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Abstract—Random walks on graphs have been extensively
used for a variety of graph-based problems such as rank-
ing vertices, predicting links, recommendations, and clustering.
However, many complex problems mandate a high-order graph
representation to accurately capture the relationship structure
inherent in them. Hypergraphs are particularly useful for such
models due to the density of information stored in their structure.
In this paper, we propose a novel extension to defining random
walks on hypergraphs. Our proposed approach combines the
weights of destination vertices and hyperedges in a probabilistic
manner to accurately capture transition probabilities. We study
and analyze our generalized form of random walks suitable for
the structure of hypergraphs. We show the effectiveness of our
model by conducting a text ranking experiment on a real world
data set with a 9% to 33% improvement in precision and a range
of 7% to 50% improvement in Bpref over other random walk
approaches.

Keywords-Hypergraph, Random walk, Weighted Random
Walk, Hypergraph Ranking, Learning with Hypergraphs, Lexical
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I. INTRODUCTION

Graph-based approaches are traditionally used for a variety
of tasks. Such task includes, but not limited to, ranking,
clustering, and recommending elements. By modeling the data
as a graph, we capture the relationship between elements
where we have elements as vertices and the relationships as
edges. The structure of the graph, determined by its edges,
provides a characterization of these relationships. To learn
from the structure of a graph, a number of approaches exist. A
well-known method that helps with learning from graphs is the
concept of a random walk. A random walk is the process of
randomly traversing the graph from a node to another adjacent
node at each step. Such a process has shown tremendous
benefits and application in a wide range area in computing.

Graphs, however, can only capture pair-wise relationships
between nodes preventing us from modeling complex rela-
tions. Let us clarify by an example, let us imagine a similarity
graph where nodes are objects and the similarity is represented
as weighted edges. A similarity edge connects two vertices
where it represents that the two nodes share some similarity.
In this case, we can only consider the similarity between two
nodes. We cannot model the similarity between more than a
pair of nodes. Therefore, the usage of a hypergraph becomes
important to not lose information and accurately model high-
order relations.
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A hypergraph is a generalization of simple graphs where
the edges, called hyperedges, can have any subset of nodes.
A hyperedge could contain more than two vertices which
makes it more suitable for high-order relations than simple
graphs. Moreover, it is abundantly clear that simple graphs are
special case of hypergraphs where the edges must have two
end-point vertices [1][2][3][4]. To model the aforementioned
similarity example in a hypergraph, we could represent any
number of objects (vertices) in a hyperedge showing that they
all have similar properties if they belong to a hyperedge. Such
representation could be crucial for clustering or community
detection problems for instance. Regardless of the high-order
representation in hypergraphs, there has been a limited number
of literature on generalizing random walks to hypergraphs. A
number of interesting challenges arises when trying to define
random walks in hypergraphs. How can the surfer traverse
hyperedges? How can we generalize the random walk in
simple graphs to hypergraphs?

In this paper, we seek to generalize the hypergraph random
walk found in [3][4]. We redefine the random walk process
in hypergraphs where the surfer could differentiate between
destination vertices within a hyperedge depending on their
features (vertex weights). We propose a probabilistic weighted
random walk that takes advantage of the hypergraph structure.
By extending the random walk in hypergraphs, we show
that the proposed random walk is more general than other
approaches. We, then, demonstrate the effectiveness of our
approach by comparing it with other proposed random walk
approaches in hypergraphs.

The paper is organized as follow: A discussion of the related
work is in Section II. We define the hypergraph notation
needed for explaining the proposed approach in III. The
proposed approach will be thoroughly explained in Section
IV. Section V will describe the data and experimental results.
The paper conclusion is in Section VI.

II. RELATED WORK

A. Simple Graphs

Random walks on simple graphs have been studied thor-
oughly and extensively in the literature [5] [6]. With enor-
mous algorithmic applications as in ranking [7] [8] [9] [10],
similarity and recommendation [11] [12] [13], or link predi-
cation [14]. The most seminal work is PageRank [15] which
revolutionized the search world and inspired so many others.
Most random walk approaches use a finite Markov chain to
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model the walk. A great explanation on the subject can be
found in [16] [17]. Moreover, random walks are applied to
heterogeneous graphs where we can have vertices of different
types. [18] [19].

