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Abstract: - The paper offers a new programming 

paradigm, which implements CAD methods in 

programming, The level of encapsulation in 

model-oriented programming is higher than in 

the object-oriented approach. The key features of 

the MO-programming are declarative style (no 

imperative programs), and focusing on the 

distributed and high-performance calculations. 

The method proposed is based on the structural 

theory of multi-component complex systems, and 

is applicable for a rather wide class of tasks 

including the elaboration of simulation models of 

such systems. 

 

Key-Words: - Education, Information, Complex 

Systems, Species of Structure, Model Synthesis, 

Model-Oriented Programming, Programming 

Paradigm 

 

I. INTRODUCTION. PROGRAMMING: FROM 

MACHINE INSTRUCTIONS TO THE ONTOLOGIES 

Programming has evolved from machine 

instructions and data of three types (integer, float, 

and Boolean), all the while enlarging and 

complicating the object of the programmer's 

activity. 

The first programming languages brought 

constructions such as operators, loops, data arrays. 

Until now, those who have enough of these tools, eg 

who solve mathematical physics equations on 

various grids, are ardent fans of the Fortran and are 

quite happy without being familiar with innovations 

such as classes, inheritance, or ontologies. 

Structured programming has substantiated a set 

of basic constructs: sequence, selection, iteration, 

recursion, subroutine, block, sufficient for writing 

any program without using “goto” statement – one 

of the most popular in the previous period [1]. Data 

organization becomes more complex - the records 

combine different types of data. Another important 

conclusion of this period is that the coordination 

between the programming language and the 

computer hardware (eg, C and PDP-11) can 

significantly increase the efficiency of 

computations. 

The next step of the programming evolution was 

the object analysis. The concept of a class defines 

the type of objects, which instances combine a data 

structure with the methods for processing this data. 

Also, through the inheritance mechanism, you can 

build a taxonomy of classes, developing and 

concretizing the basic ideas embedded in the root 

classes of this hierarchy. When the class hierarchy is 

built, the program is seen as a sequential activation 

of the desired objects and calling their appropriate 

methods. Here is the point, where the object analysis 

technology ends, and the informal art of the 

programming starts. So, we see that object analysis 

is not an end-to-end technology, as, for example, 

CAD technologies are. As for the analysis – yes, it 

undoubtedly presents, but as for the synthesis – it is 

not formalized. The synthesis is left to the art of the 

programmer. As for the data organization, this 

period was marked by the rapid development of 

database technologies, and any complex software 

system interacted with one or more of such 

databases. 

On the verge of millennia, the programming 

domain became more and more complex. The 

interest increased in super-large forms – the worlds. 

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES 
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 1



Even in entertainment, we know and love the worlds 

of Tolkien, Lewis, Efremov, Strugatskis, Star Wars, 

the Matrix, Harry Potter, Pirates of the Caribbean, 

Game of Thrones. A conceptual model is needed to 

deal with such a complex domain. In [2], it was said 

about the need to study complex systems in three 

worlds: material, informatics, and ideas (as Plato 

taught), and it was proposed to do this with the help 

of species of structure in the sense of N. Bourbaki 

[3]. In the programming practice of the current 

millennium beginning, this translates into the 

creation of ontologies for the domain of complex 

software systems. The term "ontology" is not bad 

and has already taken root in computer science, but 

philosophers are the first, who occupy and own it 

for a long time. To ignore this fact – is like teaching 

children to regard Beethoven as a St. Bernard dog. 

Nevertheless, in the introduction we will allow 

ourselves to use this term, preferring further 

“structure” or “conceptual model”. 

Ontology helps answer the question posed above: 

what to do after the ideas embedded in the base 

classes are expanded by inheritance into a coherent 

system of leaf ones. How not get lost in such a 

wealth (there can be tens of thousands of them, for 

example, .Net)? You cannot keep so much in your 

mind – it can explode – you involuntarily have to 

arm yourself with Plato's scheme of the three 

worlds. The ontology may turn out to be Ariadne's 

thread that can lead the programmer out of this 

labyrinth. Especially if it was worked out first, and 

only then the taxonomy of classes was created, 

basing on it. 

The problem arises: we are aiming at more and 

more complex worlds in our activity – the 

complexity of ontologies of programming domains 

is growing. Is there any limit to this complexity? 

Modern programming is already suffocating with 

complexity: the imperative approach is complex; the 

complex structure of the software system and the 

connections between its components; data 

organization is complex; the behavior of the system 

components is complex: its logic is complex and the 

functionality of individual actions is complex. All 

this makes modern programming art that is 

practically inaccessible to an ordinary person. 

