent the management and
technological aspects of SE processes such as the Rational
Unified Process (RUP, [18]).

The “Shell” group of methods does not describe in details
the roles, objects and actions in the SE process. This is often
the reason for serious misunderstanding between clients and
developers, as well as between different developers. The low
level of standardization makes these methods inappropriate for
automated programming.

Architecture knowledge for software generation
Ivan Stanev, Maria Koleva

T

The presented work has been partially funded by the National Scientific
Research Fund, Contract No. 02/13/12.12.2014.

I.Stanev is with the Computer Informatics Department of University of
Sofia “St. Kliment Ohridski”, Sofia 1000, Bulgaria (phone: +359 2 8161 508,
e-mail: instanev@fmi.uni-sofia.bg).

M.Koleva is with the Computer Informatics Department of University of
Sofia “St. Kliment Ohridski”, Sofia 1000, Bulgaria, and the Informatics and
Information Technologies Department of University of Ruse “Angel
Kanchev”, Ruse 7000, Bulgaria (e-mail: mkoleva@fmi.uni-sofia.bg).

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 46

mailto:instanev@fmi.uni-sofia.bg
mailto:mkoleva@fmi.uni-sofia.bg

The Agile group of methods has two important problems if
used alone: (1) the short and often incomplete design reduces
to minimum the possibilities for reuse; (2) as a results of the
rapid and imprecise development process, the lifetime of the
realized products is too short.

The RUP group of methods is suitable for a base of the
KBASE method. However RUP hinder a smooth development
process due to the following problems: (1) roles, objects, and
actions are defined in detail, thus making the software process
too heavy and difficult to customize; (2) the development team
training time is too long and expensive; (3) the complexity of
the process makes it difficult to be followed by the client.

To overcome these problems in the KBASE technological
process, RUP shall be simplified and extended with Agile.

B. Specification languages
The industrial languages (both for modelling and

implementation) including Java, ML, Prolog, UML, BPMN,
and Net are analyzed in [8].

The analysis shows that: (1) imperative languages, such as
Java and C#, are of major importance for the software
industry; (2) the forth-generation languages are widely used
for modelling; (3) the closest object between the modeling and
programming languages is the empty code, which is not
convenient to work, nor industrially significant; (4) Although
slower than desired, restricted natural language used for
modeling gains industrial importance; (5) Tools for knowledge
specification are not sufficiently developed; (6) great
industrial importance acquire specification standards such as
UML, BPMN, etc.

As a result of the analysis a set of requirements for the
KBASE specification language is prepared. KBASE
specification language(s) should enable the: (1) descriptions in
restricted natural language that would facilitate a wide range
of end users, who are not IT specialists; (2) formal graphical-
textual specifications of the DA model; (3) interpretation of
fuzzy terms, to reduce the time for describing the problem; (4)
heuristic, automated search of solutions; (5) description of
control components in a convenient way and control of the
correctness of descriptions; (6) combination, whenever
necessary, of more than one specification technique.

C. Platforms
The industrial cloud computing ([3], [19]) platforms

Amazon AWS, Microsoft Azure, Google App Engine;
VMWare vCloud, IBM Bluemix, HP Helion, and Oracle
OCPaaS are analyzed in [6].

The analysis shows that: (1) all platforms have excellent
tools for programming and automated programming for
hardware, presentation and integration. (2) All platforms have
good tools for the development of SOA applications. (3)
Automation tools are limited for user tasks execution
management at service level, development and runtime
management, document and organization management. (4)
There is considerable shortage of automation tools for

generation of software products requested by the user based on
specifications prepared using graphical interface language or
natural language. (5) There is considerable shortage of
ontology and knowledge processing tools.

As a result of the analysis a set of requirements for the
KBASE platform is prepared. The platform should:

(1) combine techniques for automated programming from
SOA, cloud computing, and the Method for Automated
Programming of Robots ([4]);

(2) provide for incomplete and imprecise specification of
the problem to be solved using language and tools familiar to
the end user with no IT qualification;

(3) enable knowledge acquisition and knowledge
interpretation (e.g. knowledge based systems, ontologies and
fuzzy sets) for automated removal of deficiencies and
inaccuracies in the specification and for software generation;

(4) ensure automated software generation from complete
and accurate specification;

(5) allow the use of automated techniques such as Contract
Testing and Quality of Service Testing to fine tune the
software, to check on software performance and integration
with third party components.

D. Case studies
The KBASE method is developed as result of the domain

area problems analysis, based on 85 software products
developed by the KBASE team. Most of the KBASE
realization techniques used to automate or improve the
programming process are partially or fully implemented and
verified in one or more of these developments.

Architecture prototypes in the KBASE context are
developed during the realization of three large state
administration programs – Bulgarian e-Customs, Bulgarian e-
Health, and Bulgarian e-Government. The results are
summarized in [7].

The technological development of BeC, BeH and BeG
spans over a long period of time. Each of the three programs at
present has more than 15 business modules, 5000 workstations
in intranets, and between 500 000 and 3 000 000 end users in
internet. They are an integral part of the trans-European
solutions developed and operated by the EU Commission, EU
member states and partner countries.

During the realization of these programs two types of
problems are recognized:

(1) organizational, such as: lack of single access point with
a centralized authorization solution, inefficient infrastructure
use, low level of standardization of processes and objects,
insufficient IT staff to develop new systems and support
existing ones, low competence of business staff for business
processes description and functional testing, lack of guidelines
for collection and interpretation of information, huge
resources are allocated to the development of inefficient
business models, low competence for requirements gathering
and elicitation, chaos in requirements definition, low level of
business specific activities quality; and

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 47

(2) technical, such as: big volume of not digitized data, low
quality of digitized data, low level of semantic
interoperability, implementation of reusable components to a
minimum, resulting in frequent rewrite of existing
functionality, lack of scalability, low level of software
development automation, lack of flexibility and instruments
for fast information systems adaptation to rapidly changing
legal base, lack of centralized identification, relatively low
quality of the developed software products, lack of
standardization of processes and objects, low test coverage.