B. Hypergraphs.
Surprisingly, there is limited literature on random walks in

hypergraphs. A hypergraph [20] is a generalization of a graph
where an edge could have more than two vertices. Avin et
al. proposed the simplest random walk in a hypergraph where
the surfer chooses uniformly at random from hyperedges and
vertices [3]. They also proposed a random walk over a directed
hypergraph. The authors studied the radio cover time for a
random walk to be heard by other vertices. Zhou et al. pro-
posed a hypergraph random walk where the surfer considers
the weights of hyperedges [4]. A similar walk is found in
[21] for hypergraph matching. Zhou et al. used the random
walk to study spectral clustering and semi-supervised ranking
in hypergraphs. Moreover, Cooper et al. proposed to define
the cover time and inform time of a general random walk in a
r-uniform hypergraph [22]. Lu and Peng studied a high-order
general random walk in hypergraphs in their attempt to do
spectral analysis of hypergraphs [23]. They proved that the
eigenvalues of their proposed Laplacians affects the mixing
rate of random walks in hypergraphs.

Zhou et al. [4] inspired so many to apply the hypergraph
random walk approach. In [24], the authors applied ranking in
their proposed music recommendation framework that encom-
passes social media and music acoustic-based content. Simi-
larly, personalized news recommendation model was proposed
where the authors applied ranking on hypergraph that includes
users, news articles, and topics [25]. Wang et al. proposed a
similar semi-supervised framework for sentence ranking that is
used in text summarization [26]. Liu et al. used the hypergraph
random walk to measure similarity between item sets in a
database [2]. In another approach, Agarwal et al. argued that a
hypergraph could be transformed to a normal graph by treating
each hyperedge as a clique or a star [1]. Similarly, Tan et
al. applied similar approach in ranking video hyperlinks by
using a random walk in a star-shaped graph [27]. However,
these approaches convert the hypergraph into a simple graph
which could lead to information-loss. For example, let us
assume we want to model faculty members as vertices and
their departmental affiliation as a hyperedge to group them
together. A faculty member could be affiliated with more than
one department where the vertex will be in all hyperedges
of his departments. If a hypergraph is converted to a simple
graph, we can only tell if two faculty members share the same
department but we cannot tell which department that is.

III. NOTATIONS AND DEFINITIONS

Let G(V,E) be an undirected graph with the vertex set V
and the set of edges E. The degree of v in a normal graph is
denoted dG(v) which is the number of edges incident with v
and defined by:

dG(v)
def
= |{e ∈ E : v ∈ e}| (1)

We denote DG to be the diagonal matrix containing the vertex
degrees of the normal graph. The degree of the edges is always
δ(e) = 2. When the aforementioned definition is relaxed,
we can have a more generalized form of graphs known as
hypergraphs.

Let HG(V, E) be a hypergraph with the vertex set V and
the set of hyperedges E . A hyperedge e is a subset of V where
∪e∈Ee = V . Let HG(V, E , w) be a weighted hypergraph
where w : E → R+ is the hyperedge weight. The hypergraph is
said to be connected when there is a path between each pair of
vertices. A path is a connected sequence of vertices over hy-
peredges {v1, e1, v2, e2, ..., ek−1, vk} where {vi, vi+1} ⊆ ei.
A hyperedge e is said to be incident with v when v ∈ e. A
hypergraph has an incidence matrix H ∈ R|V |×|E| as follows:

h(v, e) =

{
1 if v ∈ e
0 if v /∈ e

(2)

The vertex and hyperedge degree are defined as follows:

d(v) =
∑
e∈E

w(e)h(v, e) (3)

δ(e) =
∑
v∈V

h(v, e) = |e| (4)

De and Dv are the diagonal matrices representing the
degrees of hyperedges and vertices, respectively. We is the
diagonal matrix with the hyperedge weights.

