

Abstract— The computational grid is rapidly evolving into a

large-scale computing infrastructure that facilitates scientists and
engineers to solve data and computationally intensive problems by
utilizing various resources over the Internet. This paper presents the
curriculum design of a one-year taught MSc course in Distributed
Computing Systems Engineering currently running at Brunel
University in the Unite Kingdom. It reports the design rationale and
practice in introducing grid computing to the MSc course. A case
study is given to demonstrate how grid computing can be used to
speed up the process in solving data and computationally intensive
problems.

Keywords— curriculum development, distributed systems, grid
computing, service-oriented computing.

I. INTRODUCTION
HE Electronic and Computer Engineering (ECE) in the
School of Engineering and Design at Brunel University

has been successfully running a Masters course in Distributed
Computing Systems Engineering for a over 10 years. This
course currently runs off-campus in Esslingen, Germany. It
will be running on-campus at Brunel University in Sept. 2008.
Grid computing [1] is emerging as an effective computing
paradigm for sharing various resources over the Internet. The
computational grid is rapidly evolved into a large-scale
computing infrastructure for scientists and engineers to solve
data and computationally intensive problems. The past few
years have witnessed tremendous development and
deployment of grid systems and applications. Representative
grid networks and projects being carried out include EGEE
(enabling e-Science for Europe, http://public.eu-egee.org/)
spanning more than 30 countries with over 150 sites to a
myriad of applications, UK e-Science programme facilitating
one national e-Science center, and a number of regional e-
Science centers, US OSG (open science grid,
http://www.opensciencegrid.org/), CNGrid (China National
Grid, http://www.cngrid.org).

The ECE in the School of Engineering and Design at
Brunel University has strong expertise in grid computing. We
have been actively participating in grid computing projects
including the EC funded Data Grid (http://eu-
datagrid.web.cern.ch/eu-datagrid), GridCC
(http://www.gridcc.org), UK PPARC funded GridPP

Maozhen Li is with the School of Engineering and Design, Brunel
University, Uxbridge, UB8 3PH, UK (e-mail: Maozhen.Li@brunel.ac.uk).

Marios Hadjinicolaou is with the School of Engineering and Design,
Brunel University, Uxbridge, UB8 3PH, UK (e-mail:
Marios.Hadjinicolaou@brunel.ac.uk). Manuscript received January 3, 2008
 Revised manuscript received August 8, 2008

(http://www.gridpp.ac.uk/). The Brunel Information
Technology Laboratory (BITLab) in the School of
Engineering and Design at Brunel University has various
facilities for grid computing, including 3D imaging, a 128-
processor computing cluster for science and engineering
computations, a 5 Terabyte data store, 3D scanning
equipment, a display system for virtual environment
visualisation, hardware rendering equipment, a 6 camera
motion capture suite, and a high-speed network link to
collaborators in the e-Science consortium. BITLab is part of a
London based, geographically distributed Grid Tier 2
computing center. BitLab is also a computing node of the
EGEE grid network.

Compared with traditional distributed systems, grid systems
are larger in sizes crossing over multiple institutions or
organizations, more heterogeneous in resources that are dealt
with, and more dynamic in computing capacities. In this
paper, we present the educational rationale of introducing grid
computing to the Masters course in Distributed Computing
Systems Engineering.

The reminder of the paper is organized as follows. Section
II introduces the aims and objectives of the course. Section III
describes the structure of the course. Section IV discusses
teaching and learning strategies. Section V presents a case
study demonstrating how grid computing can be used to speed
up the computation process in rendering computer animation
frames. Section VI gives a brief review of current MSc
courses in grid computing in the UK, and Section VII
concludes the paper.

II. COURSE AIMS AND OBJECTIVES
In the process of developing this programme, guidelines

and boundaries set by the following references were used:

• Brunel University Learning & Teaching Strategy.
• Brunel University Mission Statement.
• Brunel University Strategic Plan 2002-2007.
• QAA Framework for High Education Qualifications

in England, Wales, and Northern Ireland [2].
• QAA Benchmark “Annex to Academic Standards –

Engineering” [3].

Specifically, the emphasis on theoretical aspects to very
practical problems, and other transferable skills, is clearly
consistent with Brunel University’s “Mission Statement” to
produce high quality graduates that are of use to the
community’ and with the objective of Brunel University’s

Curriculum development on grid computing
Maozhen Li, Marios Hadjinicolaou

T

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 2, 2008

71

“Learning and Teaching Strategy” to ensure that our graduates
are flexible and able to meet the changing needs of the world
of work. The opportunities provided through this programme
to tackle significant practical problems, in particular through
workshops and implementation projects, is in the spirit of the
Strategy’s emphasis on providing student projects that are
“problem focussed to simulate or reflect work and community
related activity”.

