

Abstract— Software Engineering (SE) programmes at institutions

of higher education aim to produce software engineering specialists who
have the required knowledge of the SE tools, techniques and methods as
well as the technical expertise to design and develop complex software.
These programmes are generally well designed, however, those
completing such programmes do not necessarily possess the required
skills because of several inherent issues. This paper presents a
framework for the provision of SE education using a Group Projects
approach and suggests that there is a need to provide opportunities for
students to work individually and in pairs in their first year of the course,
in groups of 4-6 in the second year and in larger groups of at least 10 in
the final year. Discussing the issues, the paper presents solutions to some
of the difficulties that are often encountered with respect to team
working, in particular: team formation, allocation of projects, group
dynamics and project management and assessment. The aim is to put
forward proposals to improve the effectiveness of SE programmes.

Keywords—Group Working, Team Work, Group Project,
Software Engineering, Computing

I. INTRODUCTION
oftware Engineering (SE) is the design and development of
complex software using accepted engineering principles.

This includes rigorous analysis of users’ requirements, functional
specifications and software testing to ensure that the final product
conforms to the requirements specification and satisfies users’
needs [1]. Thus, university courses in SE aim to provide
opportunities for students to learn the required theory as well as
acquire the necessary skills to design and develop high quality
software.

SE programmes are usually well designed and delivered.
However, there is often a lack of time on a typical
undergraduate course for students to acquire the necessary
skills to engineer large software systems [2]. In the present
work, it is assumed that undergraduate courses are of three or
four year’s duration and there are two semesters in each year.

The programming element of the courses i.e. the teaching of
software design, development and testing using appropriate
tools, generally follows the scheme given below:

• The first year concentrates on teaching a basic
design technique and introductory programming
following a simple software development
paradigm. Students write simple programs

Manuscript received March 14, 2007; Revised received October 3, 2007.
Z. Mahmood is with the School of Computing, University of Derby, DE22

1GB, UK (phone: 00-44-1332-591733; e-mail: z.mahmood@derby.ac.uk).

working mainly individually. Approach is often
syntax oriented and there is not enough emphasis
on quality or software development as an
engineering activity [3].

• In the second year, students are given
opportunities to work in groups to specify, design
and develop larger programs but the teams are
usually too small and the software projects are
often unrealistic. This is normally the only major
group activity where students bring together the
knowledge gained thus far and develop a software
system based on a given software development
paradigm.

• The final year usually concentrates on teaching the
theoretical and advanced aspects of SE in greater
detail. Often there are no opportunities for students
to work in larger groups to engineer large and
realistic software systems. There is normally a
substantial research based module but this is not
necessarily on software development.

This lack of opportunities for programming-in-the-large and

programming-in-the-many in the final year is sometimes due to
the fact that many students may not have acquired the necessary
knowledge or skills required for a larger group activity. It is also
due to the difficulties inherent in the following:

• Finding appropriately large and realistic projects.
• Completion of projects within the given space of

time within the programme.
• Management and assessment of such projects.

In discussing the above, this paper suggests that SE courses

need to be designed and delivered in such a way that students
have opportunities to do at least the following:

• Design and develop small programs working
individually and in groups of two in the first year.

• Specify, design, develop and fully test small to
medium sized software systems working in teams of
4-6 in the second year and.

• Specify, design, develop and fully test small to
medium sized software systems working in teams of
4-6 in the second year and.

This study also suggests solutions to some of the difficulties

that are often encountered and puts forward proposals with a

A Framework for Software Engineering
Education: A Group Projects Approach

Zaigham Mahmood

S

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES

Issue 3, Volume 1, 2007 153

view to improving the effectiveness of SE programmes.