On the other hand, the explosive development of 

information technology requires complex systems 

programming to become widely available, such as 

CAD technologies, which can be taught regularly in 

high school, and not art passed down from the 

Master to the chosen Padawans. The object 

approach, even reinforced by elements of 

conceptual modeling (construction of ontologies), is 

not such a technology – too many stages of a 

programmer's activity remain unformalized. The 

main tool is still imperative programming, which is 

extremely difficult to debug. 

This article is intended to show a way out of the 

complexity impasse, if not for everyone in the 

world, but for a wide class of problems in creating 

complex software systems. The proposed 

technology implements CAD technologies in 

programming that have proven themselves, for 

example, in the design of microelectronics, where 

the processor contains tens of millions of transistors. 

The proposed technology does not use imperative 

programming at all. Besides, some programming 

solutions are proposed, that could significantly 

increase the computing performance when 

interacting with specially oriented hardware 

solutions. Corresponding experiments were carried 

out for a long time, but for some reason, they have 

not yet found wide application. 

 

 

II. ELEMENTS OF STRUCTURAL THEORY OF MULTI-

СOMPONENT COMPLEX SYSTEMS 

In Plato's dialogue “Parmenides”, the distinguished 

Elean sophist Parmenides, his mature follower Zeno 

(known to us for his aporias), young Socrates, and 

even younger Aristotle (not the famous philosopher 

– he was not born yet, – but the future tyrant of 30) 

argued about the nature of this world – whether it is 

unit or plural. Since any of these statements is a 

great truth (by N. Bohr's or K. Gödel's 

classifications), its denial is a great truth also. So, 

the controversy lasted a long time, points of view 

were confirmed and refuted by a lot of arguments. 

Now philosophers regard the dialogue "Parmenides" 

as the source of all modern dialectics. This does not 

prevent some particularly cynical persons from 

believing that this was just an outdoor promotion 

campaign for Eleatic sophistry among the 

Athenians. Nevertheless, the formula: "One in all, 

and all in One" was and remains in use among the 

mystics of all times and peoples.  

Since the modeling claims to reflect the real 

world, this formula is reflected in the theory of 

Model Synthesis and Model-Oriented Programming, 

which offers an end-to-end technology for 

description, synthesis, and software implementation 

of complex multicomponent systems models [4, 5]. 

The central point of this theory is the construction of 
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a universal agent for the agent simulation – the so-

called “model-component” (really wanted to name it 

an object, and that name would be the most relevant, 

but alas, the term was already occupied and used in 

the object analysis, salute to Beethoven!).  

A model-component is a formal mathematical 

object – a species of structure in N. Bourbaki sense. 

It is formally defined, for example, in [2, 4]. The 

family of models-components has two important 

features: 

 The family of models-components is closed 

under the operation of uniting models-

components into the model-complex. The 

complex received by an association of 

models-components is a model-component 

itself, and therefore, can be included in new 

complexes. 

 The organization of simulation calculations is 

the same for all representatives of the family. 

This fact means a possibility of the universal 

computer program creation, which is capable 

to execute any simulation model if that is the 

mathematical object supplied with the species 

of structure from that family of models-

components. 

These properties of the models-components 

family permit to solve the problem of complex 

system synthesis from its agents. All kinds of 

imaginable agents are models-components and any 

unity of models-components is also a model-

component. Thus, this theory can be considered as a 

mathematical model and interpretation (of course, 

on a more simplified and lower level, like any 

model) of the above phrase: "One in all and all in 

One". 

The concept of Model Synthesis gives some 

consequences of a very wide application. We can 

match almost any agent complex system (physical, 

or technical, or social, or mixed) with its 

mathematical model (the model-component is a 

completely mathematical object of a certain species 

of structure), at least as a mental experiment. The 

class of systems was described exactly in [5], to 

which the Model Synthesis theory is applicable, and 

we will briefly repeat this description in subsection 

3.1.  

What does this give for solving the problems 

posed in the Introduction? 

 When the complexity of the system domain 

grows, the complexity of its conceptual model 

remains qualitatively the same – it is a model-

component always. The complexity of the 

conceptual model grows only quantitatively - 

it has more base sets, typical 

characterizations, and axioms, while its type 

as a species of structure remains the same. 

 The consequence of this is that the 

complexity of the organization of the 

computation also does not change 

qualitatively, with an increase of the system 

complexity. Of cause, the number of 

calculations grows, but their type remains the 

same since the work is carried out with the 

same structure. This allows to develop and 

debug to shine a universal program for the 

computations organizing, capable of 

launching any object supplied with model-

component species of structure. 

