
 

 

  
Abstract— The images from a camera unit which is placed on an 

intelligent vehicle are divided in equivalent small squared regions by 
matrix partition. In order to pursue the carriage road, the reference 
region (an asphalt one) is compared with all others image regions. 
Then, the textured region similarity is measured and the regions with 
a different texture are detected and localized. Some types of 
statistical texture feature are analyzed: features extracted from co-
occurrence matrix, edge density per unit of area, and grey level 
histogram of the difference image. On the other hand, we investigate 
how the fractal dimension is used for textured image classifications. 
In order to measure the similarity of a textured region pair, the fractal 
dimensions of both regions are computed by the box-counting 
algorithm utilizing. It is proposed two new features from the 
estimation of the fractal dimension: the mean fractal dimension and 
the effective fractal dimension.   

For the proper region identification and classification, we 
introduced the notion of average co-occurrence matrix, which is 
quasi-invariant to image rotation and translation. Texture recognition 
is based on decision theoretic method. The algorithm is implemented 
in Visual C++ and MATLB and allows the simultaneously display of 
the investigated region, the Euclidian distance between them and a 
reference image region, and the segmentation map. The basic texture 
(reference) is considered an asphalt one and the different textures are 
considered the grass and the pebble. The result is the classification of 
the tested texture in road and non-road type. Based on the 
classification algorithm, a segmentation process of road images is 
accomplished. The segmentation finesse depends on the image 
resolution and the texture finesse. 
    Our experimental results indicate the fact that the selected features 
have a good discriminating power. 
 

Keywords—Average co-occurrence matrix, texture classification 
and segmentation, fractal dimension, box-counting algorithm.  

I. INTRODUCTION 

For the purpose of carriage road following, the images from 
the assistant camera unit are divided in equivalent small 
squared regions (subimages). The asphalt texture is considered 
as a reference texture. Our goal is to identify the asphalt 
regions and to produce an asphalt localization matrix by 
recognition techniques. One can observe easily that the road 
and its neighbourhoods are characterized by textures. Image 
texture, defined as a function of spatial variation in pixel 
intensity (grey values), is useful in a variety of applications 
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and has been a subject of intense study by many researchers. 
The texture can be considered like a structure which is 
composed by many similar elements (patterns) named textons 
or texels, in some regular or continual relationship. Thus, 
texture can be considered as an attribute of a field having no 
components that appear enumerable. It can be useful to 
segment images into regions of interest and to classify those 
regions. Texture relates to the surface or structure of an object 
and depends on the relation of contiguous elements. Wilson 
[3] points out that textured regions are spatially extended 
patterns based on more or less accurate repetition of some unit 
cell; the origin of the term is related with the craft of weaving. 
Gonzalez [1] relates texture to other concepts like smoothness, 
fineness, coarseness, graininess and describes the three 
different approaches for texture analysis: statistical, structural 
and spectral.  

 There are two important kinds of problems that texture 
analysis research attempts to solve: texture segmentation and 
texture classification. The process called texture segmentation 
consists in identifying regions with similar texture and 
separating regions with different texture. Texture 
classification involves deciding what texture class an observed 
image belongs to. Thus, one needs to have a priori knowledge 
of the classes to be recognized. 

 Mathematical procedures to characterize texture fall into 
four general categories, statistical, geometrical, model-based 
methods and signal processing methods [8]. Because texture 
has many different dimensions and characteristics there is no 
single method of texture representation that is everywhere 
adequate. The different methods include grey level 
histograms, co-occurrence matrices, spatial autocorrelation 
functions,  

 Fractals and spatial second order moments are two spatial 
analytical techniques used to measure geometric complexity 
[6] and conveniently describe many irregular, fragmented 
patterns found in nature. Thus, the fractal based texture 
classification is another approach that correlates texture 
coarseness and fractal dimension. A fractal is defined [5] as a 
set for which Hausdorff-Besicovich dimension is strictly 
greater than the topological dimension. 

