
Model-Oriented Programming as a Consequence

of the Structural Theory of Multi-Сomponent

Complex Systems

Yury I. Brodsky

Federal Research Centre

 “Computer Science and Control” of RAS,

Moscow Pedagogical State University

40, Vavilova street, Moscow, 119333

RUSSIAN FEDERATION

Received: January 25, 2021. Revised: February 25, 2021. Accepted: March 4, 2021. Published: March 10, 2021.

Leonid V. Kruglov

Moscow Pedagogical State University

14, Krasnoprudnaya street, Moscow, 107140

RUSSIAN FEDERATION

Abstract: - The paper offers a new programming

paradigm, which implements CAD methods in

programming, The level of encapsulation in

model-oriented programming is higher than in

the object-oriented approach. The key features of

the MO-programming are declarative style (no

imperative programs), and focusing on the

distributed and high-performance calculations.

The method proposed is based on the structural

theory of multi-component complex systems, and

is applicable for a rather wide class of tasks

including the elaboration of simulation models of

such systems.

Key-Words: - Education, Information, Complex

Systems, Species of Structure, Model Synthesis,

Model-Oriented Programming, Programming

Paradigm

I. INTRODUCTION. PROGRAMMING: FROM

MACHINE INSTRUCTIONS TO THE ONTOLOGIES

Programming has evolved from machine

instructions and data of three types (integer, float,

and Boolean), all the while enlarging and

complicating the object of the programmer's

activity.

The first programming languages brought

constructions such as operators, loops, data arrays.

Until now, those who have enough of these tools, eg

who solve mathematical physics equations on

various grids, are ardent fans of the Fortran and are

quite happy without being familiar with innovations

such as classes, inheritance, or ontologies.

Structured programming has substantiated a set

of basic constructs: sequence, selection, iteration,

recursion, subroutine, block, sufficient for writing

any program without using “goto” statement – one

of the most popular in the previous period [1]. Data

organization becomes more complex - the records

combine different types of data. Another important

conclusion of this period is that the coordination

between the programming language and the

computer hardware (eg, C and PDP-11) can

significantly increase the efficiency of

computations.

The next step of the programming evolution was

the object analysis. The concept of a class defines

the type of objects, which instances combine a data

structure with the methods for processing this data.

Also, through the inheritance mechanism, you can

build a taxonomy of classes, developing and

concretizing the basic ideas embedded in the root

classes of this hierarchy. When the class hierarchy is

built, the program is seen as a sequential activation

of the desired objects and calling their appropriate

methods. Here is the point, where the object analysis

technology ends, and the informal art of the

programming starts. So, we see that object analysis

is not an end-to-end technology, as, for example,

CAD technologies are. As for the analysis – yes, it

undoubtedly presents, but as for the synthesis – it is

not formalized. The synthesis is left to the art of the

programmer. As for the data organization, this

period was marked by the rapid development of

database technologies, and any complex software

system interacted with one or more of such

databases.

On the verge of millennia, the programming

domain became more and more complex. The

interest increased in super-large forms – the worlds.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 1

Even in entertainment, we know and love the worlds

of Tolkien, Lewis, Efremov, Strugatskis, Star Wars,

the Matrix, Harry Potter, Pirates of the Caribbean,

Game of Thrones. A conceptual model is needed to

deal with such a complex domain. In [2], it was said

about the need to study complex systems in three

worlds: material, informatics, and ideas (as Plato

taught), and it was proposed to do this with the help

of species of structure in the sense of N. Bourbaki

[3]. In the programming practice of the current

millennium beginning, this translates into the

creation of ontologies for the domain of complex

software systems. The term "ontology" is not bad

and has already taken root in computer science, but

philosophers are the first, who occupy and own it

for a long time. To ignore this fact – is like teaching

children to regard Beethoven as a St. Bernard dog.

Nevertheless, in the introduction we will allow

ourselves to use this term, preferring further

“structure” or “conceptual model”.

Ontology helps answer the question posed above:

what to do after the ideas embedded in the base

classes are expanded by inheritance into a coherent

system of leaf ones. How not get lost in such a

wealth (there can be tens of thousands of them, for

example, .Net)? You cannot keep so much in your

mind – it can explode – you involuntarily have to

arm yourself with Plato's scheme of the three

worlds. The ontology may turn out to be Ariadne's

thread that can lead the programmer out of this

labyrinth. Especially if it was worked out first, and

only then the taxonomy of classes was created,

basing on it.

The problem arises: we are aiming at more and

more complex worlds in our activity – the

complexity of ontologies of programming domains

is growing. Is there any limit to this complexity?