IV. GENERALIZING RANDOM WALKS FOR HYPERGRAPH

Random walk is a process of transitioning between vertices
in a graph by starting at a given vertex and moving to another
neighboring vertex after each discrete time step t. The process
is modeled as a finite Markov chain M over a set of states
{s1, s2, ..., sn}. Each state si is analogous to a vertex v in
the graph G, and the transition is a conditional probability
defined as P (u, v) = Prob(st+1 = v|st = u) which means
that the chain M will be at v at time t + 1 given that it
was in u at time t. Note that the probability of transitioning
from state to another is completely independent of time t
which makes the Markov chain homogeneous. Moreover, for
any vertex u we have

∑
v P (u, v) = 1. Given the fact that a

Markov chain is memoryless with probabilities computed over
only a single transition, we can then define a transition matrix
P ∈ R|V |×|V | for all moves. This matrix P represents all
transitions that could capture the behavior of a surfer randomly
moving between vertices according to such probabilities. In
order to generalize a random walk for a hypergraph, we will
review the random walk over a normal graph first.

In a normal unweighted graph G, the simplest random walk
from u to v is to choose an edge euv uniformly at random.
The transition probability P (u, v) is calculated as follows:

P (u, v) =
1

d(u)
(5)

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES 
DOI: 10.46300/9109.2021.15.2 Volume 15, 2021

E-ISSN: 2074-1316 14



Where d(u) is the degree of source vertex u. Alternatively, let
A be the adjacency matrix of G. We can write

P = D−1G A

In a more general weighted graph, the surfer chooses an
edge with probability proportional to the edge weight. The
transition for weighted graph is defined as follows:

P (u, v) =
w(u, v)

d(u)
(6)

Where d(u) =
∑

x w(u, x) and x being all neighbors of u.
Note that the simple unweighted walk is a special case of the
weighted walk where the probability distribution P (u, v) for
a given u ∈ V is uniform for any v ∈ V adjacent to u.

Whether it is weighted or simple, the random walk in
normal graphs is well studied and defined. However, it is not
the case in Hypergraphs where the structure of the graph is
substantially different. For instance, in a normal graph the
imaginary surfer will cross an edge ending at single vertex
(destination) meaning that it has just a simple probability of
going to that vertex. However, in a hypergraph, a hyperedge
could have more than two end-point vertices δ(e) ≥ 2.

To generalize the random walk process in hypergraphs, we
model the walk as the transition between two vertices that
are incident to each other in a hyperedge instead of a normal
edge. In essence, the random walk is seen to be a two-step
process, instead of one, which is the following: the random
surfer first chooses a hyperedge e incident with the current
vertex u. Then the surfer picks a destination vertex v within
the chosen hyperedge satisfying the following u, v ∈ e. The
random walk in hypergraph is said to be more general since the
random walk in a normal graph is a special case where there
is only a single destination vertex v associated with a given
normal edge incident with u where in a hypergraph we can
have more vertices to choose from. The hypergraph random
walk process can be defined as a Markov chain where the
vertex set is the state set of the chain similar to a normal
graph. At each time step t the surfer moves in the incident
hyperedge to another vertex. In [3], the simplest random walk
is defined in an unweighted hypergraph HG(V, E) where the
surfer chooses a hyperedge e uniformly at random and then
chooses a vertex uniformly at random from e. We define the
vertex and hyperedge degree as follows:

d(u) = |E(u)| (7)
δ(e) = |e| (8)

Where d(u) is the vertex degree, δ(e) is the hyperedge
degree, and E(u) is the set of hyperedges incident to u. P
is the transition matrix for this random walk

P (u, v) =
1

d(u)

∑
e∈E(u)∩E(v)

1

δ(e)
(9)

Alternatively, we can write:

P = D−1v HD−1e HT

This approach can be extended to a weighted hypergraph
HG(V, E , w) where w(e) is the hyperedge weight. A random
walk can be extended to a non-uniform walk proportional
to the hyperedge weight w(e) as in the work done in [4].
In this case, hyperedges incident with u do have different
probability depending on their weights. So the process will be
1) to choose a hyperedge non-uniformly proportional to w(e).
Then 2) choose v within the selected hyperedge uniformly at
random. We can calculate the transition matrix P as follows:

P (u, v) =
∑
e∈E

w(e)
h(u, e)∑

ê∈E(u) w(ê)

h(v, e)

δ(e)
(10)

Or in matrix notation:

P = D−1v HWeD
−1
e HT

Where the Dv is the diagonal matrix of the weighted degree
of vertices as in formula 3.

In this paper, we try to seek a more general definition of
a random walk in a weighted hypergraph where not only
hyperedges have weights, but vertices as well. In such a
case, the random walk process is extended to leverage both
hyperedges’ and vertices’ weights. We define the vertex weight
across all incident hyperedges to be a feature vector

~vw = {w(ve1), w(ve2), ..., w(vd(v))} (11)

where we have a different vertex weight for every hyperedge
e that contain vertex v. We describe the proposed random walk
process as the following. Starting from a vertex u, the surfer
chooses a hyperedge e incident with u proportional to the
hyperedge weight w(e). Then, the surfer, also chooses a vertex
v proportional to the vertex weight within the hyperedge where
we consider the weight in the current hyperedge only. Let us
define a weighted hypergraph incident matrix W ∈ R|V |×|E|
where we have the following:

w(v, e) =

{
w(ve) if v ∈ e
0 if v /∈ e

(12)

Therefore, we redefine the hyperedge degree to be as
follows:

δ(e) =
∑
v∈e

w(v, e) (13)

We can now calculate the transition matrix P as follows:

P (u, v) =
∑
e∈E

w(e)
h(u, e)∑

ê∈E(u) w(ê)

w(v, e)∑
v̂∈e w(v̂, e)

(14)

Or in matrix notation:

P = D−1v HWeD
−1
ve W

T

Where w(v, e) is the weight of the destination vertex v in
hyperedge e. Dve is the diagonal matrix for weighted degree
of a hyperedge as in formula 13. Note that the transition matrix
P is stochastic where we have every row sums to 1.
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The proposed random walk is more general than previous
approaches which are considered special cases of the proposed
approach. For instance, if we restrict the vertex weights to be
either 1 or 0, we get the random walk in formula 10. Moreover,
our approach is more general than the random walk in formula
9 where it is a special case with hyperedge and vertex weights
are either 1 or 0 as well.

We argue that when features are available for vertices, they
can enhance the task at hand by adding more knowledge for
the imaginary surfer. Hence, modeling these features as vertex
weights adds preference to the surfer when performing the
walk where the best combination of hyperedges and desti-
nation vertices have the highest probability. Such knowledge
could be advantageous when performing tasks such as ranking,
clustering, predicting links, and personalized search.

Now we move on to explaining the stationary distribution π
of a random walk. To calculate the stationary distribution, we
start with the initial column vector v0 ∈ R|V |×1 with equal
probabilities 1/|V | summing to 1, then after each time step
we multiply it by the transition matrix. After the first move,
we will have ~v1 = PT~v0 (where PT is a column stochastic
matrix for clarity) giving us a new column vector, then we
will have ~v2 = PT (PT~v0) for the second move and so on.
The reason of multiplying the probability distribution vector ~v
by the transition matrix PT gives us the next step distribution
~x = PT~v can be expalined as follows. Let xi be the probability
of being at the current vetrex i. Then we have the following:
xi =

∑
j pijvj where vj being the probability of the surfer

being at node j previously, and pij is the probability of moving
from j to i.