The problems identified during the realization of these
programs are addressed in a number of research projects
related to knowledge based automated software engineering in
the area of information systems, programs for robot control
[4], contract and quality of service testing [20]. The important
results achieved by the KBASE team are summarized in [5].
Some of them are: (1) prototyped 3 specification techniques
(formal language, graphical user interface, natural language
processing); (2) prototyped 5 AI techniques (non-formal
specification, code generation, self-verification, self-
monitoring, self-tuning); (3) prototyped 4 KBASE
components (knowledge processor, product generator,
problem solver, knowledge base manager); (4) prototyped 5
technological processes (SOA interpretation process,
knowledge engineering process, domain customization
process, system customization process, runtime operation
process).

E. The way forward
As a possible solution to the problems presented in section I

the Knowledge Based Automated Software Engineering
method is proposed. KBASE is a modified version of the
RUP, enriched with: (1) elements from Agile - rapid
application development and reusable components; (2) cloud
computing – use platforms instead of products; (3) ,
knowledge processing - natural language processing,
knowledge based systems, expert systems, ontologies; and (4)
automated programming - informal specifications, software
design standards.

III. KBASE METHOD CONCEPT
KBASE aims to improve the quality of the developed

software products, while significantly reducing the effort to
develop and maintain them and thereby ensure that the
development time, the size of the development and
maintenance teams, and the cost of the final product are
reduced.

The method achieves this goal through:
(1) standardization (standardized technological process,

specification techniques, architectural patterns, and pre-
defined models);

(2) automated specification (manual specification of
components, services, objects, problems to be solved, and
problem-solving algorithms; automated verification of
specification completeness and consistency based on pre-

defined models; and determination of incomplete and
imprecise specifications);

(3) automatic code generation (by introducing service
oriented architectures and reusable components);

(4) infrastructure automated control (by integrating
different product infrastructures in a common platform, by
establishing automatic cloud-based platform scalability,
automated virtualization, and automated quality of service);

(5) automated self-monitoring, self-learning and self-
control (achieved through contract testing, adaptation to the
end user, adaptation to the context of the problem solved,
automated versioning, etc.).

The method concept is shown in Fig. 1. KBASE is a
method that is suitable for building the following types of
products: (1) Information Systems (including Enterprise
information systems, EIS), (2) Knowledge Based Systems
(KBS), (3) Embedded Systems, and (4) System Services

The objects used in the development of the method are
divided into three broad categories:

(1) control components including navigation trees, business
processes, state machines, multi-agent systems and
components with mixed control (incl. the preceding ones);

(2) tasks that represent models of all important atomic data
operations, including business tasks representing atomic
operations derived from business architectures such as
TOGAF ([23]), system tasks representing atomic operations
of the systemic software, knowledge tasks - atomic operations
for knowledge processing and data tasks - atomic operations
for data processing;

(3) objects that represent data structure models, including
business objects - typical for the domain area, system objects
- typical for the system software, and knowledge objects - to
describe the knowledge.

KBASE objects (models and their instances) are stored in
three repositories – control component repository, task
repository, and object repository.

KBASE basic roles are the following:
(1) business analyst, who gathers information from the

clients about the system to be developed, and based on that
information, controls the process of knowledge generation out
of incomplete and imprecise specifications of the software
product;

(2) software architect, who assists the business analyst by
consulting them on the system generation, or prepares (in
advance or on demand) control components models;

(3) designer who helps the business analyst by consulting
them on system generation, or prepares (in advance or on
demand) task models or new tasks of the following types:
services, which are automatically executed, user tasks, which
are suitable for organizing the human-machine interaction, and
business rules, which support the navigation through the
control flow, or are used for system services activities;

(4) data engineer who helps the business analyst by
consulting them on system generation, or prepares (in advance
or on demand) information object models;

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 48

(5) end user who uses the generated product for solving
their problems based on input data.

Fig. 1. KBASE method concept

The software development process is divided into three
main phases:

(1) Domain Independent Phase – the main roles involved
are the software architect, the designer and the data engineer
who prepare those control components, tasks, information
objects and their models which are suitable for various domain
areas. These objects are usually developed once; they are re-
usable and are subject to minor changes only in exceptional
cases;

(2) Domain Dependent Phase – the main role involved is
the business analyst who has to generate a new product on
demand by the end users. He is supported by the software
architect, the designer and the data engineer. Together with
other domain area experts, they expand the domain
independent models with re-usable ones convenient for the
specific domain;

(3) Problem solving phase – the main role involved is the
end user who uses the generated product for solving a specific
user problem based on the input data he provides.

The KBASE method is provided with specification
instruments for three types of information: (1) specification of
domain area knowledge and facts – activity performed by all
the roles involved in the process; (2) specification of problem
solving algorithms – activity performed by the business
analyst supported by all other roles involved in the process;
(3) specification of the problems to be solved – activity
performed mainly by the end user who may rarely address
other IT experts or domain area experts.

All three types of specifications can be prepared by using:
(1) formal specification standards such as UML, BPMN, etc.;
(2) restricted natural language. Specifications can be
incomplete and imprecise. Based on the available domain

knowledge and, if necessary, assisted by the domain area
experts, KBASE instruments shall transform the incomplete
and imprecise specifications into deterministic algorithms
suitable for execution by a Von Neumann machine. These
tasks, which cannot be specified sufficiently well (in rare
cases) by the instruments stated herein, might be written in a
concrete programming language (e.g. Java, C#, etc.).