There are two points of interest in this paper. The first point 
is the road analysis for moving objectives based on statistical 
features (especially derived from the average co-occurrence 
matrix). The case study consists in the asphalt region 
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separation (carriage road) in the acquired image from video 
camera. In fact, one does not need to know which 
characteristic textures exist in the image in order to do texture 
segmentation. The second point of interest is the analysis and 
classifications of textural images based on fractal dimension 
with box-counting algorithm. We provide a case study in more 
detail that illustrates how an estimation of the fractal 
dimension derived from box counting algorithm can be 
utilized in texture similarity measurement for asphalt road 
tracking. 

The configuration of a system for mobile robot, navigation 
based on fractal and statistical type texture features is 
presented in Fig. 1. 

 

 
Fig.1. Configuration of system based on digital texture 

processing for mobile robot navigation. 
 
The significances of notation in Fig.1 are the following: 
I – interface; AL – auto-level, stretching of the minimum 

and maximum grey levels of the image to the maximum 
interval (0-255); NR – noise rejection; B – segmentation 
block; ED – edge detection block; M – memory for different 
pre-processed images (grey level image after noise rejection 
operation, segmented images with manifold thresholds, 
contour images); TFC – texture features computation; FDC – 
computation of fractal dimensions and some derived 
parameters; DB – decision block. 

Texture segmentation implies the prior knowledge of the 
texture types and numbers which exist in the analyzed image. 
This is a more difficult problem than the texture classification.  

II. STATISTICAL FEATURE BASED METHOD FOR TEXTURE 

CLASSIFICATION AND SEGMENTATION 

The most powerful statistical method for texture similarity 
evaluation is based on features extracted from the Grey-Level 
Co-occurrence Matrix (GLCM), proposed by Haralick in 1973 
[8]. GLCM is a second order statistical measure of image 

variation and it gives the joint probability of occurrence of 
grey levels of two pixels separated spatially by a fixed vector 
distance d = (Δx, Δy). Smooth texture gives co-occurrence 
matrix with high values along diagonals for small d. The 
range of grey level values within a given image determines the 
dimensions of a co-occurrence matrix. Thus, four bits grey 
level images give 16x16 co-occurrence matrices. The 
elements of a co-occurrence matrix Cd (1) depend upon the 
displacement d=(Δx, Δy). 

 
Cd (i,j) = Card{((x,y),(t,v))/I(x,y) = i, I(t,v) = j, 

 (x,y), (t,v) ∈N x N, (t,v) = (x+ Δ x, y+ Δ y)}              (1) 
          
 From a co-occurrence matrix Cd one can draw out some 

important statistical features for texture classification. These 
features, which have a good discriminating power, were 
proposed by Haralick: contrast, energy, entropy, homogeneity, 
and variance. 

      For each pixel we can consider (2d+1)x(2d+1) 
symmetric neighborhoods, d = 1, 2, 3,...,15. Inside each 
neighborhood there are 8 principal directions: 1, 2, 3, 4, 5, 6, 
7, 8 (Fig. 2) and we evaluated the co-occurrence matrices Cd,k 
corresponding to vector distances determined by the central 
point and the neighborhood edge point in the k direction (k = 
1,2,...,8). With a view to obtain statistical feature insensitive 
relatively to texture rotate, we introduce the average co-
occurrence matrix notion. 

  

                              
Fig.2. The principal directions for co-occurrence matrix 

calculus 
   For each neighborhood type, we define an average co-

occurrence matrix Cd which is calculated by the average of 
the eight co-occurrence matrices (2). 

 
Cd = 1/8(Cd,1 + Cd,2 + Cd,3 + Cd,4 + Cd,5 + Cd,6 + 

        + Cd,7 + Cd,8)  , d = 1,2,...,15                 (2) 
 