Thus, it becomes possible to bypass the 

complexity trap when developing more and more 

complex software systems. There is no need to 

invent new and newer ontologies, as the subject 

areas change or become more complex. We need to 

learn how to see any of these areas as a single and 

unchanging model-component. And the Model 

Synthesis theory gives us step-by-step technology 

on how to find the same model-component in almost 

any subject area. Well, and the universal program 

for calculation organizing can work with it. 

Thus, the uniformity of the conceptual model of 

any modeling domain, as well as the way of 

organizing its calculations, are the base of the 

Model Synthesis theory and Model-Oriented 

programming technology. 

 

 

III. ELEMENTS OF MODEL SYNTHESIS AND MODEL-

ORIENTED PROGRAMMING 

The agent-based approach to modeling has been 

known since the days of Leucippus and Democritus, 

– contemporaries of Socrates and the Elean sophists. 

Since then, and to our days, many different types of 

agents have been invented for such modeling. 

Let us try to show in the next subsection that the 

model-component is more than another heuristic 

attempt to come up with a new type of agent, – it is 

a logical consequence of the necessary conditions 

for the computer modeling possibility, first of all, of 

the closeness hypothesis. Let us try to get 
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acquainted with the closeness hypothesis in more 

detail. 

 

 

A. The Closeness Hypothesis 

What is the closeness hypothesis? The most 

important components of the model are its 

characteristics, which reflect the state of the 

modeled system and the state of the external world 

that affects this system. The first set of them is 

called internal, and the second - external. 

The closeness hypothesis assumes that the 

knowledge of the internal characteristics ( )x t  and 

external characteristics ( )a t  of the model at the 

moment t  is sufficient for a deterministic and 

unambiguous calculation of its internal 

characteristics over a certain time interval ( , )t t t  

of positive length t . External characteristics ( )a t  

are considered observable at any time moment t . 

Here ( )x t  and ( )a t  are vector functions. 

Unambiguity and determinism here refer 

specifically to the computation process. The subject 

area may be stochastic, but the calculator must 

definitely know when to turn on the random number 

generator and which probability distribution to use 

after. 

The task of modeling is to predict the evolution 

of the system on the macroscopic time interval [0, 

T]. This means calculating the values of the system 

trajectory ( )x t  on this segment. These calculations 

can only be performed by a computer if the system 

is complex enough, and this is the case we are 

talking about here. This means that in a finite time 

we can calculate the value of the system trajectory 

( )x t  only in a finite number of points 

[0, ], 1,...,it T i n  ; 1 2 ... nt t t   . We must be 

able to get an idea of the values of the trajectory at 

other points, based on the calculated ones, by 

linearly approximating the intermediate values, for 

example. 

It follows from the above that we can construct 

only models with piecewise smooth trajectories. 

There will not be enough computer time for more 

complex objects. The possibility of a finite number 

of jump discontinuities follows from the fact that if 

the system is complex enough, then some processes 

will always occur instantaneously compared to the 

duration of the simulation step, at any reasonable 

step. 

More about discontinuities: since we are 

modeling approximately, the modeling step t  is 

considered so small that we distinguish only the 

presence or absence of a jump in the segment t , 

and do not distinguish where exactly it occurred, at 

the beginning, the middle, or the end of t . This 

allows us always refer the jump to the left end of the 

segment t , for definiteness. From the same 

considerations, we believe that at the modeling step 

t  there can be only one jump (if there were more 

of them, we would still perceive them as merged 

into one). Thus, the presence of a discontinuity at a 

modeling step is similar to an ordinary event in the 

theory of event flows. 

Now we can accurately formulate the closeness 

hypothesis for the complex systems under the study. 

Definition 1.  

We call a model closed at a point [0, )t T , if 

on the base of internal ( )x t  and external ( )a t  

characteristics of the model 

1. we can determine whether there is a jump of 

the trajectory ( )x t  at t and if it is - to 

calculate it unambiguously; 

2. we can calculate a number 0t  , such that 

the segment,  which we call the forecast one 

( , ] (0, ]t t t T  , and then 

3. we can calculate unambiguously the model 

trajectory, starting from the point 

 , ( ) ( )t x t x t , as a smooth function of time 

on the forecast segment ( , ]t t t .  
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Fig.1. Closeness at a point 
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The idea of closeness at a point is illustrated in 

Fig. 1. 

Important note: Fig. 1 also shows, that on item 4, 

we move the system time forward by t , and find 

ourselves at the beginning of the next step of the 

simulation, where can start with item 1 again. 

Definition 2. 