In Fig. 1 are shown two business processes for software
generation using incomplete and imprecise specifications: (1)
Product Generation - providing specification and verification
of product control components, product tasks, and product
objects, as well as the product generation. The generated
product is stored in the product repository after its successful
completion; (2) Problem solving – provision of the input data,
it’s processing by the generated software product and the
display of output results.

The Product Generation process is controlled by the
business analyst who follows the instructions of the selected
model, as well as the instructions of the product users. The
business analyst enters the information gathered about the
control components, tasks and objects. The gathered
information is verified by the system against pre-set identical
or similar models. The models contain data about the
minimum information required for the purpose of product
generation. The process is iterative. Each step could iterate
until a satisfactory completeness and accuracy of the
generated product is reached.

The Problem solving process is controlled by the end user.
It can be also performed through several iterations (usually
when the input data is incomplete). Rarely, the system needs
knowledge provided by roles different from the end user.

On product generation, relevant components and tasks for
self-monitoring, self-learning and self-control are embedded
automatically in it. The purpose is to improve the quality of
the software development process with regard to:
improvement of the efficiency of resources, adaptation to
different end-users and domain areas, etc.

IV. KBASE ONTOLOGY
KBASE is built on the: (1) use of standardized specification

techniques; (2) work with architectural patterns; (3)
verification and supplementing incomplete and imprecise
specifications; (4) realization of Contract Tests; (5)
development of models of KBASE objects; (6) use of self-
monitoring, self-learning and self-organizing techniques. The
successful implementation of these techniques requires a high
degree of standardization in the domain area, as well as well
interconnected and complementary knowledge of the domain
area.

The required knowledge is summarized in the KBASE
ontology in TABLE I. The ontology covers four main
categories of knowledge: (1) technological process; (2)
specification languages; (3) architectures; (4) platform.

Business
Analyst

Control
Component

Specifier

Control
Component

Verifier

Successful
Verification

Tasks
Specifier

Tasks
Verifier

Successful
Verification

Objects
Specifier

Objects
Verifier

Control
Component
Repository

Task
Repository

Object
Repository

Product
Repository

no

yes

data

yes

yes

solution

no

Product
Generator

End User

End User
Editor

Problem
Solver

Data Engineer

Object
Editor

Designer

Task
Editor

Software
Architect

Control
Component

Editor

Problem
Solving Phase

Domain
Dependent Phase

Domain
Independent Phase

Successful
Verification

no

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 49

TABLE I. KBASE ONTOLOGY

1 0 0 technological process 2 0 0 specification languages
1 1 0 technological roles 2 1 0 specification types
1 1 1 knowledge engineers 2 1 1 NL specification
1 1 2 analysts 2 1 2 formal language specification
1 1 3 developers 2 2 0 specification techniques
1 1 4 testers 2 2 1 NL based
1 1 5 managers 2 2 2 context based
1 1 6 production & support 2 2 3 event based
1 1 7 general roles 2 2 4 process based
1 2 0 artefacts 2 2 5 message based
1 2 1 project management plan 2 2 6 service based
1 2 2 quality management plan 2 2 7 object based
1 2 3 ontology model 2 2 8 rule based
1 2 4 requirements model 2 2 9 ontology based
1 2 5 infrastructure model 2 3 0 specification standards
1 2 6 platform 2 3 1 NL Combinatorial Dictionar
1 2 7 business model 2 3 2 NET
1 2 8 data model 2 3 3 CD
1 2 9 use case model 2 3 4 CMMN
1 2 10 test model 2 3 5 BPMN
1 2 11 software architecture 2 3 6 UML
1 2 12 design model 2 3 7 DMN
1 2 13 implementation model 2 3 8 OWL
1 2 14 product 2 4 0 specification processes
1 2 15 quality management results 2 4 1 specification processes
1 2 16 user materials 2 4 2 verification processes
1 2 17 project data 2 4 3 generation processes
1 2 18 assessment 2 5 0 specification phases
1 3 0 disciplines 2 5 1 domain independent
1 3 1 management 2 5 2 domain dependent
1 3 2 requirements 2 5 3 problem oriented
1 3 3 infrastructure
1 3 4 analysis
1 3 5 test
1 3 6 design
1 3 7 generation & implementation
1 3 8 exploitation

3 0 0 architectures 4 0 0 platform
3 1 0 structure types 4 1 0 platform types
3 1 1 class 4 1 1 development
3 1 2 component 4 1 2 test
3 1 3 package 4 1 3 pre-production
3 1 4 product 4 1 4 production
3 1 5 knowledge model 4 1 5 management
3 2 0 product types 4 2 0 platform object types
3 2 1 information system 4 2 1 infrastructure service
3 2 2 knowledge based system 4 2 2 network
3 2 3 embedded system 4 2 3 node
3 2 4 system services 4 3 0 infrastructure layer
3 3 0 control components 4 3 1 hardware
3 3 1 business process 4 3 2 real OS
3 3 2 state engine 4 3 3 virtualization
3 3 3 multi-agent 4 4 0 cloud layer
3 3 4 navigation tree 4 4 1 virtual OS
3 3 5 mixed 4 4 2 cloud cartridge instances
3 4 0 action types 4 4 3 cloud cartridges
3 4 1 task 4 5 0 control layer
3 4 2 rule 4 5 1 application servers
3 4 3 event 4 5 2 control servers
3 4 4 policy 4 6 0 ontology layer
3 4 5 behavior 4 6 1 operational data
3 5 0 object types 4 6 2 analytical data
3 5 1 attribute 4 6 3 reference data
3 5 2 data object 4 6 4 knowledge
3 5 3 db object 4 7 0 business layer
3 5 4 message 4 7 1 organization management
3 6 0 constructors 4 7 2 document management
3 6 1 structure 4 7 3 activity management
3 6 2 action 4 7 4 collaboration management
3 6 3 object 4 7 5 user support
3 6 4 behavior 4 8 0 development layer
3 7 0 descriptors 4 9 0 system services layer
3 7 1 structure 4 9 1 runtime management
3 7 2 action 4 9 2 presentation management
3 7 3 object 4 10 0 integration layer
3 7 4 knowledge model 4 10 1 integration definitions
3 7 5 problem 4 10 2 TIS integrators
3 7 6 problem solving algorithm 4 11 0 service bus
3 8 0 business objects 4 11 1 enterprise service bus
3 8 1 business actor 4 11 2 semantic enterprise service bus
3 8 2 business role
3 8 3 business process
3 8 4 business interface
3 8 5 business function
3 8 6 business interaction
3 8 7 contract
3 8 8 business service
3 8 9 organization
3 8 10 domains
3 9 0 application objects
3 9 1 application component
3 9 2 application interface
3 9 3 application service
3 9 4 data object