Thus, in the case of 3x3 neighborhood, d = 1; for 5x5 

neighborhood, d = 2, and so on.  
    In order to quantify the spatial dependence of gray level 

values, from average co-occurrence matrices Cd,  we calculate 
various textural features like Contrast – Cond – (3), Energy – 
Ened – (4), Entropy – Entd – (5), Homogeneity – Omod – (6) 
and Variance – Vard – (7). 
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     In the preceding relations, LxL represents the dimension 

of co-occurrence matrices. 
     For the purpose of texture similarity evaluation it can be 

calculated the Euclidian distance between regions with similar 
texture like D{I1(1),I1(5)}, and  the Euclidian distance between 
regions with different textures like: D{I1(1),I1(3)}, 
D{I1(1),I1(4)}, D{I1(1),I2(3)}, D{I1(1),I2(4)}. The Euclidian 
distance D{I1, I2} between two images I1 and I2, which are 
characterized by the feature vectors [C1,E1,Et1,O1,V1]

T and 
[C2,E2,Et2,O2,V2]

T , is expressed by the following relation: 
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where: C = Con, E = Ene, Et = Ent, O = Omo,  V = Var.  
    Another simple statistic features is the edge density per 

unit of area, Dene (8). The density of edges, detected by a 
local binary edge detector, can be used to distinguish between 
fine and coarse texture, like in Fig.2. Dene can be evaluated by 
the ratio between the pixel number of extracted edges (which 
must be tinned – one pixel thickness) and image area:  
 

A
N

Den e
e =                                (8) 

 
   In (8), Ne represents the number of edge pixels (tinned 

edges, with one pixel thickness) and A is the region area (pixel 
number of image region). 

The regions having different textures are considered to be 
segmented regions. There are two general approaches to 
performing texture segmentation: region-based approach and 
boundary-based approach. We utilized the first approach, 
because we tried to identify regions of the image which have a 
uniform texture. Small local regions are compared based on 
the similarity of some statistical texture property. The regions 
with mixed texture are considered like non-asphalt ones. Thus, 
the regions with different textures are always separated by the 
aid of a threshold which is fixed by error consideration. This 
method has the advantage that the boundaries of the asphalt 
regions are always well defined. Based on the efficiency 
analysis of the tested features, we selected the five features 

derived from the average co-occurrence matrices for similarity 
measurement of the image regions. The segmentation finesse 
depends on the partition degree of the initial images. On the 
other hand, if the partition degree is too high, then it is 
possible that the texture should disappear. In fact, for an 
application, the partition index is established tacking into 
account the given image resolution and the texture finesse. For 
example, if the asphalt image has 2048x2048 pixels, we can 
consider 1024 squared regions (32x32 image partition). One 
of the region, for instance the upper – left region, is 
considered like the reference one, Ir = I(1). After image 
partitioning, a block matrix (mxm) is obtained. Each block is a 
textured region with a well defined position. The reference 
region is compared with the other regions, successively, by 
means of Euclidian distances  D(Ir, I(j)), j = 2,3,...,mxm. We 
can consider the texture features derived from the average co-
occurrence matrix Cd. First, the comparison result is binarized 
by means of a corresponding threshold. The region I(j) is 
indexed 0, if D(Ir, I(j)) ≥ T (the region is similar with Ir), and 
is indexed 1, if D(Ir, I(j)) < T (the region is similar with Ir). 
Then the regions are filled with 0 or 1 depending on the 
region index.    

III. FRACTAL DIMENSION AS TEXTURE FEATURE   

    Fractal analysis is a mathematical and computer 
technique that quantifies complex shapes. Fractal analysis can 
discriminate between the shapes of texture of roads. Thus, a 
method to relieve the irregularity of the road is to calculate 
and combine different forms of fractal dimension. 

   Fractals have high power in low frequencies, which 
enables them to model processes with long periodicities. 
Many natural surfaces have a statistical quality of roughness 
and self-similarity at different scales. Fractals are very useful 
and became popular in modeling these properties in image 
processing. We first define a deterministic fractal in order to 
introduce some of the fundamental concepts. Self-similarity 
across scales in fractal geometry is a crucial concept. A 
deterministic fractal is defined using this concept of self-
similarity as follows. Given a bounded set A in a Euclidean n-
space, the set A is said to be self-similar when A is the union 
of N distinct (non-overlapping) copies of itself, each of which 
has been scaled down by a ratio of r. The fractal dimension D 
is related to the number N and the ratio r as follows (9):  

( )
( )r

rND
/1log

log
=                               (9) 