The distribution vector ~v stops changing after n steps if the
random walk is ergodic. Which holds if we have the following:

~v
def
= lim

x→∞
[(PT )x~v0] = π (15)

Where π is the stationary distribution. A random walk is
ergodic when the following conditions are met: 1) the graph
is irreducible, for any two vertices u, v ∈ V they must satisfy
P (u, v) > 0. Also, 2) the graph is aperiodic. Note that
the vector ~v is a right eigenvector of the transition matrix
PT satisfying ~v = λPT~v where λ is the eigenvalue of the
transtion matrix. So given that the matrix PT is a stochastic
matrix (each column sums to 1), the eigenvector ~v is the
principle or the dominate eigenvector. Moreover, we know
from Perron-Frobenius Theorem that if a Markov chain is
irreducible and aperiodic, then the largest eigenvalue λ is 1
and all others are strictly less than 1. Therefore, the stationary
distribution vector is the principle eigenvector corresponding
to the λ = 1 giving that the matrix PT is irreducible and
aperiodic. Having a principle eigenvector ~v is important to
guarantee that regardless of the starting node of the random
walk, we will always arrive at a unique dominate eigenvector
that does not change anymore.

To guarantee irreducibility and aperiodicity, we use the
PageRank algorithm [15]. The algorithm has the idea of tele-
porting which will restart the random walk process making it
useful for the previous conditions. The teleporting is depicted

with a small probability called the damping factor α. It also
makes sure to make the graph irreducible since the random
walker always has the probability of teleporting to any other
node.

~v(i+1) = αPT~v(i) + (1− α)e/n (16)

The damping factor α is set to 0.85. n is the number of nodes
in the graph. e ∈ Rn×1 is a vector of all elements being 1.
αPT~v means that the random walker will choose to go with
one of the adjacent edges. (1 − α)~e/n represents a vector of
an introductory probabilities with each entry being (1−α)/n
to teleport the random walk to a new node.

V. EXPERIEMENT

In this section, we explain the evaluation method of our
random walk model. We evaluate our method by conducting
an experiment and comparing it with other state-of-the-art
models. We test our model’s effectiveness in ranking text data
by modeling the document keywords in a hypergraph then
comparing all the random walk models. First, the data set used
will be explained thoroughly. Subsequently, the design of the
experiment will be laid out. Finally, the experimental results
will be discussed and evaluated.

A. Data Set

To evaluate the ranking accuracy of our model we used the
Digital Bibliography and Library Project (DBLP)1 data set
which contains computer science conference proceedings and
journals. Specifically, we used the public data set of the DBLP
library used by Deng et al. [28] which can be acquired online2

and is widely used in the areas of topic modeling and ranking.
The data set includes 28,569 documents, 28,702 authors col-
lected from 20 major computer science conferences. Moreover,
the papers were collected from four computer science areas
(1) database, (2) data mining, (3) artificial intelligence, and
(4) information retrieval. For quantitative evaluation, we used
a labeled subset composed of 4,057 authors, 100 papers and
all 20 conferences [29]. The papers were labeled with their
topics by assigning one of the four topics to each paper.

B. Experiment Design

We design the experiment as ranking text in short doc-
uments. We model the documents in a hypergraph, then
apply the different random walk approaches. Furthermore, the
evaluation is conducted as ranking text and comparing all
the ranked lists of keywords. A full quantitative evaluation is
conducted to measure the effectiveness of our model in ranking
in a hypergraph. We model each research paper, di, as a bag
of words from the title of the paper di = {k1, k2, ..., ks},
where ki is a keyword. Then, we represent the collection of
documents Di = {d1, d2, ..., dn} as a lexical hypergraph as
in the following. Each document title di is being represent as
a hyperedge, and each distinct keyword ki is modeled as a
vertex. By constructing the lexical hypergraph, we can rank

1http://www.informatik.uni-trier.de/ ley/db/
2http://www.cs.uiuc.edu/ hbdeng/data/kdd2011.htm
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keywords using the random walk algorithms. The intuition
behind the approach is that keywords that tend to co-occur
together should be ranked higher than other keywords. Similar
approaches had been used in [30][31].