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 50

Each of these categories includes knowledge defining
KBASE from a different perspective and grouped into
subcategories. The black-colored components of the
subcategories belong to the Software Engineering Ontology.
The red-colored components of the subcategories upgrade the
Software Engineering ontology to the KBASE ontology.

The ontology is designed to be used by all roles presented
above in section III. During the preparation other works in the
area have been taken into consideration, such as the Open
Group Architecture Framework [23] and SOA ontology [22],
the European Interoperability Reference Architecture [2].

The most important subcategories, their interpretation, in
which parts of KBASE are intended to be used, and other
useful information is presented below.

The Technological Process category includes 3
subcategories intended to standardize the KBASE
development process. The subcategory Technological roles
(including mainly the groups of roles prescribed in the RUP)
outlines the main groups of participants in the KBASE
development process. The Knowledge Engineer role is added
to cover activities related to automated programming and
knowledge processing. The Artefacts subcategory (including
the most important and most commonly used RUP artefacts)
includes the minimum full set of artefacts required for quality
development and maintenance of KBASE products. The
Disciplines subcategory (including RUP disciplines with
small modifications) presents the actions performed
throughout the entire lifecycle of the KBASE product. The
discipline of Generation & implementation covers the process
of automated generation of KBASE products from incomplete
and imprecise specifications. It is expected that, based on the
results of this discipline, after the first 2-3 KBASE products, a
software company will have to write new code to a minimum
(10-20%) since the required code will mostly be generated
automatically.

The Specification Languages category includes 5
subcategories for KBASE specification preparation and
processing. The Specification Types subcategory includes
both formal and natural language specifications. The
Specification Techniques subcategory shows which
specification techniques can be used to specify the different
objects in the different phases of the process. These techniques
are linked in Section V with the steps of the process, the
artefacts prepared and the actions taken. The specification
techniques are implemented using wholly or partly some of
the most common specification standards presented in the
Specification Standards subcategory. This subcategory
includes among others the Net and OWL languages. Although
less widespread they have shown in practice excellent results
related to automated processing of incomplete and imprecise
specifications and application of SOA techniques.
Subcategory Specification Processes includes specification
processing including syntactic and semantic, as well as
interoperability aspects. Subcategory Specification Phases
introduces an automated programming technique based on

reuse of components and tasks from KBASE repositories.
The Architectures category includes 9 subcategories with

KBASE concepts describing Knowledge Architecture,
Business Architecture, and Software Architecture.

The Structure Types subcategory includes all primitive and
complex architectural components and models. Subcategory
Product types includes the types of systems defined in
KBASE. The next 5 subcategories contain the basic KBASE
architecture components, which are: control components
(including all control concepts), actions (including all action
type concepts), objects (including all data concepts),
constructors (including the rules for description of the
concepts structure), and descriptors (including the rules for
description of the concepts content). The Architecture
category also includes Business Objects used to describe the
business architecture and Application objects to describe the
application architecture.

The Platform category includes 11 subcategories with the
KBASE Platform concepts. The Platform Types subcategory
shows which types of platforms are used in KBASE. These
are: (1) development; (2) test; (3) pre-production; (4)
production; (5) management. The other subcategories define
the structure of the platform and are described in more detail
in the next section.

V. KBASE TECHNOLOGICAL PROCESS
The automated programming process modifying RUP is

presented in TABLE II. below. The disciplines names are
given in the “Disc.” column. The work performed within each
discipline is described in the “Discipline action” column. The
specification technique/s used for the relevant action is
indicated in the last column “Sp.technique” and it is further
described in section VI. The resulting artefact is listed in the
“Art.” column.

It has to be noted that: (1) the pre-project is performed by
implementing the disciplines and actions to a limited extent;
(2) actions could iterate in order to achieve better results; (3)
the “Management” discipline represents horizontal activities
related to planning, specification and realization; (4) the
“infrastructure diagram” term is used instead of the UML
standard “deployment diagram” to better convey the purpose
with no changes in the notation; (5) the “Infrastructure model”
term is used instead of the standard RUP “Deployment model”
to incorporate the development, testing, pre-production,
production and management environments; (6) “Task” is used
for tasks of three different control components, namely
business process, state engine and multi-agent systems.