Modern programming is already suffocating with

complexity: the imperative approach is complex; the

complex structure of the software system and the

connections between its components; data

organization is complex; the behavior of the system

components is complex: its logic is complex and the

functionality of individual actions is complex. All

this makes modern programming art that is

practically inaccessible to an ordinary person.

On the other hand, the explosive development of

information technology requires complex systems

programming to become widely available, such as

CAD technologies, which can be taught regularly in

high school, and not art passed down from the

Master to the chosen Padawans. The object

approach, even reinforced by elements of

conceptual modeling (construction of ontologies), is

not such a technology – too many stages of a

programmer's activity remain unformalized. The

main tool is still imperative programming, which is

extremely difficult to debug.

This article is intended to show a way out of the

complexity impasse, if not for everyone in the

world, but for a wide class of problems in creating

complex software systems. The proposed

technology implements CAD technologies in

programming that have proven themselves, for

example, in the design of microelectronics, where

the processor contains tens of millions of transistors.

The proposed technology does not use imperative

programming at all. Besides, some programming

solutions are proposed, that could significantly

increase the computing performance when

interacting with specially oriented hardware

solutions. Corresponding experiments were carried

out for a long time, but for some reason, they have

not yet found wide application.

II. ELEMENTS OF STRUCTURAL THEORY OF MULTI-

СOMPONENT COMPLEX SYSTEMS

In Plato's dialogue “Parmenides”, the distinguished

Elean sophist Parmenides, his mature follower Zeno

(known to us for his aporias), young Socrates, and

even younger Aristotle (not the famous philosopher

– he was not born yet, – but the future tyrant of 30)

argued about the nature of this world – whether it is

unit or plural. Since any of these statements is a

great truth (by N. Bohr's or K. Gödel's

classifications), its denial is a great truth also. So,

the controversy lasted a long time, points of view

were confirmed and refuted by a lot of arguments.

Now philosophers regard the dialogue "Parmenides"

as the source of all modern dialectics. This does not

prevent some particularly cynical persons from

believing that this was just an outdoor promotion

campaign for Eleatic sophistry among the

Athenians. Nevertheless, the formula: "One in all,

and all in One" was and remains in use among the

mystics of all times and peoples.

Since the modeling claims to reflect the real

world, this formula is reflected in the theory of

Model Synthesis and Model-Oriented Programming,

which offers an end-to-end technology for

description, synthesis, and software implementation

of complex multicomponent systems models [4, 5].

The central point of this theory is the construction of

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 2

a universal agent for the agent simulation – the so-

called “model-component” (really wanted to name it

an object, and that name would be the most relevant,

but alas, the term was already occupied and used in

the object analysis, salute to Beethoven!).

A model-component is a formal mathematical

object – a species of structure in N. Bourbaki sense.

It is formally defined, for example, in [2, 4]. The

family of models-components has two important

features:

 The family of models-components is closed

under the operation of uniting models-

components into the model-complex. The

complex received by an association of

models-components is a model-component

itself, and therefore, can be included in new

complexes.

 The organization of simulation calculations is

the same for all representatives of the family.

This fact means a possibility of the universal

computer program creation, which is capable

to execute any simulation model if that is the

mathematical object supplied with the species

of structure from that family of models-

components.

These properties of the models-components

family permit to solve the problem of complex

system synthesis from its agents. All kinds of

imaginable agents are models-components and any

unity of models-components is also a model-

component. Thus, this theory can be considered as a

mathematical model and interpretation (of course,

on a more simplified and lower level, like any

model) of the above phrase: "One in all and all in

One".

The concept of Model Synthesis gives some

consequences of a very wide application. We can

match almost any agent complex system (physical,

or technical, or social, or mixed) with its

mathematical model (the model-component is a

completely mathematical object of a certain species

of structure), at least as a mental experiment. The

class of systems was described exactly in [5], to

which the Model Synthesis theory is applicable, and

we will briefly repeat this description in subsection

3.1.

What does this give for solving the problems

posed in the Introduction?

 When the complexity of the system domain

grows, the complexity of its conceptual model

remains qualitatively the same – it is a model-

component always. The complexity of the

conceptual model grows only quantitatively -

it has more base sets, typical

characterizations, and axioms, while its type

as a species of structure remains the same.

 The consequence of this is that the

complexity of the organization of the

computation also does not change

qualitatively, with an increase of the system

complexity. Of cause, the number of

calculations grows, but their type remains the

same since the work is carried out with the

same structure. This allows to develop and

debug to shine a universal program for the

computations organizing, capable of

launching any object supplied with model-

component species of structure.