    The fractal dimension gives a measure of the roughness 
of a surface. Keller [19] uses fractal geometry to describe 
texture. Intuitively, the larger the fractal dimension, the 
rougher the texture is. Most natural surfaces and in particular 
textured surfaces are not deterministic as described above but 
have a statistical variation. This makes the computation of 
fractal dimension more difficult.  
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    There are a number of methods proposed for estimating 
the fractal dimension D. One method is box-counting 
algorithm that assumes determination of fractal dimension in 
function of the evolution of the object size in connection with 
the scale factor. There are many programs for counting the 
fractal dimension in different forms, but the most familiar 
algorithm is the box counting. A lot of specialized papers 
describe this algorithm. For the box counting basic algorithm, 
the image must be binary type. The method consists in 
dividing the image, successively, in 4, 16, 64 etc. (1/r) same 
size squares and computing every time the number N(r) of 
squares covered by the object image, where r is the step size. 
The dividing process is limited by the image resolution. The 
fractal dimension can be obtained plotting lnN(r) for different 
values of ln(1/r), where r is the side length of covering boxes 
and calculating the slope of the resulting curve, which is 
approximated by a line. A linear regression is performed using 
the logarithmic coordinates (10). The regression slope a is 
used to determine the box counting fractal dimension FD (11). 

 
y = a x + b                         (10) 

 
    The notation significances in equation (3) are the 

following: xi = log2 (1/ri), yi = log2 (N(ri)), n – number of 
partitions, i = 1,2,3,…,n – the function points in the graphical 
representation.  
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    Towards evaluating the fractal dimension of a grey level 

image, we applied the box-counting algorithm to contours 
extracted from the binary images which are obtained by 
different thresholds. Because the binary image (and also the 
fractal dimension) depends on the threshold, we used in our 
algorithm all the significant grey levels contained in the 
image. The fractal dimensions computed for every grey level 
will be represented into a graphic named fractal dimension 
spectrum. Thus, the algorithm calculates a mean fractal 
dimension MFD from individual values FDj of some image 
contours detected from initial grey-level image (12). 
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    The algorithm, which was implemented in MATLAB, 
consists of the following steps: 

1) Reading and converting of the color image in 256 grey 
levels; 

2) Converting of the 256 grey levels image to a binary level 
image using a fixed threshold Tj; 

3) Extraction of the image contour using 3x3 
neighborhoods; 

4) Computing of the fractal dimension FDj, from the 
contour image, applying the box-counting algorithm; 

5) Iteration of the steps 1- 4, for j = 1,…,k; 
6) Determination of MDF from equation (11).  

IV. THE FIRST CASE STUDY: CARRIAGE ROAD 

IDENTIFICATION AND SEGMENTATION BASED ON REGION 

SIMILARITY  

With this end in view, for study, the whole image is 
partitioned in sixteen equivalent regions. Different textured 
regions (Fig.3) are compared based on minimum distance 
between measured features which are derived from medium 
co-occurrence matrices (contrast, energy, entropy, 
homogeneity, and variance). Image region I1(1), which 
contains only asphalt texture is considered the reference 
texture template. If a region contains another texture or mixed 
textures, then it is considered a defect region. 

   For algorithm testing and program validation we have 
used two textured images I1 and I2 (Fig. 3), each partitioned in 
sixteen regions Ii(1), Ii(2),..., Ii(16), i = 1,2 (Fig.4).  

 

        
       
 
 
 
In fact, it was considered regions with 128 x 128 pixels, 

and 16 grey levels. From these images we choosed five 
regions for I1 image: I1(1) – reference texture, asphalt; I1(5) – 
tested region, asphalt; I1(4) – tested region, pebble; I1(8) – 
tested region, pebble I1(3) – tested region, asphalt and pebble, 
and also three regions for I2  image: I2(4) – tested region, 
grass; I2(8) – tested region, grass; I2(3) – tested region, asphalt 
and grass (Fig. 5). 

 

  
Fig.4. Sixteen regions image partition. 