We say, that a model is locally closed on the 

segment [0, ]T , if it is closed at any point 

[0, ).t T   

Local closeness seems to us to be a necessary 

condition for the possibility of building a model: it 

is difficult to imagine how to build it if a positive 

step forward is impossible from a certain moment. 

The requirement of local closeness on the segment 

[0, ]T  covers each point [0, )t T  with an 

associated forecast segment [ , ]t t t , on which we 

can calculate the trajectory of the system. It is an 

infinite cover. If we add the requirement of the left 

continuity of the system trajectory at any point 

(0, ]t T , this will be enough to find its finite 

subcover (supertasks may arise, without this 

requirement, such as a von Neumann’s fly or a 

Thomson’s lamp) [5]. The possibility of the finite 

subcover choosing from the total forecast segments 

cover, means the existence theorem for the 

modeling task [5]. 

The existence theorem is undoubtedly important, 

but for this work, the most important is the 

definition of the closeness at a point and Fig. 1, 

illustrating it. What does that mean for the 

programming?  

The fact is that no matter what the field of the 

modeling is (a technical system, the struggle of 

populations for survival, the epidemic spread, or 

social processes), the entire dynamics of the model 

is very simple and the same for any subject area. 

This is a four-stroke cycle shown in Fig. 1 and 

described in the definition of the closeness of the 

model at a point (with the addition of the model 

time transition to the next step), and similar to the 

Carnot cycle, or the work of the combustion engine. 

B. MODEL-COMPONENT, MODEL-COMPLEX, AND 

PROGRAMMING LANGUAGE OF COMPONENTS AND 

COMPLEXES DESCRIPTIONS (LCCD) 

The model-component was formally described as a 

species of structure in the sense of N. Bourbaki 

in [2, 4]. We will not repeat this rather cumbersome 

description here but will quote it sometimes. The 

formal description of the component model as 

N. Bourbaki’s species of structure was needed to 

prove that a complex that combines several model-

components according to certain rules will be a 

model-component itself on the set theory language. 

Although a formal description is adequate and 

complete, it would be too unusual for a programmer 

to describe a complex system and its components. It 

is much more natural to use a special declarative 

programming language LCCD (the language of 

components and complexes descriptions). 

A need arose for nonprocedural languages in 

which it is described not what it is necessary to 

execute, but who and how is arranged as well as 

who with whom and how is related. Some languages 

of a similar orientation with the names of their 

developers and sometimes the systems where they 

were applied are listed below: 

 SQL (IBM, ANSI, databases) – 1986. 

 MISS language (CC AS of the USSR) – 

1986-1990, [7].  

 IDL language (CORBA, OMG) – 1991.  

 OMT (HLA, DMSO, IEEE) – 2000. 

 Slice language (ICE, ZeroC) – 2003. 

 XML (W3C, SOAP, Microsoft) – 1996-2005. 

 UML (OMG, UML Partners) – 1997-2005. 

Ontology languages such as Common logic, 

DOGMA, OntoUML, and many others are 

becoming more and more popular these days. Since 
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Fig.2. Von Neumann’s fly 

the trend is fashionable, many domains need 

conceptual modeling, and not everyone understands 

the meaning of such modeling, there are too many 

ontology languages now.  

Since we assert the possibility of conceptual 

modeling of a wide class of domains with one 

universal structure - a model-component, we do not 

need a wide variety of languages. There is the only 

base concept in the Model Synthesis – a model-

component and one auxiliary – a model-complex, 

which, upon closer examination, turns out to be also 

a model-component. Therefore, a minimalistic 

declarative language LCCD is proposed, which is a 

simplification of the MISS simulation system 

language, implemented in 1990, [7]. 

There are four types of descriptors in LCCD: 

1. Data type descriptor. 

2. Method descriptor. 

3. Component descriptor. 

4. Complex descriptor. 

All descriptors, except a data type one; consist of 

heading and several paragraphs. A data type 

descriptor has only one paragraph. The data type 

descriptor is an optional construction. 

All LCCD descriptors are compiled not into 

code, but database tables. Thus, there are three 

equivalent ways to describe the model-component: 

the species of structure, the LCCD descriptor, and 

the database tables. The first method is good for 

theorizing, the second is a developer's tool for 

describing the modeling domain, and the third is a 

conceptual model of the domain crystallized in a 

database so that a universal program for calculations 

organizing can work on this base. Next, we will try 

to bring all these three versions of the description in 

accordance. 

Base sets:    
1 1

, , , ,
N N

j j
j j

X M E M E
 

. The easiest 

way is with X  – the characteristics of the model-

component. These are heterogeneous composite data 

types (like a struct in C language). The equivalent 

in the database is the same heterogeneous composite 

data, where a field of the appropriate size is reserved 

in the table for each data type. 