II. GROUP WORKING IN THE FIRST YEAR
Software design, development and testing is at the heart of

SE. In the first year, students learn programming-in-the-small
or what is traditionally known as ‘programming’. Here, they
learn a design method, a computer language and develop
small programs. The teaching approach often depends too
heavily on the chosen language where the emphasis is on the
syntax of the language rather than the modeling of realistic
computational problems [2]. The approach does not teach
development of software, as an engineering activity, because
of a distinct lack of emphasis on accepted engineering
principles and, in most cases, there is seldom a programming
activity where students work in teams. It is essential that
students begin to understand, right at the start of the course, at
least the following [1]:

• That SE requires the use of engineering principles for
the construction of programs.

• That SE implies working in teams and therefore
effective team working is important.

• That SE refers not only to writing statements in a
computer language, but the entire process of
specification, design, coding, testing, implementation
and documentation.

It is suggested that, in the programming modules, student’s

programming skills should be assessed by means of
programming projects following the scheme given below:

• Students work in groups of, ideally, two.
• They understand the given specifications and decide

on solution strategies.
• They design programs using a simple design

approach.
• They write programs using a modern language,

following given coding standards, and exhibiting
good programming practices.

• They write programs using a modern language,
following given coding standards, and exhibiting
good programming practices.

Formation of pairs can be student’s choice. Program specifications should
be provided by the tutors and properly constructed. Submission of
students’ work can be in two stages: 1) submission of design and 2)
submission of the remaining project after receiving feedback on design. At
this point, tutors can provide correct designs for subsequent program
development. When assessing, emphasis needs to be placed on the quality
of design, correct functionality, completeness of test plans and evidence of
good programming practices.

III. GROUP PROJECTS IN THE SECOND YEAR
At the second year level, a majority of the SE programmes

include a module where students work in small groups to
carry out an entire SE activity. The aim is to provide
opportunities for students to work in teams. Students are

required to conduct the entire software development cycle,
manage their own time, learn to respect others’ points of view
and understand the social and ethical issues involved [1, 3].
Such a module is an essential component of an SE course,
however, there are a number of inherent issues. We find that:
1) projects undertaken are usually too small and often unrealistic,
2) final products are not properly designed and constructed and
3) Project and time management are often unsatisfactory. There
are several reasons for these problems, including the following:

• Students find it difficult to work in groups.
• There is sometimes a lack of commitment on the part

of the students.
• Students lack the experience of time and project

management.
• Tutors find it difficult to have enough realistic

projects.
• Often there are personality clashes and other

problems between team members.
• The assessment and monitoring of projects is far

from easy.

It is essential that students work in groups to learn group

dynamics, experience project and time management and enhance
their inter-personal skills [3]. In real life, they will often work in
large teams so the experience gained here will be extremely
invaluable. Some institutions use team projects throughout the
course to simulate a real working environment and provide
students with transferable skills [3, 4]. Thus, for a Team Project
module in the 2nd year, it is suggested that:

• Students work in groups of ideally 4-6 students
• Each group produces a requirements document,

based on the proposal suggested by the group itself,
and submits as the first task for assessment

• Each group produces a system design based on the
requirements specification, using a design method
they have already studied, and submits as the second
task

• Each group develops a software system based on the
design, following an agreed coding standard, using a
modern language, ensuring that quality criteria have
been met, and submits as the next task

• Each group produces test plans and fully tests the
system to ensure that functionality conforms to the
requirements specification and submits as the next
task

• Each group demonstrates the software system and
submits a detailed project report for the next task and
the final assessment.

The following sections provide more detailed information

with respect to the above.

A. Team Formation:
Formation of groups can be student’s choice, however, it

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES

Issue 3, Volume 1, 2007 154

would be useful if each group has at least one programmer, an
information systems specialist and one student with some
knowledge of human factors or user interfaces. Initially, groups
should be invited to suggest projects and submit brief project
specifications. The projects should be finalized after discussions
with the tutors, ensuring that they are at the right level.

B. Project Specification:
First stage should be the production of a complete

requirements specification following the guidelines provided by
the tutors. Students need to be realistic when agreeing projects’
features and facilities. Design phase should not be started until
the specification has been submitted and discussed with project
tutors. Test plans must also be produced as part of this stage [1].