I(2) I(1) 

I(5) I(6) 

I(4) I(3) 

I(7) I(8) 

 I(12)  I(11) 

 I(15)  I(16) 

 I(10) I(9)  

 I(13)  I(14) 

Fig. 3. Analyzed images I1 and I2. 
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I1(1)                                    I1(5) 

          
I1(4)                                       I1(8) 

          
I1(3)                                       I2(4) 

          
I2(8)                                        I2(3) 
 
Fig. 5. Selected regions from I1 and  I2. 
 
Textural features like Cond, Ened, Entd, Omod, and Vard are 

calculated from average co-occurrence matrices, for different 
distances d. The normalized results are presented in Table 1 
(I1) and Table 2 (I2), for d = 10. 

  
Table 1. Normalized statistical texture features for I1 and  
d = 10. 

Regio
n 

Index 
Ent Ene Con Omo Var 

1 1.00 1.00 1.00 1.00 1.00 

3 0.85 0.20 4.84 0.73 0.48 

4 0.85 0.17 5.31 0.65 0.48 

5 1.00 0.98 1.00 1.00 1.01 

8 0.85 0.17 5.25 0.66 0.48 

 
    The normalized characteristics are necessary for efficient 

calculation of the Euclidian distance, because the ranges of 
initial characteristics can differ too much. The normalization 
is refered to the refference texture (region I1(1)).    

 
Table 2.  Normalized statistical features for I2 and d = 10 

Regio
n 

Index 
Ent Ene Con Omo Var 

3 0.93 0.31 2.81 0.90 0.71 

4 0.94 0.26 5.72 0.81 0.46 

8 0.93 0.27 4.00 0.78 0.46 

     
    The results of the Euclidian distance calculus between 

template I1(1) and mentioned different regions distances are 
the following: 

 
D{I1(1),I1(5)} = 0.02;  
D{I1(1),I1(3)} = 3.96; D{I1(1),I1(4)} = 4.43; 
D{I1(1),I1(8)} = 4.37; D{I1(1),I2(3)} = 1.96; 
D{I1(1),I2(4)} = 4.81; D{I1(1),I2(8)} = 4.11    
     
     One can observe that the distances between two different 

regions, like D{I1(1),I1(4)}, D{I1(1),I1(8)}, D{I1(1),I1(3)}, 
D{I1(1),I2(4)}, D{I1(1),I2(8)}, and D{I1(1),I2(3)}, are greater 
than distances between two similar regions, like D{I1(1),I1(5)}. 
In order to appreciate the efficiency of the presented 
algorithm, we analyzed the most unfavorable cases, namely 
the minimum distance between two regions coming from 
different textures, and the maximum distance between two 
regions coming from the same texture. Thus, minimum value 
for dissimilar textures, 

 
min{D{I1(1),I1(3),D{I1(1),I1(4)},D{I1(1),I2(4)}, 

D{I1(1),I2(3)},....} = 1.82, 
 

is grater than maximum value for similar textures,  
 

max{D{I1(1),I1(2)}, D{I1(1),I1(5)},...} = 0.10, 
 

in large neighborhood case (d = 5,10,15). 
   Also, we can observe that, in this case study, the most 

important features, with greater discriminating power, both in 
texture similarity evaluation and in defect region detection and 
identification, are the contrast and the energy. 

    Towards ameliorate the classification accuracy, a 
development of the recognition algorithm, consisting in the 
attachment of new textural features like edge point density per 
unit of area is analyzed. Thus, we considered an edge 
extraction algorithm, based on binary image and logical 
function [11], which gives tinned edges (Fig. 6).  
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         I1(5)                     I1(4)                    I2(4) 

 
Fig. 6. Contour image for some image regions 

   
Table 3. Normalized edge densities for some regions 

Region Dene 

I1 (1) 1.000 
I1 (5) 0.995 
I1 (4) 0.782 
I1 (3) 0.789 
I2 (4) 0.845 
I2 (3) 0.793 

 
    Unfortunately, for the analyzed regions I1(5), I1(3), I1(4), 

I2(3), and I2(4), the edge densities show that this feature has 
not a good discriminating power (Table 3) and the 
combination with the previously second order type statistical 
features would give better results in texture classification. 
Another disadvantage of this algorithm is the dependence of 
the results by the threshold level for edge extraction.   