TABLE II. KBASE LIFECYCLE DISCIPLINES

Disc. Art. Discipline action Sp.technique
Mng PMP project management and

realization
SPEM

Mng PMP configuration and change
management and realization

SPEM

Mng QMP quality management and SPEM

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 51

Disc. Art. Discipline action Sp.technique
realization

Req RM gather and analyze relevant legal
base

context based,
NL based,
ontology based

Req RM build organization hierarchy object based
Req RM define functional areas context based
Req RM build roles hierarchy for each

functional area
object based

Req RM develop software architecture
concept

event based

Req RM gather functional requirements context based,
NL based,
ontology based

Req RM gather non-functional
requirements

context based,
NL based,
ontology based

Req RM categorize, classify and prioritize
functional requirements

context based

Req RM categorize, classify and prioritize
non-functional requirements

context based

Inf InfM infrastructure management and
realization

event based

A BM selection of control component
(business process / state engine /
multi-agent system)

process based /
object based /
event based

A BM control component description process based /
object based /
event based

A BM high level description of control
components tasks (task type,
input, output and system objects,
interfaces, interactions, messages,
reports, security, actors,
preconditions, post conditions)

service based,
rule based

A DatM identify primary data objects -
documents, forms, reports,
messages

object based,
rule based

A DatM develop data objects hierarchy object based
A BM select candidate tasks event based
A BM select tasks event based
A BM refine control component with

candidate tasks to control
component with tasks

event based

A UCM define use cases for each task service based
A UCM define input and output data

objects for each task and select
data objects storage options

object based,
rule based

A UCM define input and output messages
for each task and select messages
storage options

object based

T TM test management and realization BIT
D SA develop software architecture

component diagrams
event based

D SA define system architecture
components

event based

D SA define interfaces of system
architecture components

interface based

D SA develop GUI navigation tree object based
D DesM prepare class diagrams of the tasks service based
D DesM define attributes and operations of

classes
service based

Disc. Art. Discipline action Sp.technique
D DesM develop sequence diagrams of the

tasks
interface based

D DatM refine object data model into
relational data model

object based

D DatM relational data model
normalization (if necessary)

object based

D DesM develop statechart diagrams of the
tasks

interface based

D DesM develop statechart diagrams of
important data objects

interface based

D DatM update Data model object based,
rule based

D ImpM prepare package diagrams event based
D OM associate use case, component,

class, package and infrastructure
diagrams

ontology based

G&I ImpM code generation all
G&I ImpM code implementation all
G&I ImpM code integration all
Exp all deployment all
Exp all exploitation all
Exp all enhancement all
Exp all recycling all

Abbreviations: A – Analysis discipline, BIT - Built-in-Test ([20]) ,
BM – Business model, D – Design discipline, DatM – Data model,
DesM – Design model, Exp – Exploitation discipline, G&I –
Generation and Implementation discipline, ImpM – Implementation
model, Inf – Infrastructure discipline, InfM – Infrastructure model,
Mng – Management discipline, OM - Ontology model, QMP –
Quality Management Plan; PMP – Project Management Plan, Req –
Requirements discipline, RM – Requirements Model, SA – Software
Architecture, SPEM - Software & Systems Process Engineering
Metamodel Specification ([11]); T – Test discipline, TM – Test
model, UCM – Use case model.

For the purpose of the KBASE method presented in this
paper, the following simplifications/ extensions to RUP are
proposed: (1) the RUP discipline Business Modeling is
removed since low productive, and highly resource
consuming; (2) the RUP discipline Analysis and Design is
separated in two KBASE disciplines – first Analysis, and
second Design, in order to reduce the gap between domain
area experts and analysts on the one hand and between
analysts and designers on the other hand; (3) the RUP
discipline Implementation is replaced by Generation &
Implementation; (4) the RUP horizontal disciplines
Configuration and Change management, Project management,
and Environment discipline process aspects are combined in
one Management discipline to optimize project realization; (5)
the KBASE Requirements discipline uses the Contextual
design models which improve the quality of primary
information collection; (6) the KBASE Analysis discipline
uses the process-based, object-based and event-based
specification techniques instead of the RUP Use Case
Specification in order to reduce the resources for UML model
completion; (7) the KBASE Design discipline uses ontologies
for automation of the development process; (8) the KBASE
Generation & Implementation discipline uses automated

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 52

support of models and documents; (9) the Test discipline
action uses structured Use Case specifications for better
compliance between use cases and test cases, improvement of
the quality and efficiency of the test process; (10) the Test
discipline action uses the Built-in-Test method ([20]) for
automated testing; (11) the actions from the RUP Deployment
discipline are incorporated in the KBASE Exploitation
discipline; (12) the infrastructure aspects of the RUP
Environment discipline are incorporated in the KBASE
Infrastructure discipline.

VI. KBASE SPECIFICATION LANGUAGE
The following Specification Techniques (ST) are selected

to implement the actions of the method described in TABLE
II. , as well as to create ontology objects static and dynamic
behavior:

(1) Natural Language based ST (standard used - Natural
Language Combinatorial Dictionary, NLCD). The
specification technique is used to describe domain area
ontology objects and behavior, the legal base, functional and
non-functional requirements. The Combinatorial Dictionary
contains information for the syntax functions, semantic-syntax
functions and word-order zone of each lexeme. A Linguistic
Processor verify the NL description of domain area objects
and behavior. If the description is successfully verified they
are integrated in the domain area ontology using the
morphological NL processor, semantic-syntax NL processor,
and business rules.

(2) Context based ST (standard used – Contextual Design,
CD, [10]). CD models are used to improve the structuring of
information about the domain area. The specification
technique is used to describe the domain area ontology objects
and behavior, the functional areas, functional and non-
functional requirements. A Context Interpreter verifies the
specified objects and behavior. If the specifications are
successfully verified they are integrated by a Context Manager
in the domain area ontology, or they are used for generation of
a new program code.

(3) Event based ST (standard used – Case Management
Model and Notation, CMMN, [13]; Business Process Model
and Notation, BPMN, [12]; Unified Modeling Language,
UML, [16] (Component Diagram, Infrastructure Diagram, and
Package Diagram)). The specification technique is used to
describe complex Information Systems (IS), realized as event
based Multi-Agent Systems, including their Software
Architecture, Infrastructure Model, and behavior. An IS
Interpreter verifies the specified models and behavior. If the
specifications are successfully verified, they are used for
generation of IS program code.

(4) Process based ST (standard used – BPMN). The
specification technique is used to describe domain area
candidate business processes. The specified candidate
processes are used for identification of candidate services and
selection of services. After the selection of services, candidate
processes are transformed in processes. A Process Interpreter

verifies the specified processes. If the specifications are
successfully verified they are integrated by a Process Manager
in the domain area ontology, or they are used for generation of
a new program code.