C. Software Design:
Second stage would be to produce a complete design, using a

design approach that students are familiar with. Students need to
be aware that design is independent of the computer language.
The next phase should not be started until the design has been
submitted and discussed with project tutors.

D. Programming:
 This is the third stage to implement the design using a
computer language. Students need to be reminded that the quality
of code, use of appropriate constructs, implementation of
engineering principles and other aspects such as readability, re-
use and maintainability must be evident in the final product.

E. Verification and Validation:
 The next stage is to conduct verification and validation of the
software system to ensure that the system conforms to the
requirements specification submitted earlier and that the software
produces correct results.

F. Product Demonstration:
The fifth and final stage is the demonstration of the system,

submission of the final product and a detailed project report
for further assessment. The presentation will provide
opportunities for students to show the fruits of their efforts
and provide detailed explanation of different aspects of the
project activity.

G. Project Management:
Team Project activity should be regarded as independent study

where students assume full responsibility. However, a timetable
slot should be allocated so that there is a place and time where
students can meet. Project tutors can also use this time to discuss
students’ progress and resolve difficulties that students may be
facing. The final demonstration is the vehicle for project tutors to
know exactly what contribution each member of the groups has
made and thus help them when allocating individual grades to

students.

H. Project Submission:
 Several submissions at different stages of the project are
extremely useful. This helps students to be organised and provides
opportunities for them to conduct the SE activity in an appropriate
manner.

I. Individual Assessment:
Assessment can be a difficult process. Often it is easy to grade

the entire project but there needs to be a way of allocating grades
to individual members of each team. Peer assessment is a useful
device. At various points throughout the projects activity, groups
should be encouraged to comment on other groups’ deliverables.
At the end of the project period, students should be asked to
submit not only the minutes of the meetings of the groups where
each member’s activity will be recorded but also to allocate a
percentage of work to each member. The final presentation is
useful as the tutors can ask questions to ensure which member of
the group has done exactly what.

IV. SOFTWARE PROJECTS IN THE FINAL YEAR
Most SE programmes do not provide opportunities for

students to design and build large software systems, working in
groups. The emphasis appears to be on providing in-depth
knowledge of various theoretical aspects of SE. However, in
order to understand and appreciate the inherent complexities and
issues associated with SE, it is essential that students engage in
the development of medium-to-large software projects working
in teams of many, using as much as half of their time in the final
year for this activity [2]. Some of the reasons for not having such
a mechanism in the final year are given below:

• Often, there is not enough time to conduct a large
project. It is also difficult to find reasonably large
realistic projects.

• Management of large teams is problematic.
• Students may not have appropriate knowledge and

skill at the start of such projects.
• Assessment of projects and allocation of individual

grades is not easy.

Not withstanding the above, it is important that an SE course

has a Software Project module in the final year where students
work on much larger projects in teams of at least 10 students [2].
This suggests that this module is several times the size of a
standard module and runs in the second half of the final year.
Here, larger groups of students should be required to work
with minimum supervision and on much bigger software
projects using languages, tools and methodologies of their
choice. Hopefully students will have studied these in the
previous years of their programmes.

It is suggested that students should be organized into groups
and allowed to choose their projects in semester 1 (the first
half of the final year). They should also do some preliminary

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES

Issue 3, Volume 1, 2007 155

work but do not start their projects until the start of semester 2
(second half of the year). Then, they devote the entire
semester 2 carrying out the project activity. Each project team
should start with a given idea of a specification, proceed
through the stages of requirements specification, project
planning, design and implementation and then produce a
reliable and stable software system, which they submit for
assessment. Producing a project report and demonstration of
the final system are essential requirements of this module. In
this module, the emphasis is on:

• The quality of deliverables
• The ability to satisfactorily proceed through all

stages of a software development process
• The ability to apply the required knowledge and

transferable skills
• The ability to use the techniques and tools as

appropriate
• Effective group working, inter-personal skills and

professionalism.

It is essential that students use a formal notation for

software specification and appropriate design and
implementation tools.