Thus, it becomes possible to bypass the

complexity trap when developing more and more

complex software systems. There is no need to

invent new and newer ontologies, as the subject

areas change or become more complex. We need to

learn how to see any of these areas as a single and

unchanging model-component. And the Model

Synthesis theory gives us step-by-step technology

on how to find the same model-component in almost

any subject area. Well, and the universal program

for calculation organizing can work with it.

Thus, the uniformity of the conceptual model of

any modeling domain, as well as the way of

organizing its calculations, are the base of the

Model Synthesis theory and Model-Oriented

programming technology.

III. ELEMENTS OF MODEL SYNTHESIS AND MODEL-

ORIENTED PROGRAMMING

The agent-based approach to modeling has been

known since the days of Leucippus and Democritus,

– contemporaries of Socrates and the Elean sophists.

Since then, and to our days, many different types of

agents have been invented for such modeling.

Let us try to show in the next subsection that the

model-component is more than another heuristic

attempt to come up with a new type of agent, – it is

a logical consequence of the necessary conditions

for the computer modeling possibility, first of all, of

the closeness hypothesis. Let us try to get

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 3

acquainted with the closeness hypothesis in more

detail.

A. The Closeness Hypothesis

What is the closeness hypothesis? The most

important components of the model are its

characteristics, which reflect the state of the

modeled system and the state of the external world

that affects this system. The first set of them is

called internal, and the second - external.

The closeness hypothesis assumes that the

knowledge of the internal characteristics ()x t and

external characteristics ()a t of the model at the

moment t is sufficient for a deterministic and

unambiguous calculation of its internal

characteristics over a certain time interval (,)t t t

of positive length t . External characteristics ()a t

are considered observable at any time moment t .

Here ()x t and ()a t are vector functions.

Unambiguity and determinism here refer

specifically to the computation process. The subject

area may be stochastic, but the calculator must

definitely know when to turn on the random number

generator and which probability distribution to use

after.

The task of modeling is to predict the evolution

of the system on the macroscopic time interval [0,

T]. This means calculating the values of the system

trajectory ()x t on this segment. These calculations

can only be performed by a computer if the system

is complex enough, and this is the case we are

talking about here. This means that in a finite time

we can calculate the value of the system trajectory

()x t only in a finite number of points

[0,], 1,...,it T i n  ; 1 2 ... nt t t   . We must be

able to get an idea of the values of the trajectory at

other points, based on the calculated ones, by

linearly approximating the intermediate values, for

example.

It follows from the above that we can construct

only models with piecewise smooth trajectories.

There will not be enough computer time for more

complex objects. The possibility of a finite number

of jump discontinuities follows from the fact that if

the system is complex enough, then some processes

will always occur instantaneously compared to the

duration of the simulation step, at any reasonable

step.

More about discontinuities: since we are

modeling approximately, the modeling step t is

considered so small that we distinguish only the

presence or absence of a jump in the segment t ,

and do not distinguish where exactly it occurred, at

the beginning, the middle, or the end of t . This

allows us always refer the jump to the left end of the

segment t , for definiteness. From the same

considerations, we believe that at the modeling step

t there can be only one jump (if there were more

of them, we would still perceive them as merged

into one). Thus, the presence of a discontinuity at a

modeling step is similar to an ordinary event in the

theory of event flows.

Now we can accurately formulate the closeness

hypothesis for the complex systems under the study.

Definition 1.

We call a model closed at a point [0,)t T , if

on the base of internal ()x t and external ()a t

characteristics of the model

1. we can determine whether there is a jump of

the trajectory ()x t at t and if it is - to

calculate it unambiguously;

2. we can calculate a number 0t  , such that

the segment, which we call the forecast one

(,] (0,]t t t T  , and then

3. we can calculate unambiguously the model

trajectory, starting from the point

 , () ()t x t x t , as a smooth function of time

on the forecast segment (,]t t t . 

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 4

Fig.1. Closeness at a point

t tt 

)(tX




t

1
2

3

4

X

The idea of closeness at a point is illustrated in

Fig. 1.

Important note: Fig. 1 also shows, that on item 4,

we move the system time forward by t , and find

ourselves at the beginning of the next step of the

simulation, where can start with item 1 again.

Definition 2.

We say, that a model is locally closed on the

segment [0,]T , if it is closed at any point

[0,).t T 

Local closeness seems to us to be a necessary

condition for the possibility of building a model: it

is difficult to imagine how to build it if a positive

step forward is impossible from a certain moment.

The requirement of local closeness on the segment

[0,]T covers each point [0,)t T with an

associated forecast segment [,]t t t , on which we

can calculate the trajectory of the system. It is an

infinite cover. If we add the requirement of the left

continuity of the system trajectory at any point

(0,]t T , this will be enough to find its finite

subcover (supertasks may arise, without this

requirement, such as a von Neumann’s fly or a

Thomson’s lamp) [5]. The possibility of the finite

subcover choosing from the total forecast segments

cover, means the existence theorem for the

modeling task [5].