(5) Message based ST (standard used – BPMN, UML
(Sequence Diagram)). The specification technique is used to
describe the Server to Server (S2S) direct communication,
including structure of messages, typical message objects, data
types, data structures, and sequence diagrams describing the
S2S valid and invalid interactions. A Message Interpreter
verifies the specified messages, message objects and
interactions. If the specifications are successfully verified they
are integrated by a Message Manager in the domain area
ontology, or they are used for generation of new program
code.

(6) Service based ST (standard used – UML (all diagrams)).
The specification technique is used to describe domain area
services including their input and output objects, classes,
attributes, methods, behavior, etc. A Service Interpreter
verifies the specified objects and behavior. If the
specifications are successfully verified they are integrated by a
Service Manager in the domain area Service Repository, or
they are used for generation of new service program code.

(7) Object based ST (standard used – UML (State Engine)).
The specification technique is used to describe domain area
ontology objects and their behavior, including object states,
state transitions, transition conditions, and transition
operations. An Object Interpreter verifies the specified objects
and behavior. If the specifications are successfully verified
they are integrated by an Object Manager in the domain area
ontology, or they are used for generation of a new program
code.

(8) Rule based ST (standard used – Decision Model and
Notation, DMN, [14]). The specification technique is used to
describe domain area simple and complex rules applicable to
class attributes and diagrams transitions/ connectors/
associations, ontology establishment and restructuring,
decision making, and knowledge management. A Rule
Interpreter verifies the specified rules and behavior. If the
specifications are successfully verified they are integrated by a
Rules Manager in the domain area ontology, or they are used
for generation of a new program code.

(9) Ontology based ST (standard used – Web Ontology
Language, OWL, [25]). The specification technique is used to
describe formally taxonomies and classification networks,
essentially defining the structure of knowledge for various
domains. An Ontology Interpreter verifies the specified
ontologies. If the specifications are successfully verified they
are integrated by an Ontology Manager in the domain area
ontology, or they are used for generation of a new program
code.

VII. KBASE COMMON PLATFORM FOR AUTOMATED
PROGRAMMING

The architecture of KBASE Common Platform for

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 53

Automated Programming (CPAP) (Fig. 2) is built on the
following principles:

(1) CPAP components are arranged in: (1) physical layer;
(2) virtualization layer; (3) system administration layer; (4)
components generator layer; (5) business components layer;
(6) layer for integration with external systems. The layers
communicate through a standard and semantic Enterprise
Service Bus.

(2) CPAP components are designed to build: (1) embedded
systems – for collecting information; (2) information systems
– for information processing; (3) knowledge based systems –
for automated processing of large data sets, for generating new
components and for monitoring and re-configuration of CPAP.

(3) CPAP models in P11 are implemented by the (1)
Embedded Systems Manager, (2) Information Systems
Manager, and (3) Knowledge Base Manager. Based on the
models, they generate in collaboration three meta-models in
P11, namely, the IS Model, KBASE Model and Embedded
Systems Model, as well as the integration definitions in P20.

(4) The static and dynamic behavior of the components is
formally described by P20 definitions using one or more
languages and standards such as BPMN (Business Process
Model and Notation, [12]), UML (Unified Modeling
Language, [16]), SysML (System Modeling Language, [15]).

(5) The static and dynamic behavior of the systems is
formally described by P20 definitions using one or more
languages and standards such as BPMN, UML, CMMN (Case
Management Model and Notation, [13]), DMN (Decision
Model and Notation, [14]), Net, OWL (Web Ontology
Language, [25]).

(6) The components used at CPAP central level are
generated by the (1) Embedded Systems Manager, (2)
Information Systems Manager, and (3) Knowledge Base
Manager, using P20 integration definitions, P10 repository of
services and components, and P11 knowledge.

(7) The collaboration between CPAP and its external users
(e.g. economic operators) is organized by Template
Information Systems (TIS) generated by the TIS Manager.
The TIS Manager is managing the IS Manager, KBASE
Manager, and Embedded Systems Manager for the purposes of
collecting data from external systems. The TIS Manager
manages the generation of the TIS meta-model in P11 and TIS
integration definitions in P20 for internal and external use.
The TIS Manager subsequently generates TIS in collaboration
with the Embedded Systems Manager, Information Systems
Manager, and Knowledge Base Manager.

CPAP architecture is composed of six layers.
L1 Infrastructure Layer organizes and manages the

hardware and communication infrastructure processes at
physical level (P01 Hardware) and operating system level
(P02 Real OS) using virtualization tools (P03 Virtualization).

L2 Cloud Layer automatically organizes the execution of
the requested work in the cloud environment. It is performed
under the control of the virtual operating system (P04 Virtual
OS) using scaling mechanisms (P05 Cloud instances), and

allocating the required physical and virtual resources (P06
Cloud cartridges).

L3 SOA Layer manages the execution of user assignments at
service level (through P07 Application Servers) and process
level (through P08 SOA Servers).

L4 Ontology Layer contains data (P09 Data), components
and services (P10 Repository), and knowledge (P11
Knowledge) necessary for generating the required software
products by using BPMN and/ or UML specifications,
graphical interfaces, natural language, etc. The models
included in P11 are subject to various automated verifications
such as verification and modification based on predefined
standardized knowledge bases [5], business process model
quality assessment, and evaluation of business process
semantic correctness.

Fig. 2. CPAP Technological framework

L5 Business Layer contains a rich set of ready-made tools
that are provided on demand by the user to assemble their
software product. Components in L5 are organized in three
groups of packages. The first group consists of components
for development management (P12 Development
management) responsible for managing the process of creating
new software products in the context of CPAP and updating
them on demand (possibly in real time) [5], [4]. The second
group consists of components for runtime management (P13
Runtime management, P19 Presentation management). The
third group consists of components for business logic
management (P14 Organization Management, P15 Document
Management, P16 Activity Management, P17 Collaboration
Management, and P18 User Support).