It is important that teams are reasonably large and software
projects are at least medium sized. Unless the students are
exposed to projects of reasonable magnitude, they will not be
able to appreciate the inherent complexities and issues relating
to programming-in-the-large and programming-in-the-many
[1]. However, project size should be such that students can
easily complete them within the limitations of the programme
structure. Projects should be real, though not necessarily for
real clients: working for real clients may have legal
implications if money is involved and projects are not
satisfactorily concluded. If the course team has good industrial
links then finding good projects may not be a problem.
Groups should be chosen by the tutors but students should
have the freedom to choose any projects they like. Once
groups and projects are allocated, they should not be changed
unless an exception situation requires a different course of
action.

Each project should have a Project Management Team
(PMT) consisting of one main supervisor and two secondary
supervisors. Students should work with the minimum of
supervision. However, for advice and help, they should not be
restricted to the PMT: they should be allowed, in fact
encouraged, to see the members of staff who are most
experienced to provide the required guidance. In this way, the
entire teaching team will be directly involved with all projects
and all students. In all other respects, the scheme described for
the group project module in the second year, as mentioned
above, can be applied - including several submissions at
different points during the project activity and the milestones.

Assessment of projects and allocation of marks to
individual students is far from easy. It is the responsibility of
the PMT, and thus the entire course team, to ensure that

assessment is appropriate and the marks given to individual
students are fair. For each project, marks should be given by
their PMT on the basis of the final product, project report,
demonstration, presentation, individual effort and
contribution, students’ time management and their
commitment and attitude. Marking scheme can be similar to
the one used for the group project in the second year. It is
essential that the course team has a well thought out procedure
for monitoring, management and assessment of these projects.
Usually, the final classification depends heavily on the result
of final year projects.

There is no doubt that working in large groups is difficult
for students. It is equally difficult for PMT to manage and
assess large group activities but, as mentioned before, unless
students are exposed to working in large teams and
developing large software, they will not be able to understand
and appreciate the inherent complexities associated with SE.

V. CONCLUSION
University programmes in SE aim to produce well-qualified

software engineers. Whereas, students completing such
programmes have the required knowledge of the engineering
principles and the methods, techniques and tools, they do not
necessarily possess the relevant skills of specification,
planning, design and implementation. This paper mentions the
reasons for this and discusses, in some detail, the importance
and provision of group working component at all levels of such
programmes. Discussing the issues concerning programming-
in-the-large, this paper presents a framework for the SE
education using a Group Projects approach and suggests that
SE courses should provide opportunities for students to work
individually and in pairs in their first year of the course, in
groups of 4-6 in the second year and in larger groups of at least
10 in the final year. The paper also suggests solutions to some
of the difficulties that are often encountered with respect to
team working, in particular: formation of student groups,
allocation of SE projects, internal dynamics of group working,
management of projects and assessment of student’s
performance. The aim is to put forward proposals to improve
the effectiveness of SE programmes.

REFERENCES

[1] Sommerville I. (2006), “Software Engineering”, 8th Edition, Addison

Wesley, UK
[2] Mahmood Z. (1995), “Core Requirements for a Degree Course in Software

Engineering”, Proc Int Conf on Software Engineering in Higher Education
(SEHE95), Alicante, Spain; Computational Mechanics Publications, 1995.

[3] Marchewka J T. (2005), “Information Technology Project Management”,
Wiley Int. Edition, UK

[4] Conway D E, Dunn S C. “BCS and IEE Accreditation of Software
Engineering Courses”, Software Engineering Journal, 4(4), 1989.

Dr Zaigham Mahmood is a Senior Lecturer in the School of Computing,
University of Derby, UK. He has an MSc in Mathematics, an MSc in
Computer Science and a PhD in Modeling of Phase Equilibria. He is also a
Chartered Engineer and a Chartered Information Technology Professional.

Dr Mahmood has many publications. His research interests are in the areas
of software engineering, project management, software metrics and process
improvement.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES

Issue 3, Volume 1, 2007 156