The existence theorem is undoubtedly important,

but for this work, the most important is the

definition of the closeness at a point and Fig. 1,

illustrating it. What does that mean for the

programming?

The fact is that no matter what the field of the

modeling is (a technical system, the struggle of

populations for survival, the epidemic spread, or

social processes), the entire dynamics of the model

is very simple and the same for any subject area.

This is a four-stroke cycle shown in Fig. 1 and

described in the definition of the closeness of the

model at a point (with the addition of the model

time transition to the next step), and similar to the

Carnot cycle, or the work of the combustion engine.

B. MODEL-COMPONENT, MODEL-COMPLEX, AND

PROGRAMMING LANGUAGE OF COMPONENTS AND

COMPLEXES DESCRIPTIONS (LCCD)

The model-component was formally described as a

species of structure in the sense of N. Bourbaki

in [2, 4]. We will not repeat this rather cumbersome

description here but will quote it sometimes. The

formal description of the component model as

N. Bourbaki’s species of structure was needed to

prove that a complex that combines several model-

components according to certain rules will be a

model-component itself on the set theory language.

Although a formal description is adequate and

complete, it would be too unusual for a programmer

to describe a complex system and its components. It

is much more natural to use a special declarative

programming language LCCD (the language of

components and complexes descriptions).

A need arose for nonprocedural languages in

which it is described not what it is necessary to

execute, but who and how is arranged as well as

who with whom and how is related. Some languages

of a similar orientation with the names of their

developers and sometimes the systems where they

were applied are listed below:

 SQL (IBM, ANSI, databases) – 1986.

 MISS language (CC AS of the USSR) –

1986-1990, [7].

 IDL language (CORBA, OMG) – 1991.

 OMT (HLA, DMSO, IEEE) – 2000.

 Slice language (ICE, ZeroC) – 2003.

 XML (W3C, SOAP, Microsoft) – 1996-2005.

 UML (OMG, UML Partners) – 1997-2005.

Ontology languages such as Common logic,

DOGMA, OntoUML, and many others are

becoming more and more popular these days. Since

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 5

Fig.2. Von Neumann’s fly

the trend is fashionable, many domains need

conceptual modeling, and not everyone understands

the meaning of such modeling, there are too many

ontology languages now.

Since we assert the possibility of conceptual

modeling of a wide class of domains with one

universal structure - a model-component, we do not

need a wide variety of languages. There is the only

base concept in the Model Synthesis – a model-

component and one auxiliary – a model-complex,

which, upon closer examination, turns out to be also

a model-component. Therefore, a minimalistic

declarative language LCCD is proposed, which is a

simplification of the MISS simulation system

language, implemented in 1990, [7].

There are four types of descriptors in LCCD:

1. Data type descriptor.

2. Method descriptor.

3. Component descriptor.

4. Complex descriptor.

All descriptors, except a data type one; consist of

heading and several paragraphs. A data type

descriptor has only one paragraph. The data type

descriptor is an optional construction.

All LCCD descriptors are compiled not into

code, but database tables. Thus, there are three

equivalent ways to describe the model-component:

the species of structure, the LCCD descriptor, and

the database tables. The first method is good for

theorizing, the second is a developer's tool for

describing the modeling domain, and the third is a

conceptual model of the domain crystallized in a

database so that a universal program for calculations

organizing can work on this base. Next, we will try

to bring all these three versions of the description in

accordance.

Base sets:    
1 1

, , , ,
N N

j j
j j

X M E M E
 

. The easiest

way is with X – the characteristics of the model-

component. These are heterogeneous composite data

types (like a struct in C language). The equivalent

in the database is the same heterogeneous composite

data, where a field of the appropriate size is reserved

in the table for each data type.

M − the set of different implementations of

methods-elements and E − the set of different

implementations of methods-events, associated with

the model. The correspondent construction in LCCD

is the Method descriptor, although it is broader than

just a description of the underlying base sets.

Let us illustrate how LCCD works by describing

von Neumann’s fly model. Two pedestrians walk

towards each other at constant speeds. A fly flies

between them at a constant absolute speed, greater

than the absolute speed of any pedestrian. As soon

as the fly reaches the pedestrian, it instantly turns

around and flies to another, Fig. 2.

Below are the characteristics of the model in the

database table.

TABLE OF CHARACTERISTICS

No F_x F_v M0_x M0_v M1_x M1_v

1 1 3 0 1 50 -1.5

The first line of this table is filled in manually.