For each hyperedge, we define the hyperedge weight as a
document’s feature to reflect its importance. Since documents
are research papers, we have used the citation to calculate the
importance of documents. Given that the original data set does
not contain the citation data, we have collected the citation
information for all 100 papers used in this experiment. To that
end, we used the Google Scholar service to collect the data. In
the case where the information is not available in the service,
we assume it is not cited. However, a close analysis of the
data shows that it is largely spread out with a large standard
deviation of σ = 155.0093. Figure 1 shows how stretched out
the data.

Therefore, we calculate the hyperedge weight as the follow-
ing:

W (e) =
ce + 1∑
e ce + 1

(17)

Where ce is the number of citation for the document
hyperedge e and

∑
e ce + 1 is the total number of citation

in the data set. We add 1 to avoid cancelling out papers with
no citation. The distribution of the citation data has a standard
deviation σ = 0.0233. The intuition behind the hyperedge
weight is that when a paper has been cited a lot, the keywords
in its title should be ranked higher than a paper with low or
no citation.

For vertices weights, we define the weight to be the Term
Frequency-Inverse Document Frequency (tf-idf). However, the
short length of document title could minimize the effectiveness

of a frequency measure as tf-idf. Therefore, we grouped
research papers using the topics they belong to as the fol-
lowing. For each topic, we have a set of papers that will
be concatenated to larger virtual document for a given topic
δt = {d1+d2+...+dn} where δt is the concatenation of small
documents and 1 ≤ t ≤ 4. Then, the we measure tf-idf over
the larger documents being the set of D = {δ1, δ2, δ3, δ4}.
The tf-idf is measured as follows:

W (Vi)tf-idf = tf(Vi) · log
N

df(Vi)
(18)

Where tf(Vi) as the term frequency on the document dt.
N is the number of documents in the larger document set Dt,
and df(Vi) is the number of larger documents that contain the
term Vi.

The tf-idf measure is calculated after the initial prepro-
cessing of text has been conducted. We first removed all
stopwords that do not have any topical meaning. Moreover,
we removed the punctuations from text. For example, data-
consistent becomes data consistent. We also removed numbers
from text. Moreover, all words are transformed to lower-case.
Finally, we used Porter stemmer to stem all textual units to
their root base. For instance, mining becomes mine. These
steps are standard steps in ranking text.

We compare our random walk model to other baselines by
comparing the ranking of all methods. The baselines used to
conduct this experiment are described as the following:

• The first baseline is the simplest random walk defined
in equation 9. In this model we use an unweighted
hypergraph. We denote this baseline as RW1.

• The second baseline is the random walk proposed by
Zhou et al. in equation 10. In this model we use a
weighted hypergraph where the weight of hyperedges is
defined to be the citation. We denote this baseline as
RW2.

• The third is the proposed random walk defined in equa-
tion 14. The proposed model uses a weighted hypergraph
where the weight of the hyperdges are the citation and
the weight of vertices are the tf-idf measure. We call our
proposed random walk as RW3.

C. Experiment Metrics

To quantitatively measure the performance of a ranking
method, we define some common evaluation metrics that
are largely used in the information retrieval literature. These
measures need a golden standard to test against. Deng et al.
[28] ranked keywords according to topics found in the data
set. We empirically compare all baselines to the best ranking
done by Deng et al. The keyword is considered to be correct
if it appears in the top ranked keywords in any topic. The
intuition is that a keyword should be ranked high if it uniquely
identifies a topic. We compare the top ranked keywords using
two metrics precision and Bpref. We focus on the top precision
with top 10, 15, and 20. Precision is measured as the following:
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Precision =
Kcorrect

Kextracted
(19)

where Kcorrect is the number of correctly extracted key-
words, and Kextracted is the total number of extracted key-
words. Even though precision measures how precise the ex-
tracted result is, it does not differentiate in the within ranking
of the extracted top result. Therefore, we used another metric
that measure the ranking within the top extracted keywords.
The metric is Binary Preference Measure [32]. Bpref is a great
choice to measure the performance of the system with the
order of the top extracted keywords taken into account. Bpref
is measured as the following:

Bpref =
1

R

∑
r∈R

1− |n ranked higher than r|
R

(20)

where R is the number of correct keywords within extracted
keywords in a method, and where r is a correct keyword and
n is incorrect keyword.