M  − the set of different implementations of 

methods-elements and E  − the set of different 

implementations of methods-events, associated with 

the model. The correspondent construction in LCCD 

is the Method descriptor, although it is broader than 

just a description of the underlying base sets. 

Let us illustrate how LCCD works by describing 

von Neumann’s fly model. Two pedestrians walk 

towards each other at constant speeds. A fly flies 

between them at a constant absolute speed, greater 

than the absolute speed of any pedestrian. As soon 

as the fly reaches the pedestrian, it instantly turns 

around and flies to another, Fig. 2. 

Below are the characteristics of the model in the 

database table. 

TABLE OF CHARACTERISTICS 

No F_x F_v M0_x M0_v M1_x M1_v 

1 1 3 0 1 50 -1.5 

The first line of this table is filled in manually. 

The subsequent ones are the simulation results. The 

data concerning the specific model should be 

supplemented with the simulation step t  and the 

model time t , in the real database table. The row 

size did not allow us to add these variables to the 

table above. 

The movement of the fly and both pedestrians 

(the calculation of the continuous evolution of the 

trajectory on the forecast segment) is provided by 

the slow method “move”. It calculates the 

coordinate at the end of the forecast segment x  

based on the value of the coordinate x  and velocity 

v  at the beginning of the simulation cycle and the 

duration of the forecast segment t  by the formula 

x x v t    . 

METHOD move; 

//If the method type is not specified, 

// SLOW is meant by default 

ADDRESS: 192.168.1.75; 

//where a realization locates 

INPUT 

double x, v; 

OUTPUT 
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double x; 

END; 

The fly has a quick element “Uturn”. It always 

turns the fly around – changes the fly's speed v  to

.v  

METHOD Uturn: FAST; 

// ADDRESS: local; by default 

INPUT 

double v; 

/************** 

As nothing is told about OUTPUT – it is the 

same by default, i.e. 

OUTPUT 

double v; 

***************/ 

END; 

The method-event “reaching” (the fly reaches the 

pedestrian) controls the transition from the slow 

method-element “move” to the fast “Uturn”. The 

reverse branch is unconditional, i.e. after "Uturn" 

always comes "move".  

The "reaching" event algorithm is the most 

complex in this model. The fly must know the 

coordinates and speeds of both pedestrians. It finds 

a pedestrian at the speed of the opposite sign and 

divides the distance to him by the sum of the 

absolute values of its and that pedestrian's speeds. If 

the distance is zero, the event has occurred, if 

positive, – the time for the fly to reach the 

pedestrian is calculated. 

METHOD reaching: EVENT; 

ADDRESS: simul.ccas.ru; 

INPUT 

double x, v, m0x, m0v, m1x, m1v; 

// OUTPUT of all the methods-events always –  

// double dt; – forecast of its occurrence time. 

END; 

The main result of compiling the example 

descriptors is to populate the following table, the 

rows of which indicate where to look for 

implementations of the methods it contains. 

TABLE OF REALIZATIONS 

No Method Assembly Address 

1 move Man 192.168.1.75 

2 Uturn Fly local 

3 reaching Fly simul.ccas.ru 

We see that not all the information specified in 

the descriptors is reflected in the table. It will be 

reflected in other tables. The constructs of the 

species of structure, the LCCD language, and the 

database do not correspond bijectively to each other. 

Each of these methods has its logic. The important 

thing is that there are three ways to describe 

completely the model-component. 

The "Von Neumann’s fly" model-complex 

consists of two instances of the “Man" model-

component and one instance of the “Fly” model-

component. The “Man" model-component has a 

single process consisting of a single slow “move" 

method. The "Fly" model-component has a single 

process consisting of a slow “move" method, a fast 

“Uturn" method, and a “reaching” event that 

controls methods’ switching. Therefore, the model-

complex has three processes: two got from the 

instances of the “Man” and one – from the “Fly”. 

TABLE OF METHODS AND EVENTS 

No 
Method / Event 

name 

T
y

p
e 

C
u

rren
t 

P
ro

cess 

R
ealizatio

n
 

1 Man_0_move 1  1 1 

2 Man_1_move 1  2 1 

3 Fly_0_move 1  3 1 

4 Fly_0_Uturn 2  3 2 

5 Fly_0_reaching 3  3 3 

We continue our review of the base sets 

correspondences.  
1

N

j
j

M


 and  
1

N

j
j

E


 are methods 

and events of processes. The table above is just 

about the methods and events of the processes. 