The subsequent ones are the simulation results. The

data concerning the specific model should be

supplemented with the simulation step t and the

model time t , in the real database table. The row

size did not allow us to add these variables to the

table above.

The movement of the fly and both pedestrians

(the calculation of the continuous evolution of the

trajectory on the forecast segment) is provided by

the slow method “move”. It calculates the

coordinate at the end of the forecast segment x

based on the value of the coordinate x and velocity

v at the beginning of the simulation cycle and the

duration of the forecast segment t by the formula

x x v t    .

METHOD move;

//If the method type is not specified,

// SLOW is meant by default

ADDRESS: 192.168.1.75;

//where a realization locates

INPUT

double x, v;

OUTPUT

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 6

double x;

END;

The fly has a quick element “Uturn”. It always

turns the fly around – changes the fly's speed v to

.v

METHOD Uturn: FAST;

// ADDRESS: local; by default

INPUT

double v;

/**************

As nothing is told about OUTPUT – it is the

same by default, i.e.

OUTPUT

double v;

***************/

END;

The method-event “reaching” (the fly reaches the

pedestrian) controls the transition from the slow

method-element “move” to the fast “Uturn”. The

reverse branch is unconditional, i.e. after "Uturn"

always comes "move".

The "reaching" event algorithm is the most

complex in this model. The fly must know the

coordinates and speeds of both pedestrians. It finds

a pedestrian at the speed of the opposite sign and

divides the distance to him by the sum of the

absolute values of its and that pedestrian's speeds. If

the distance is zero, the event has occurred, if

positive, – the time for the fly to reach the

pedestrian is calculated.

METHOD reaching: EVENT;

ADDRESS: simul.ccas.ru;

INPUT

double x, v, m0x, m0v, m1x, m1v;

// OUTPUT of all the methods-events always –

// double dt; – forecast of its occurrence time.

END;

The main result of compiling the example

descriptors is to populate the following table, the

rows of which indicate where to look for

implementations of the methods it contains.

TABLE OF REALIZATIONS

No Method Assembly Address

1 move Man 192.168.1.75

2 Uturn Fly local

3 reaching Fly simul.ccas.ru

We see that not all the information specified in

the descriptors is reflected in the table. It will be

reflected in other tables. The constructs of the

species of structure, the LCCD language, and the

database do not correspond bijectively to each other.

Each of these methods has its logic. The important

thing is that there are three ways to describe

completely the model-component.

The "Von Neumann’s fly" model-complex

consists of two instances of the “Man" model-

component and one instance of the “Fly” model-

component. The “Man" model-component has a

single process consisting of a single slow “move"

method. The "Fly" model-component has a single

process consisting of a slow “move" method, a fast

“Uturn" method, and a “reaching” event that

controls methods’ switching. Therefore, the model-

complex has three processes: two got from the

instances of the “Man” and one – from the “Fly”.

TABLE OF METHODS AND EVENTS

No
Method / Event

name

T
y

p
e

C
u

rren
t

P
ro

cess

R
ealizatio

n

1 Man_0_move 1  1 1

2 Man_1_move 1  2 1

3 Fly_0_move 1  3 1

4 Fly_0_Uturn 2  3 2

5 Fly_0_reaching 3  3 3

We continue our review of the base sets

correspondences.  
1

N

j
j

M


 and  
1

N

j
j

E


 are methods

and events of processes. The table above is just

about the methods and events of the processes.

Besides, it contains some information from the

method descriptors that are not included in the

realizations table. It also includes the information on

initial methods of processes, which is given by the

typical characterizations  0

1

N

j j
j

m M


 of the

species of structure “model-component” and in the

LCCD language, these methods are specified in the

elements paragraph of the component descriptor.

The first column of the table is one of the keys.

The second contains the names of methods and

events. They are quite complex since they are

obtained automatically when the complex descriptor

is compiled into the corresponding component

descriptor. The third column is the element type: 1 –

slow method; 2 – fast one; 3 – event. The fourth

column contains Boolean variables, which indicate

whether this method is current. At the very first

simulation step, the initial methods are specified.

The fifth column indicates to which process the

element belongs. The last sixth column is the

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 7

secondary keys one, which indicates the item's

position in the realizations table.

TABLE OF SWITCHES

No Process
Current

method

Next

method
Event

1 3 3 4 5

2 3 4 3 0

The switch table sets the correspondence

between the methods to be switched and the events.

There is only one event, and the reverse transition is

unconditional, which is shown in the table by setting

the impossible value to the secondary key. In

columns from three through five, there are

secondary keys that indicate the position of the

element in the table of methods and events.

In the model-component species of structure, the

analog of this table are typical characterizations

 
1

N

j j j j
j

sw E M M


   with rather cumbersome

axioms 8R . In the LCCD language – the switches

paragraph in the component descriptor.