L6 Integration Layer includes integration definitions and
products for integrating systems, processes, and services
developed within the organization by partners or third parties.
Package P20 is composed of integration definitions (IDef) for
TIS, Information Systems (IS), KBASE, and Embedded
Systems. IDef represent integration conventions (e.g.
communication protocols, XML schema definitions,
communication sequences, information semantics, etc.)
generated by P12 components. Integration takes place at

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 54

architectural or execution level. KBASE integration is
performed to integrate the knowledge from various external
systems. Embedded systems integration is performed at
architectural or at business information flow level. Integration
of components and services for information processing is
based on IS IDef. TIS IDef for a specific domain area are
generated by using IDef for IS, KBASE and Embedded
systems. P21 TIS Integrators comprise TIS server components
(TIS Server Level 1).

VIII. KBASE EFFICIENCY EVALUATION
Different combinations of the solutions incorporated in

KBASE are evaluated in a large number of applications and
prototypes. Some of the important results demonstrating the
problem solving and efficiency improvement capabilities of
KBASE are presented in TABLE III. below. These
improvements are either quantitative or qualitative. Relevant
improvements for the specific products are marked with √ at
their intersection as applicable.

The products are the following: (No.1) the Module for
Automated Programming of Robots (MAPR) [4] generates
programs for Robot Control based on a natural language
specification; (No.2) the Intelligent Product Manual (IPM) [5]
is a software system which creates Product Manuals for
industrial products; (No.3) the Built-in-Test Adaptive
Document Display (BIT) [20] realizes the automation of
Contract tests process, during the integration of a Commercial-
off-the-shelf component with hosting system and the
automation of Quality of Service tests process during real-time
operation; (No.4) The Information Objects Manager (IO.Man)
[5] is a tool which generates software components for
document management through information objects structure
and behavior formal specification; (No.5) Bulgarian e-
Customs (BeC), (No.6) Bulgarian e-Health (BeH) and (No.7)
Bulgarian e-Government (BeG) represent three enterprise
information systems.

Quantitative improvements are related to considerable
decrease of the necessary time and effort for software
development (modelling, implementing, testing,
customization) and modification as well as for the
development of the integrated platform.

Qualitative improvements are in three aspects: (1)
improvement of product adaptation to the domain area
(adaptation to different users, standards, media, etc.); (2)
improvement of product stability including prevention of
system failure and failure solving; (3) quality of service
improvement including product response time reduction,
increased real-time product and product documentation update
and synchronization.

TABLE III. IMPROVEMENTS IN THE KBASE APPLICATIONS

Type Improvement 1 2 3 4 5 6 7
quantity product specification

time reduced
√ √

quantity programming time √ √ √ √ √

Type Improvement 1 2 3 4 5 6 7
reduced

quantity COTS (Commercial
off-the-shelf)
components integration
time reduced

 √ √ √ √

quantity testing time reduced √ √ √ √ √
quantity COTS components

testing time reduced
 √ √

quantity IT team reduced √ √ √
quality adaptive to various

domain areas
√ √ √ √

quality adaptive to different
end users

√ √

quality adaptive presentation
to various standards

 √ √ √ √

quality adaptive presentation
to different media

√ √ √ √ √

quality real time code
synchronization

 √ √

quality real time documents
synchronization

 √ √ √ √

quality prevent emergency
system failure

 √ √ √ √ √

quality real time performance
improvement

 √ √ √

Below are presented examples on the achievement of the
KBASE goals presented in section III. Measurements are
based on project data.

(1) Following the KBASE process, the implementation shall
start after 100% completion of the design. This modification
to the RUP process resulted in 6 times increase of the number
of reusable components (32% vs 5%), and 2 times decrease of
the number of change requests related to the functional
requirements. The improvements are observed on the eID
system. It is compared to the eVote system. They are both part
of the BeG program.

(2) Structural use case algorithmization style shall be used
in the KBASE process. The comparison of two versions of the
transit management system, part of the BeC program,
demonstrates the following improvements: 5 times decrease of
the number of use cases (1350 vs. 250), more than 3 times
increase of the test coverage percentage (25 vs. 87%).

(3) Two main improvements of the development process are
achieved with IO.Man. The first improvement is the reduction
of the implementation and testing staff. For the functionality
realized in IO.Man (8 state engines, each having 10-15 states,
30-40 arrows, and 60-80 objects) the business analysts staff
was increased by 4 persons, and the implementers staff (GUI
engineers, code engineers, and testers) was decreased by 9
persons. The second improvement is the time decrease for
product development by more than 40%.

(4) Another effect of introducing the KBASE technology
and tools is the change of IT development team profile.
Although the application of the domain area ontology requires
more business analysts in the team, the introduction of
automation in the implementation process considerably
reduces the required number of implementers and testers. In

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 55

the MAPR 61,9% of the effort is dedicated to the domain
independent phase (performed once), 37,26 % - to the domain
dependent phase (performed only during migration to a new
subdomain or a new organization), and only 0,84% to the
problem solving phase (performed daily during the lifetime of
the system).

(5) Following the KBASE process the business processes
shall be described with the BPMN standard instead of UML
use cases. The introduction of event, process and object based
specification techniques resulted in 2,5 times decrease of the
number of classes in the Design model – 630 versus 245.
Compared are two versions of a TIS Hospital care, part of the
BeH program.

(6) The improvement obtained during the prototyping of
two Product Manual versions for the same Fork Lift Truck is a
reduction with 60% of the realization effort. Approximately 24
man/months are required for the realization of a non-
automated and non-adaptive Product Manual version. The
time for the realization of a more powerful, automated and
adaptive PM version is reduced to 9 man/months.