Besides, it contains some information from the 

method descriptors that are not included in the 

realizations table. It also includes the information on 

initial methods of processes, which is given by the 

typical characterizations  0

1

N

j j
j

m M


  of the 

species of structure “model-component” and in the 

LCCD language, these methods are specified in the 

elements paragraph of the component descriptor. 

The first column of the table is one of the keys. 

The second contains the names of methods and 

events. They are quite complex since they are 

obtained automatically when the complex descriptor 

is compiled into the corresponding component 

descriptor. The third column is the element type: 1 –

slow method; 2 – fast one; 3 – event. The fourth 

column contains Boolean variables, which indicate 

whether this method is current. At the very first 

simulation step, the initial methods are specified. 

The fifth column indicates to which process the 

element belongs. The last sixth column is the 
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secondary keys one, which indicates the item's 

position in the realizations table. 

TABLE OF SWITCHES 

No Process 
Current 

method 

Next 

method 
Event 

1 3 3 4 5 

2 3 4 3 0 

The switch table sets the correspondence 

between the methods to be switched and the events. 

There is only one event, and the reverse transition is 

unconditional, which is shown in the table by setting 

the impossible value to the secondary key. In 

columns from three through five, there are 

secondary keys that indicate the position of the 

element in the table of methods and events. 

In the model-component species of structure, the 

analog of this table are typical characterizations 

 
1

N

j j j j
j

sw E M M


    with rather cumbersome 

axioms 8R . In the LCCD language – the switches 

paragraph in the component descriptor. 

Here are some examples of the component 

descriptors.  

COMPONENT Man; 

PHASE 

double x; 

PARAMETERS 

double v; 

ELEMENTS 

 move; 

 COMMUTATION 

 move.x = x; 

 move.v = v; 

 x = move.x; 

 END; 

We can see that the characteristics of the 

components are divided into internal (PHASE) and 

external (PARAMETERS) in the LCCD. This is 

done for additional control during the compilation 

of descriptors: for example, external variables 

cannot be on the left side of the commutation 

statement of the parameters returned by methods. 

COMPONENT Fly; 

 PHASE 

 FlyPhase: 

 double x, v; 

 PARAMETERS 

 FlyParam: 

 FlyPhase man0Phase, man1Phase; 

 ELEMENTS 

 move, Uturn; 

 EVENTS 

 reaching; 

 SWITCHES 

 Move, Uturn: reaching; 

 Uturn, move; 

 COMMUTATION 

 move.x = x; 

 move.v = v; 

 x = move.x; 

 Uturn.v = v; 

 v = Uturn.v; 

 reaching.x = x; 

 reaching.v = v; 

 reaching.m0x = man0Phase.x; 

 reaching.m0v = man0Phase.v; 

 reaching.m1x = man1Phase.x; 

 reaching.m1v = man1Phase.v; 

 END; 

Note that the design of the “Fly" component is 

more complex than the design of the “Man", so the 

corresponding descriptor turned out to be more 

complicated. Let's pay attention to the SWITCHES 

paragraph – this is the equivalent of the Table of 

Switches in the database and the typical 

characterizations  
1

N

j j j j
j

sw E M M


    with the 

8R  axioms in the species of structure description 

You will notice that commutation operators are 

starting to play an increasing role in component 

descriptors. In order not to multiply the number of 

such operators, one can enlarge the type descriptions 

and try to commute large aggregates of variables. In 

describing the species of structure, there are 

correlations between the typical characterizations 

 ,
1

( )
N

j in j
j

m M X


  ,  ,
1

( )
N

j out j
j

m M X


  , 

 ,
1

( )
N

j in j
j

e E X


  , and the axioms 5R  – 7R . In 

the database, commutation operators correspond to 

the tables of input and output commutations.  

Next, we give tables of input and output 

commutations, but for the whole complex of the von 

Neumann’s fly. Therefore, first, we give the LCCD 

descriptor of this complex. 

COMPLEX menANDfly; 

COMPONENTS 

 Fly(1), Man(2); 

 COMMUTATION 

 Fly(0) .man0Phase.x=Man (0).x; 

 Fly(0) .man0Phase.v=Man (0).v; 

 Fly(0) .man1Phase.x=Man (1).x; 
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 Fly(0) .man1Phase.v=Man (1).v; 

 END; 

The external variables of the components here, 

on the contrary, can quite legally be on the left side 

of the commutation operators. On the right side, 

there are internal variables of the components that 

calculate the variables of the left side. 