Here are some examples of the component

descriptors.

COMPONENT Man;

PHASE

double x;

PARAMETERS

double v;

ELEMENTS

 move;

 COMMUTATION

 move.x = x;

 move.v = v;

 x = move.x;

 END;

We can see that the characteristics of the

components are divided into internal (PHASE) and

external (PARAMETERS) in the LCCD. This is

done for additional control during the compilation

of descriptors: for example, external variables

cannot be on the left side of the commutation

statement of the parameters returned by methods.

COMPONENT Fly;

 PHASE

 FlyPhase:

 double x, v;

 PARAMETERS

 FlyParam:

 FlyPhase man0Phase, man1Phase;

 ELEMENTS

 move, Uturn;

 EVENTS

 reaching;

 SWITCHES

 Move, Uturn: reaching;

 Uturn, move;

 COMMUTATION

 move.x = x;

 move.v = v;

 x = move.x;

 Uturn.v = v;

 v = Uturn.v;

 reaching.x = x;

 reaching.v = v;

 reaching.m0x = man0Phase.x;

 reaching.m0v = man0Phase.v;

 reaching.m1x = man1Phase.x;

 reaching.m1v = man1Phase.v;

 END;

Note that the design of the “Fly" component is

more complex than the design of the “Man", so the

corresponding descriptor turned out to be more

complicated. Let's pay attention to the SWITCHES

paragraph – this is the equivalent of the Table of

Switches in the database and the typical

characterizations  
1

N

j j j j
j

sw E M M


   with the

8R axioms in the species of structure description

You will notice that commutation operators are

starting to play an increasing role in component

descriptors. In order not to multiply the number of

such operators, one can enlarge the type descriptions

and try to commute large aggregates of variables. In

describing the species of structure, there are

correlations between the typical characterizations

 ,
1

()
N

j in j
j

m M X


  ,  ,
1

()
N

j out j
j

m M X


  ,

 ,
1

()
N

j in j
j

e E X


  , and the axioms 5R – 7R . In

the database, commutation operators correspond to

the tables of input and output commutations.

Next, we give tables of input and output

commutations, but for the whole complex of the von

Neumann’s fly. Therefore, first, we give the LCCD

descriptor of this complex.

COMPLEX menANDfly;

COMPONENTS

 Fly(1), Man(2);

 COMMUTATION

 Fly(0) .man0Phase.x=Man (0).x;

 Fly(0) .man0Phase.v=Man (0).v;

 Fly(0) .man1Phase.x=Man (1).x;

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 8

 Fly(0) .man1Phase.v=Man (1).v;

 END;

The external variables of the components here,

on the contrary, can quite legally be on the left side

of the commutation operators. On the right side,

there are internal variables of the components that

calculate the variables of the left side.

TABLE OF INPUT COMMUTATIONS

No Method
Input

offset

Phase

offset
Length

1 1 0 16 8

2 1 8 24 8

3 2 0 32 8

4 2 8 40 8

5 3 0 0 8

6 3 8 8 8

7 4 0 8 8

8 5 0 0 8

9 5 8 8 8

10 5 16 16 8

11 5 24 24 8

12 5 32 32 8

13 5 40 40 8

The first column contains the keys. The second

column contains the secondary keys that indicate the

position of the item in the Table of Methods and

Events. The third column contains the offset in

bytes from the start of the parameters record of the

method. The fourth column contains the offset in

bytes from the start of the characteristics record.

The fifth contains the length of the parameter in

bytes. If we replace the number 8 by 48, at the

intersection of the 8th row with the last column –

rows 9-13 can be removed. This speaks of the scope

for optimization of the LCCD compiler.

TABLE OF OUTPUT COMMUTATIONS

No Method
Output

offset

Phase

offset
Length

1 1 0 16 8

2 2 0 32 8

3 3 0 0 8

4 4 0 8 8

The Table of Output Commutation is just as the

Input one, only smaller. The first column contains

the keys. The second column contains the secondary

keys that indicate the position of the item in the

Table of Methods and Events. The third column

contains the offset in bytes from the start of the

parameters record of the method. The fourth column

contains the offset in bytes from the start of the

characteristics record. The fifth contains the length

of the parameter in bytes.

We see that the ontologies of a wide class of

modeling domains are representable by combining a

database of a simple structure (almost all of its

tables were illustrated by the example of von

Neumann’s fly model) with a not too complex

universal program for the computation organization,

which provides all the dynamics. The algorithm of

the universal program follows from the closeness

hypothesis; it is four-cycle, as shown in Fig. 1. This

algorithm was described in detail in [2, 4], here we

will not repeat this description.