The aim of this programme is to equip high quality and
ambitious graduates with the necessary advanced technical
and professional skills for an enhanced career either in
industry or leading edge research in the areas of distributed
systems and Grid computing. Specifically, the main objectives
of the programme are:

• To critically appreciate advanced and emerging

technologies for developing grid systems;
• To practically examine the development of large-

scale grid systems;
• To critically investigate the problems and pitfalls of

grid systems in business, commerce, and industry.

The programme aims and learning outcomes, and design
have been selected having in mind the QAA Framework for
Higher Education Qualifications in England, Wales, and
Northern Ireland, in particular the Descriptor for qualifications
at Masters level.

These aims and learning outcomes are fully consistent with
the Masters Level Descriptor of the QAA Qualifications
Framework, in particular their emphasis on “systematic
understanding of knowledge”, “critical awareness of current
problems”, abilities to “demonstrate self-direction and
originality in tackling and solving problems and act
autonomously in implementing tasks at a professional or
equivalent level” and “continue to advance their knowledge
and understanding, and to develop new skills to a high level”.

III. COURSE STRUCTURE
The course comprises 8 taught modules and an MSc

dissertation:

• Computer Networks
• Distributed Systems
• Network Security and Data Encryption
• Network Computing
• Grid Middleware Technologies
• Grid System Analysis and Design
• Workshop
• Project Management
• MSc Dissertation

Each of the 8 modules carries 15 credits and the dissertation

has 60 credits. Students receiving a Masters degree of the
course need to achieve 180 credits. Fig.1 shows the
correlation of these modules.

Fig.1 The course structure.

A. Computer Networks
Computer Network module is the fundamental module for

this course. Grid computing demands quality-of-service (QoS)
supported networks especially when transmitting large amount
of data over the Internet. For this purpose, the focus of
Computer Network is on QoS aspects of IP networks. Topics
covered in this module include:

• Network Basics
o ISO/OSI Reference Model and TCP/IP

Reference Model
o Network Topologies (Start, Ring, Bus, Mesh,

Tree)
o Network Types (LANs and WANs)
o Communication Control Methods (error

detection and recovery, data flow control,
connection management)

• Local Area Networks (LANs)
o Standard IEEE802
o CSMA/CD-Bus 802.3 (Ethernet)
o Token Ring 802.5
o Token-Bus 802.4
o FDDI ANSI X3T9.5
o Logical Link Control Protocol LLC802.2

• Wide Area Networks (WANs)
o Asynchronous Transfer Mode (ATM)
o Inter-networking (bridges and routers)

• Network Layer
o Internet Protocol (IPv4/IPv6)
o Packet Scheduling and Delay
o IP QoS (RSVP, Integrated Service Model and

Differentiated Service Model), MPLS, IP over
ATM

o Address Resolution Protocol (ARP)
o Internet Control Message Protocol

(ICMPv4/ICMPv6)
o Routing Algorithms (static and dynamic

algorithms)
o Routing Protocols (RIP, OSPF, BGP)
o IP Multicasting

Distributed
Systems

Computer Networks

Network Computing

Grid Middleware Technologies

Grid System Analysis and Design

Network Security
and Encryption

Project M
anagem

ent

W
orkshop

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 2, 2008

72

• Transport Layer
o TCP/UDP
o OSI Transport Protocol

• Network Applications and Services
HTTP, FTP, DNS, NFS, Email (SMTP, POP, IAMP),

Telnet, SNMP

B. Distributed Systems
This module mainly focuses on issues related to traditional

distributed systems such as file systems, naming services,
replication services.

C. Network Security and Encryption
This module introduces the fundamental theory on network

security and encryption with a focus on Public Key
Cryptography which is the basis of the Grid Security
Infrastructure [4].

D. Network Computing
This module covers object oriented programming with Java

programming language with a focus on middleware
technologies. Topics covered include:

• Object Oriented Design and Programming in Java
• Java Exception Handling
• Java Files and Streams
• Java Multithreading
• Java Collections and Algorithms – Lists, Stacks,

Queues, Trees
• Java Database (JDBC)
• Computing Models including Client/Server Model

and Peer to Peer Model
• Socket Programming
• Remote Procedure Call (RPC)
• Java Remote Method Invocation (RMI)
• Common Object Requestor Broker Architecture

(CORBA)
• Web Computing Technologies (HTTP, Java

Applet/Servlet, JSP)
• XML technologies (DTD, XML Schema, XML

Parsing Models such as DOM and SAX)
• Web Services (WSDL, SOAP, UDDI)

The material on Web services provides direct support for

the module of Grid Middleware Technologies as the
computational grid is rapidly evolved into a service-oriented
computing infrastructure [5].