TABLE OF INPUT COMMUTATIONS 

No Method 
Input 

offset 

Phase 

offset 
Length 

1 1 0 16 8 

2 1 8 24 8 

3 2 0 32 8 

4 2 8 40 8 

5 3 0 0 8 

6 3 8 8 8 

7 4 0 8 8 

8 5 0 0 8 

9 5 8 8 8 

10 5 16 16 8 

11 5 24 24 8 

12 5 32 32 8 

13 5 40 40 8 

The first column contains the keys. The second 

column contains the secondary keys that indicate the 

position of the item in the Table of Methods and 

Events. The third column contains the offset in 

bytes from the start of the parameters record of the 

method. The fourth column contains the offset in 

bytes from the start of the characteristics record. 

The fifth contains the length of the parameter in 

bytes. If we replace the number 8 by 48, at the 

intersection of the 8th row with the last column – 

rows 9-13 can be removed. This speaks of the scope 

for optimization of the LCCD compiler. 

TABLE OF OUTPUT COMMUTATIONS 

No Method 
Output 

offset 

Phase 

offset 
Length 

1 1 0 16 8 

2 2 0 32 8 

3 3 0 0 8 

4 4 0 8 8 

The Table of Output Commutation is just as the 

Input one, only smaller. The first column contains 

the keys. The second column contains the secondary 

keys that indicate the position of the item in the 

Table of Methods and Events. The third column 

contains the offset in bytes from the start of the 

parameters record of the method. The fourth column 

contains the offset in bytes from the start of the 

characteristics record. The fifth contains the length 

of the parameter in bytes. 

We see that the ontologies of a wide class of 

modeling domains are representable by combining a 

database of a simple structure (almost all of its 

tables were illustrated by the example of von 

Neumann’s fly model) with a not too complex 

universal program for the computation organization, 

which provides all the dynamics. The algorithm of 

the universal program follows from the closeness 

hypothesis; it is four-cycle, as shown in Fig. 1. This 

algorithm was described in detail in [2, 4], here we 

will not repeat this description. 

 

 

C. DATABASES AND PROGRAMMING TRICKS 

Of course, the system dynamics is very important, 

but if the program for the simulation computations 

organizing is written, debugged, works, and never 

changes, – we can forget about it. Then it turns out, 

that the database forms the base of the conceptual 

model of almost any domain, and an important 

question becomes the optimization of the database 

work and the convenience of dealing with it – the 

quality of the DBMS.  

Here we will present some of the programming 

solutions implemented in the creation of the MISS 

(multilingual instrumental simulation system) over 

30 years ago [7]. They helped to solve many still 

urgent problems, including databases and DBMS 

[8], however, the use of such methods in subsequent 

years is still not known to us. 

The development of the MISS system was 

carried out on the PC XT. One of the serious 

problems of this architecture is the impossibility of 

direct use of computer memory over 640 K, even if 

such memory presents. Operating systems running 

in protected mode appeared in the 90s, after the end 

of the development of MISS. 

The way out of this difficulty was to create a 

software system of virtual memory. The available 

RAM over 640 K and the disk memory were 

divided into pages of 64 K. A part of available for 

addressing 640 K, served as a virtual pages display 

window. There could be up to 256 virtual pages in 

each of the 8 memory classes. Thus, it was possible 

to work with no more than 128 M of virtual 

memory. Now, this is of course quite a bit, – we 

consider 2 G of RAM as the minimum for a laptop. 

However, in the 80s 100 M was considered a very 
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good removable disk capacity, even for the 

mainframes. Much more important is how it was 

possible to work with this virtual memory. 

Each byte of the virtual memory could have a 

constant 32-bit address. Two bytes – for the address 

on the virtual page, another byte – the page number, 

3 more bits - the memory class number, the rest – 

for the system needs. The constancy of the address 

means that it continues to work the next time the 

program is started (if the previous one is completed 

normally). The virtual address has always been the 

address of a particular data type defined earlier. This 

made it easy to find the type of addressable record 

in the database and use the appropriate methods to 

work with it. 

A library of modules (a set of classes, in modern 

talking) was implemented for working with virtual 

memory by virtual addresses - allocating and freeing 

memory, copying to and from a record, etc. The 

library included various programming tools: work 

with lists; with blocked lists (a way to speed up the 

work of lists); storage in virtual memory, loading, 

and execution of computer programs (recall that 

methods and events are included in the base sets of 

the model-component); working with pictures – 

means of forming video frames in virtual memory. 

What could this give for the creation, 

management, and operation of databases? For 

example, in relational databases, a lot of time is 

spent searching by secondary keys. In the examples 

in the previous subsection, many tables consist 

almost entirely of secondary keys. In the MISS 

database, all secondary keys were virtual addresses 

of the corresponding tuples, which were accessed 

simply by the virtual address - without any lookup. 