IX. CONCLUSION
The suggested KBASE method integrates the RUP and

Agile process frameworks, the technologies Software
Engineering, Service Oriented Architectures, Automated
Programming, Knowledge Processing, and Cloud Computing
platforms.

Based on the KBASE method the following solutions are
proposed:

(1) Software engineering standardization is improved by
introducing KBASE ontology;

(2) Nine Specification Techniques based on different
combinations of nine international standards for IS
specification are introduced to improve the technological
process;

(3) Contextual Design Method is introduced to improve the
systematic collection of the initial information;

(4) Process-based, object-based and event-based
specification techniques are introduced as more efficient
replacement of large part of the RUP Use Case Specification;

(5) Automated programming is introduced to allow code
generation after completion of the design model, which
considerably increases components reusability level and the
quality of the developed product;

(6) Built-in-Test method is introduced to improve test
coverage and the efficiency of the development process.

The proposed solutions have been proved efficient in
numerous developments and have important contribution to
the improvement of the software development process.

Future work on the KBASE method is related to: (1)
development of a new Unified Specification Language (USL)
to integrate and optimize the selected specification techniques
in the KBASE method; (2) build a first generation USL
specification tool; (3) build a second generation of industrial
Common Platform for Automated Programming; (4)

improvement of knowledge processing intelligence.

REFERENCES
[1] Axelos Limited, Managing Successful Projects with PRINCE2. The

Stationery Office, 2017
[2] European Commission , ISA Programme, European Interoperablity

Reference Architecture (EIRA) v.2.0.0, 2017.
https://joinup.ec.europa.eu/asset/eia/description#EIA.

[3] F.Liu et. all., NIST Cloud Computing Reference Architecture,
Gaithersburg: National Institute of Standards and Technology Special
Publication 500-292, US Department of Commerce, 2011

[4] I.Stanev, “Method for Automated Programming of Robots,” Knowledge
Based Automated Software Engineering, Cambridge Scholars Press,
Cambridge, pp.67 – 85, 2012.

[5] I.Stanev, K.Grigorova, “KBASE Unified Process,” Knowledge Based
Automated Software Engineering, Cambridge Scholars Publishing,
Cambridge, pp. 1 – 19, 2012.

[6] I.Stanev, M.Koleva, “KBASE Technological framework –
Requirements,” 2015 17th International Conference on Semantic
Interoperability and Integration (ICSII), Rome, 2015.

[7] I.Stanev, M.Koleva, “Method for information systems automated
programming,” 2017 11th Mediterranean Conference on Information
Systems (MCIS), Genoa, 2017.

[8] I.Stanev, Method for automated programming of Robots, PhD Thesis,
Department Informatics and Information Technologies, University of
Ruse, 2014

[9] J.-D. Lovelock et all., “Forecast alert: IT spending, worldwide”, 4Q17
update, https://www.gartner.com/doc/3841567, December 2017.

[10] K.Holtzblatt and H.Beyer, Contextual Design, Second Edition: Design
for Life. Morgan Kaufmann Publishers. San Francisco, 2016.

[11] Object Management Group (OMG), Software & Systems Process
Engineering Metamodel Specification (SPEM) v.2.0.
http://www.omg.org/spec/SPEM/2.0/, 2008

[12] OMG, Business Process Model And Notation v.2.0.2.
http://www.omg.org/spec/BPMN, 2014

[13] OMG, Case Management Model And Notation v1.1.
http://www.omg.org/spec/CMMN, 2016

[14] OMG, Decision Model And Notation v1.1.
http://www.omg.org/spec/DMN, 2016

[15] OMG, System Modeling Language v.1.5.
http://www.omg.org/spec/SysML/, 2017

[16] OMG, Unified Modeling Language v.2.5.1.
http://www.omg.org/spec/UML/, 2017

[17] P.Abrahamson, O.Salo, J.Ronkainen, J.Warsta, Agile software
development methods: Review and analysis (Technical report). VTT.
478., 2002

[18] P.Kruchten, The Rational Unified Process: an Introduction, Addison-
Wesley, 2000.

[19] P.Mell and T.Grance, “The NIST Definition of Cloud Computing,”
Gaithersburg: National Institute of Standards and Technology NIST
Special Publication 800-145 US Department of Commerce. p.7, 2011.

[20] Project EU IST-1999-20162 Development and Applications of New
Built-in-Test Software Components in European Industries, Software
Architecture, 2003

[21] Project Management Institute, A Guide to the Project Management Body
of Knowledge Sixth Edition, 2017.

[22] The Open Group, Service-Oriented Architecture Ontology v.2.0,
http://www.opengroup.org/soa/source-book/ontologyv2/index.htm,
2014.

[23] The Open Group, The Open Group Architecture Framework (TOGAF)
v.9.1, http://pubs.opengroup.org/architecture/togaf9-doc/arch/.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 56

[24] U.S. Bureau of Labor Statistics, Occupational Outlook Handbook,
https://www.bls.gov/ooh/computer-and-information-
technology/software-developers.htm#tab-6.

[25] W3C, Web Ontology Language v.2,
https://www.w3.org/standards/techs/owl#w3c_all, 2012.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 12, 2018

ISSN: 2074-1316 57

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-6
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm#tab-6
https://www.w3.org/standards/techs/owl#w3c_all

	I. Introduction
	II. Related Works
	A. Technological processes
	B. Specification languages
	C. Platforms
	D. Case studies
	E. The way forward

	III. KBASE Method Concept
	IV. KBASE Ontology
	V. KBASE Technological Process
	VI. KBASE Specification Language
	VII. KBASE Common Platform for Automated Programming
	VIII. KBASE Efficiency Evaluation
	IX. Conclusion
	References