      Also, we tested the efficiency of the grey level image 
difference histogram in texture classification and 
segmentation. With that end in view we have considered the 
same images I1(1), I1(5), I1(3), I2(3). The image difference 
histograms in the displacement (x = 10, y = 10) for I1(1), I1(5) 
are presented in Fig. 7, and the image difference histograms 
for I1(3), I2(3) are presented in Fig. 8. 

   

     
I1(1)                                I1(5) 

 
Fig.7. Grey level difference histogram for I1(1) and I1(5). 

 
    The basic aspect of the histogram is similar in the 

presence of a texture defect (mixed texture), like I1(3) and 
I2(3), but is dissimilar for different texture, like I1(1) and I1(3). 
For this reason, the image difference histogram can be utilized 
efficiently in texture classification by the minimum distance 
criterion between the corresponding level vectors. 

 

I1(3)                            I2(3) 

Fig.8. Grey level difference histogram for I1(3) and I2(3). 
 

   In graphical histogram representation, the value for gray 
level 0 is too high and irrelevant comparing with the others. 
Therefore it is neglected. One can observe that the difference 
image histogram has a good behavior referring to texture 
classification in the low level domain of the histogram.   

   The second case study is related to a segmentation 
method of a road image, based on multiple comparisons of the 
textured regions. With this end in view, the whole image is 
partitioned in 256 equivalent regions (16x16 block matrix).  

The blocks are 32x32 matrices. The rounded values of  the 
region similarity measurement are also placed in a 16x16 
matrix (Fig.9). After the binarization process, the 16x16 block 
matrix becomes the segmentation matrix (Fig.10), with 1 for 
carriage road (asphalt) and 0 for the rest. In Fig 10, 1 
represents a 32x32 matrix filled with 1 logic, and 0 represents 
a 32x32 matrix filled with 0 logic. 

V. THE SECOND CASE STUDY: CARRIADGE ROAD 

IDENTIFICATION BASED ON FRACTAL DIMENSION ESTIMATION 

For our case study, we used three 512x512 grey level type 
images with different texture: asphalt, broken stones, and 
grass. The images were divided in four equivalent parts 
(regions). Towards algorithm testing, we selected two 
different regions from each single texture image (like asphalt, 
I1(1), I1(5), broken stones, I1(4), I1(8), and grass, I2(4), I2(8)) 
and one region from each mixed image (like asphalt-broken 
stones, I1(3), and asphalt-grass, I2(3) – Fig. 5. For each region, 
with 256x256 pixels, one can compute the fractal dimension 
FDj, by the box-counting algorithm, up to the pixel level. 
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0.8 0.3 0.3 0.3 0.6 0.7 0.7 1.1 0.6 5.0 5.1 5.2 5.6 5.1 5.0 5.5

1.0 0.2 0.7 0.7 0.4 0.8 0.6 0.7 0.3 5.0 5.5 5.0 5.1 5.2 5.0 5.5
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0.3 0.5 0.8 0.2 0.3 0.7 0.3 0.8 1.1 4.9 5.1 5.2 5.2 5.1 5.2 5.5

1.4 0.4 0.9 0.3 0.1 1.0 1.4 0.5 0.4 5.0 5.1 5.3 5.1 5.6 4.9 5.2

0.6 0.9 0.8 0.9 0.7 0.3 0.8 0.4 0.8 5.2 6.6 5.2 5.5 5.1 5.5 5.6

0.6 0.1 0.8 0.9 0.1 0.6 0.5 0.9 0.7 5.0 5.1 5.5 5.2 5.1 5.5 6.5

0.2 1.0 0.8 0.6 0.2 0.5 0.8 0.8 0.1 4.9 5.2 5.1 5.5 5.6 5.4 5.6

 
             Fig. 9. Similarity index matrix. 
 
 
   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16

1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

2   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

3   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

4   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

5   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

6   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

7   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

8   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

9   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

10   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

11   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

12   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

13   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

14   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

15   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

16   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0

 
              Fig. 10. Segmentation block matrix.  
 