Associating an address with the type of what it 

addresses allowed the creation of generic DBMSs. 

For example, in MISS, the model database was 

created automatically as a result of descriptors 

compilation and model assembly operation. As a 

result, the database editor had access not only to the 

fields of tuples of built-in types (integer, double, 

Boolean, etc.) but also to much more complex 

fields. For example, if the field type was the virtual 

address of a list, it was possible to travel through the 

records of this list, further expanding any of the 

fields of these records. Or, if the field is a picture, it 

was opened in a graphical editor. The database of 

international flights in the former USSR, 

implemented using MISS [8], worked rather quickly 

on a not very powerful laptop based on 80386. 

Any complex structure based on the virtual 

addressing may be saved to disk instantly. To do 

this, you need to rewrite all virtual pages from RAM 

to disk and remember the states of the display 

window and the processor. To restore it from the 

disk instantly – you need to write the necessary 

virtual pages into the display window and restore 

the processor state. This solves the problem of data 

serialization / deserialization (why does my 

computer boot / shut down so slowly?!), on which 

the developers of operating systems have been 

struggling for many years. 

 

 

D. DREAMS OF INTEGRATION WITH THE 

HARDWARE 

Remembering how fruitful was the combination of 

the PDP-11 architecture with the capabilities of the 

C language, we can dream of including some 

Model-Oriented Programming ideas into hardware.  

The first candidate is a computation organization 

program that provides all the system dynamics.  

Since memory virtualization is somehow 

inherent in almost all modern processors – the 

organization of virtual addressing available to the 

developer is rather a software question.  

Finally, why not dream of the operating system 

kernel as a model-component based on a hardware 

computational organization. After all, the functions 

they perform are the same – the organization of the 

reactive behavior for the system. Of course, there 

are a lot of unresolved issues here, such as those 

related to security, and some others. However, there 

are appropriate specialists for this, who could be 

involved in the project. 

 

 

IV. CONCLUSION 

Model-Oriented Programming is radically different 

from the well-known concepts of software systems 

model-driven development – MDA (Model-Driven 

Architecture), MDE (Model-Driven Engineering), 

and MDD (Model-Driven Development), despite the 

similarity of the names. The latter are just add-ons 

to the Object-Oriented approach and do not take the 

programming out from the field of art to the field of 

technology. The main development tool in these 
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concepts is still imperative programming in 

languages like the C family or Java. 

Model-Oriented Programming fully implements 

the CAD ideas in the programming, with all their 

advantages and disadvantages. At the same time, 

programming at all levels becomes fully declarative, 

which greatly facilitates the subsequent debugging 

of the software system. 

The software system is seen as consisting of 

"atoms" – models-components, which can be 

combined into complexes, which themselves, being 

model-components, can be combined into 

complexes of a higher level, etc. Comparing with 

the Object-Oriented approach, we can say that in the 

Model-Oriented Programming the multiple 

inheritances from the bottom to the top dominate, 

i.e. the Model Synthesis.  

A declarative programming language LCCD 

(language for components and complexes 

describing) has been developed (an analog of N. 

Bourbaki’s species of structure, which is closer to 

the perception of the programmer). It describes the 

structure of the model-components and the 

formation of complexes from them. An important 

feature of Model-Oriented Programming is that the 

LCCD descriptors are compiled not into computer 

code, but into a database. The UML and related 

concepts of model-driven software development 

have been killed by the poor code quality after 

double compilation. In MO programming, the 

question of code quality is not an issue - language 

constructs are compiled into the database either 

right or wrong. The efficiency of computations 

depends on a universal program for organizing 

computations, which can be "polished to shine". The 

database is the third (with the LCCD) analog of the 

universal agent description by N. Bourbaki’s species 

of structure. 

It should be noted, that the end-to-end 

technology described above for describing, 

synthesizing, and software implementation of 

simulation models of complex multicomponent 

systems is not just a theoretical dream. On the 

contrary, it all started with the complete practical 

implementation of such a system [7] (with the 

declarative programming language of the LCCD 

type, compilation, debugging, database, and, of 

course, a program for the calculations organizing) in 

the MS-DOS environment. 

The successful database design based on the 

virtual addressing technology, using this system was 

described in [8]. 

This system took first place in the category of 

professional programs in the All-Union competition 

of computer programs held in the USSR by the 

Japanese company “ASCII corporation” (at that 

time the largest computer games developer in Japan, 

now a division of a publishing company), in 1990. 

True, there was no at all any theoretical 

substantiation of this technology then, – it was given 

later in [4] – only the practical realization. 
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