C. DATABASES AND PROGRAMMING TRICKS

Of course, the system dynamics is very important,

but if the program for the simulation computations

organizing is written, debugged, works, and never

changes, – we can forget about it. Then it turns out,

that the database forms the base of the conceptual

model of almost any domain, and an important

question becomes the optimization of the database

work and the convenience of dealing with it – the

quality of the DBMS.

Here we will present some of the programming

solutions implemented in the creation of the MISS

(multilingual instrumental simulation system) over

30 years ago [7]. They helped to solve many still

urgent problems, including databases and DBMS

[8], however, the use of such methods in subsequent

years is still not known to us.

The development of the MISS system was

carried out on the PC XT. One of the serious

problems of this architecture is the impossibility of

direct use of computer memory over 640 K, even if

such memory presents. Operating systems running

in protected mode appeared in the 90s, after the end

of the development of MISS.

The way out of this difficulty was to create a

software system of virtual memory. The available

RAM over 640 K and the disk memory were

divided into pages of 64 K. A part of available for

addressing 640 K, served as a virtual pages display

window. There could be up to 256 virtual pages in

each of the 8 memory classes. Thus, it was possible

to work with no more than 128 M of virtual

memory. Now, this is of course quite a bit, – we

consider 2 G of RAM as the minimum for a laptop.

However, in the 80s 100 M was considered a very

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 9

good removable disk capacity, even for the

mainframes. Much more important is how it was

possible to work with this virtual memory.

Each byte of the virtual memory could have a

constant 32-bit address. Two bytes – for the address

on the virtual page, another byte – the page number,

3 more bits - the memory class number, the rest –

for the system needs. The constancy of the address

means that it continues to work the next time the

program is started (if the previous one is completed

normally). The virtual address has always been the

address of a particular data type defined earlier. This

made it easy to find the type of addressable record

in the database and use the appropriate methods to

work with it.

A library of modules (a set of classes, in modern

talking) was implemented for working with virtual

memory by virtual addresses - allocating and freeing

memory, copying to and from a record, etc. The

library included various programming tools: work

with lists; with blocked lists (a way to speed up the

work of lists); storage in virtual memory, loading,

and execution of computer programs (recall that

methods and events are included in the base sets of

the model-component); working with pictures –

means of forming video frames in virtual memory.

What could this give for the creation,

management, and operation of databases? For

example, in relational databases, a lot of time is

spent searching by secondary keys. In the examples

in the previous subsection, many tables consist

almost entirely of secondary keys. In the MISS

database, all secondary keys were virtual addresses

of the corresponding tuples, which were accessed

simply by the virtual address - without any lookup.

Associating an address with the type of what it

addresses allowed the creation of generic DBMSs.

For example, in MISS, the model database was

created automatically as a result of descriptors

compilation and model assembly operation. As a

result, the database editor had access not only to the

fields of tuples of built-in types (integer, double,

Boolean, etc.) but also to much more complex

fields. For example, if the field type was the virtual

address of a list, it was possible to travel through the

records of this list, further expanding any of the

fields of these records. Or, if the field is a picture, it

was opened in a graphical editor. The database of

international flights in the former USSR,

implemented using MISS [8], worked rather quickly

on a not very powerful laptop based on 80386.

Any complex structure based on the virtual

addressing may be saved to disk instantly. To do

this, you need to rewrite all virtual pages from RAM

to disk and remember the states of the display

window and the processor. To restore it from the

disk instantly – you need to write the necessary

virtual pages into the display window and restore

the processor state. This solves the problem of data

serialization / deserialization (why does my

computer boot / shut down so slowly?!), on which

the developers of operating systems have been

struggling for many years.

D. DREAMS OF INTEGRATION WITH THE

HARDWARE

Remembering how fruitful was the combination of

the PDP-11 architecture with the capabilities of the

C language, we can dream of including some

Model-Oriented Programming ideas into hardware.

The first candidate is a computation organization

program that provides all the system dynamics.

Since memory virtualization is somehow

inherent in almost all modern processors – the

organization of virtual addressing available to the

developer is rather a software question.

Finally, why not dream of the operating system

kernel as a model-component based on a hardware

computational organization. After all, the functions

they perform are the same – the organization of the

reactive behavior for the system. Of course, there

are a lot of unresolved issues here, such as those

related to security, and some others. However, there

are appropriate specialists for this, who could be

involved in the project.

IV. CONCLUSION

Model-Oriented Programming is radically different

from the well-known concepts of software systems

model-driven development – MDA (Model-Driven

Architecture), MDE (Model-Driven Engineering),

and MDD (Model-Driven Development), despite the

similarity of the names. The latter are just add-ons

to the Object-Oriented approach and do not take the

programming out from the field of art to the field of

technology. The main development tool in these

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 10

concepts is still imperative programming in

languages like the C family or Java.