 For every binary threshold, we extract the image edges and 
we calculate the fractal dimension. For the binary thresholds, 
an interval was chosen, based on the request that a definite 
texture exist in the contour image (Fig.11). The texture edges 
are extracted by a local logical operator. We represent the 
fractal dimension spectrum for contour image and we compute 
the mean fractal dimension MDF. The slope of the log-log 
curve is evaluated by the linear regression method. The 
existence, inside an image, of textured regions with different 
fractal dimension requires alternative methods for FD 
estimation. Because the analysed regions are textured, their 
contour images (edges) are full of edge pixels, and the first 
points in the log-log representations give a partial FD equal 
with 2. Therefore, we proposed another fractal dimension 
which we named effective fractal dimension (EFD). EFD is 
calculated by the omission of the first points in the log-log 
representation (the points of the form (xi , xi

2 ), i = 1,2,…,k) 
(13). 
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The threshold assessment which is used for edge extraction 

constitutes a problem of the fractal dimension evaluation in 
the grey level image case. Thus, we proposed some methods 
for threshold establishment: 

1. The values for which the contur conserve the texture of 
image; 

2. The value for which there are the most of points to 
contur; 

3. The values for which the contour pixel set is a nonempty 
one; 

    In Fig.11 it is presented the contour images for I1(1),, 
I1(4),  and I2(4),  when the most points in the contour images 
appear.  

 

 

Fig. 11. The contour images for some textured images 
(most of points). 

 
   In Fig. 12 we presented the log-log curve in the basic 

fractal dimension case and the modified log-log curve for 
EFD calculus of the region I11. 

 

 

a)                                           b) 
Fig. 12. The curve log-log for the box-counting            

fractal dimension evaluation. a) Entire grey level range;  
b) Selected grey level range. 

 If different thresholds for edge extraction are used, one can 
plot the fractal dimension dependence from threshold value 
(Fig. 4). From this one can compute MFD in different cases: 
1.All the thresholds for nonempty contour points, and    2.The 
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selected ones for texture preservation. In the second case, for 
each region, we considered a minimum threshold (Tmin), when 
the edge texture becomes observable, and a maximum 
threshold (Tmax), when the edge texture disappears. Thus, we 
can compute the fractal dimensions FDj for each threshold 
between Tmin and Tmax, and the resulting mean fractal 
dimension MFD (12). The results are presented in Table 4. 

              Table 4. The fractal dimension 
Image  
region 

Threshold Min- 
Threshold Max 

MFD EFD 

I11 150-190 1.325 0.937 
I13 150-190 1.324 0.921 
I21 50-140 1.674 1.242 
I23 50-140 1.672 1.230 
I31 80-120 1.763 1.372 
I33 80-120 1.759 1.353 
C11 80-160 1.618 1.229 
C21  80-160 1.631 1.259 

 

        

Fig. 13. The dependencies of the box-counting fractal 
dimension on the threshold, in the asphalt image (I11) case. 
 
One can observe that MFDs and EFDs for asphalt regions 

are appropriated (I11, I15). Also, MFDs and EFDs for other 
textures, like pebble, grass, mixed, are not appropriate from 
asphalt. 

V. CONCLUSION 

Because it is considered an average co-occurrence matrix, 
the presented algorithm is relatively insensible to image 
translation and rotation. The results confirm that the statistic 
second order features, extracted from medium co-occurrence 
matrices, offer a good discriminating power both in texture 
similarity evaluation and in defect region detection and 
identification. The application of the algorithm consists in 
road (asphalt) identification and segmentation based on image 
partition and textured regions defect region detection (pebble 
or grass). The additional features like difference image 
histograms and edge pixel density per unit of area can increase 
the power of discriminating for texture identification and 

classification. The efficiency of the road following and defect 
region detection and localization depends on the range of 
image partition. The most important features, with greater 
discriminating power, both in texture similarity evaluation and 
in defect region detection and identification, are the contrast 
and the energy. 

The fractal dimensions offer a good discriminating power 
both in texture similarity evaluation and in defect region 
detection. The advantage of using the fractal dimension 
consists in a significant decrease of the number of 
calculations.  
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