D. Experimental Results

In this section, we discuss the experimental results for all
the random walk approaches used. We evaluate all baselines by
comparing them using two metrics. Specifically, we measure
the ranking accuracy at different levels at top 10, 15, 20.

For precision as shown in Figure 2, we compare all three ap-
proaches of the random walk algorithm on a hypergraph. The
simplest random walk and the hyperedge weighted random
walk have surprisingly similar top 10 precision. However, the
hyperedge weighted random walk showed much improvement
over the simple random walk at top 15 and 20 by 10% and
22% respectively. Our approach, where we used vertex and
hyperedge weighted walk, outperformed all baselines at all
levels. For the top 10 extracted keywords, our method has a
14% improvement over both the simplest and the hyperedge
weighted random walk. Moreover, when we compared the
performance at top 15, our approach showed an improvement
of 10% and 21% over the hyperedge weighted and the simplest
walk respectively. For the top 20 keywords, our approach has
outperformed both baselines by 9% and 33% respectively.

Moreover, we measured the accuracy of ranking within
each top extracted results with Bpref as shown in Figure 3.
Similarly, the hyperedge weighted random walk outperformed
the simple walk across all top 10, 15, and 20 by 38%,
26%, and 23% respectively. The proposed approach where
we consider vertex and hyperedge weights have outperform
all other methods. For top 10, the proposed method have a
50% improvement over the simplest random walk and a 9%
improvement over the hyperedge weighted walk. Moreover, for
the top 15, the proposed method showed a steady improvement
of 35% and 7% over the simple and hyperedge weighted
approach. Finally, for the top 20, similar improvements have
been found of 33% and 8% over both baselines.
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E. Discussion and Future Work

In this section, we discuss the results of the experiment.
The proposed weighted random walk has showed much im-
provement over the baselines in both metrics. Using the vertex
weights, in addition to hyperedge weight, in calculating the
transition probability has enhanced the results in precision
and Bpref. The reason for such improvement is that when
we choose the right features to be vertex weights, we add
preference for nodes that seem more important than others.
However, precision does not show the effect of ranking within
the top extracted results. Therefore, it does not accurately show
the difference in performance. For example, the hyperedge
weighted walk RW2 has surprisingly the same precision as
the simplest random walk. However, precision ignores the fact
that RW2 ranked the correct keywords higher than incorrect
keywords which is clear indicator that it is more accurate in
ranking. Therefore, we can see that when Bpref is used, the
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actual improvement is measured accurately. In the other side,
it is clear that if the wrong features are used, the performance
of the proposed walk could lead to incorrect results.

In the future, we plan to perform more experiments to test
the validity of the approach. An interesting direction for future
work is to try applying such an approach to clustering or
segmentation instead of ranking. Theoretically, we also plan to
study the convergence rate of such a walk and compare it with
other standard approaches. Moreover, we plan to investigate
random walks with restarts[33][14] in hypergraphs. In random
walks with restart, the surfer starts from a given node s, then
either keeps traversing edges or teleports back to the original
node s. These kind of walks have a variety of application in
measuring node proximities and identifying similar nodes.

VI. CONCLUSION

In this paper, we have studied and analyzed random walks
approaches for hypergraphs. We showed that random walk in
hypergraphs is visible, and could be naturally generalized from
simple graphs. We proposed a new weighted random walk that
is suitable for hypergraphs where we devised a probabilistic
interpretation for including vertices and hyperedges weights.
We performed an experiment over three different random
walk approaches in hypergraps and showed that our approach
outperformed all existing methods in both metrics. The pro-
posed approach could be used in a variety of application
as in ranking, recommendation systems, and clustering. The
significance of the proposed random walk model can be greatly
seen as leveraging vertex features that could enhance the
solution of the problem. If such features exist, the proposed
model can show very interesting results.
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