Model-Oriented Programming fully implements

the CAD ideas in the programming, with all their

advantages and disadvantages. At the same time,

programming at all levels becomes fully declarative,

which greatly facilitates the subsequent debugging

of the software system.

The software system is seen as consisting of

"atoms" – models-components, which can be

combined into complexes, which themselves, being

model-components, can be combined into

complexes of a higher level, etc. Comparing with

the Object-Oriented approach, we can say that in the

Model-Oriented Programming the multiple

inheritances from the bottom to the top dominate,

i.e. the Model Synthesis.

A declarative programming language LCCD

(language for components and complexes

describing) has been developed (an analog of N.

Bourbaki’s species of structure, which is closer to

the perception of the programmer). It describes the

structure of the model-components and the

formation of complexes from them. An important

feature of Model-Oriented Programming is that the

LCCD descriptors are compiled not into computer

code, but into a database. The UML and related

concepts of model-driven software development

have been killed by the poor code quality after

double compilation. In MO programming, the

question of code quality is not an issue - language

constructs are compiled into the database either

right or wrong. The efficiency of computations

depends on a universal program for organizing

computations, which can be "polished to shine". The

database is the third (with the LCCD) analog of the

universal agent description by N. Bourbaki’s species

of structure.

It should be noted, that the end-to-end

technology described above for describing,

synthesizing, and software implementation of

simulation models of complex multicomponent

systems is not just a theoretical dream. On the

contrary, it all started with the complete practical

implementation of such a system [7] (with the

declarative programming language of the LCCD

type, compilation, debugging, database, and, of

course, a program for the calculations organizing) in

the MS-DOS environment.

The successful database design based on the

virtual addressing technology, using this system was

described in [8].

This system took first place in the category of

professional programs in the All-Union competition

of computer programs held in the USSR by the

Japanese company “ASCII corporation” (at that

time the largest computer games developer in Japan,

now a division of a publishing company), in 1990.

True, there was no at all any theoretical

substantiation of this technology then, – it was given

later in [4] – only the practical realization.

REFERENCES:

[1] C. Böhm, G. Jacopini, Flow diagrams, Turing

machines and languages with only two

formation rules, Communications of the ACM,

Vol. 9, No 5, 1966, pp. 366–371.

DOI:10.1145/355592.365646.

[2] Yu. I. Brodsky, Elements of Geometric Theory

of Complex Systems Behavior // WSEAS

Transactions on Systems and Control, Vol. 15,

2020, pp. 19-29.
DOI:10.37394/23203.2020.15.3.

[3] N. Bourbaki, Elements of Mathematics. Theory

of Sets, Springer, 2004. 414 p.

DOI:10.1007/978-3-642-59309-3.

[4] Yu. I. Brodsky, Bourbaki's Structure Theory in

the Problem of Complex Systems Simulation

Models Synthesis and Model-Oriented

Programming, Computational Mathematics and

Mathematical Physics, Vol. 55, No 1, 2015, pp.

148-159. DOI:10.1134/S0965542515010054.

[5] Yu. I. Brodsky, Model Synthesis and Model-

Oriented Programming a new technology for

high performance agent-based modeling //

Proceedings of the 3rd Russian-Pacific

Conference on Computer Technology and

Applications (RPC), Vladivostok, Russia. IEEE:

2018. 8482121.

DOI:10.1109/RPC.2018.8482121.

[6] N. P. Buslenko, Complex systems and

simulation models, Cybernetics, Vol. 12, No 6,

1976, pp. 862-870. DOI:10.1007/BF01070419.

[7] Yu. I. Brodsky, V. Yu. Lebedev,

Instrumental’naya sistema imitatsionnogo

modelirovaniya MISS [Instrumental Simulation

System MISS] Moscow: CC AS of the USSR,

1991, 180 p. (in Russian)

http://www.ras.ru/ph/0005/VDJBWF5N.pdf

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 11

[8] Yu. I. Brodsky, V. Yu. Lebedev, O technologii

razrabotki baz dannych na osnove

instrumental’noj sistemy MISS [On the

technology of database development based on

the MISS instrumental system] //

Modelirovanie, dekompozitsija i optimizatsija

slozhnych dinamicheskich protsessov

[Modeling, decomposition, and optimization of

complex dynamic processes], Vol. 11,

No 1-1(11), 1996, pp. 61-67. (in Russian)

http://www.ras.ru/ph/0005/P60GG76A.pdf

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.1 Volume 15, 2021

E-ISSN: 2074-1316 12