E. Grid Middleware Technologies
Grid computing is evolved from parallel computing, cluster

computing, meta-computing, then service-oriented computing,
so Grid Middleware Technologies module mainly covers MPI
(Message Passing Interface) and PVM (Parallel Virtual
Machine) for parallel applications, Condor (a high throughput
batch system, http://www.cs.wisc.edu/condor/) for cluster

computing systems, Globus (http://www.globus.org) for grid
middleware technologies, OGSA (open grid services
architecture) [6], a standard architecture for developing
service-oriented grid systems. Job scheduling, which is
defined as a process of mapping jobs to resources, plays a
crucial role in a Grid environment. A scheduling system has
the responsibility of selecting resources and scheduling jobs in
such a way that the user and application requirements are met.
Scheduling algorithms such as min-min, max-min, greedy,
scheduling jobs with genetic algorithms are also covered in
this module. It is worth noting that this module was designed
based on a grid textbook [7] which provides a systematic way
in introducing grid core technologies.

F. Grid System Analysis and Design
This module is built on the understanding of grid core

technologies. This module helps students build knowledge on
the way a grid system works, the current practices of grid
applications and systems such as EGEE and GridPP, and
issues in the design of grid systems such as scalability,
reliability, testing, maintenance. Topics covered by this
module include

• System Analysis Methodologies

o Overview
o UML

• Construction of Models using Appropriate Techniques

o Process Modelling, Static Class Modelling,
Dynamic Modelling, Interface Modelling

• Management of Large-Scale Grid System
o Grid Portal
o Concurrent Version System (CVS)/Wiki

• Grid System Analysis: Case Study (GridPP)
o The Problem Domain
o An Anatomy of GridPP System

� System Components
� Management of Virtual Organisations
� User Certificate Management
� Management of Grid Sites

• Grid System Analysis: Case Study (LCG/EGEE)
o The Problem Domain
o An Anatomy of LCG/EGEE System

� System Components
� Management of Virtual Organisations
� User Certificate Management
� Management of Grid Sites

• System Design
o User/Problem Requirement Analysis and

Specification
o Object Oriented Design

� UML
o System Architecture

� Performance Consideration
� Open Standards

o Design for Usability

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 2, 2008

73

G. Project Management
This module helps students understand the critical issues in

management of projects and build their knowledge in the
application of approaches.

Hands-on laboratory assignments associated with each of

the taught modules are organised in the Workshop module to
help student build knowledge and capabilities in problem
solving.

IV. STRATEGIES FOR LEARNING AND ASSESSMENT
During the 1980’s the focus on teaching and learning in

higher education was on the teaching part, i.e. how the
lecturer organized and managed learning activities [8].
During the 1990’s the focus gradually shifted from teaching to
learning [9]. Learning is a process that involves mastering
abstract principles, understanding proofs, remembering factual
information, acquiring methods, techniques and approaches,
recognition, reasoning, debating ideas, or developing
behaviour appropriate to specific situations [10].

Extensive researches have been carried out to classify the
high quality learning styles and the low quality learning styles,
e.g., meaningful learning vs. rote learning [11], logical
forming vs. mnemonic concrete [12], generative processing
vs. reproductive processing [13], deep learning vs. surface
learning [14], transformational learning vs. reproductive
learning [15], holistic learning vs. atomistic learning [16].

Learning outcomes in terms of knowledge and
understanding are achieved through a mix of lectures,
workshops, seminars, self-study, and individual and group
project work. In lectures key concepts and ideas are
introduced, definitions are stated, results and techniques are
explained, and immediate queries discussed. Seminars provide
students with the opportunity to raise at greater length issues
arising from the lectures and from private study, for the
lecturer to test student understanding through discussion of
relevant problems. Workshops and projects are used to foster
practical engagement with the taught material. The
dissertation plays a key role in deepening understanding, in
developing research and literature review skills, and in
applying knowledge and skills gained in the programme to
plan, execute, and evaluate a significant investigation into a
current problem area related to distributed systems and grid
computing.

A key part of the strategy for learning has been to provide a
solid experiential learning platform based on the Kolb
learning cycle [17], and by using small groups [18]. The
strength of this approach is clearly the tutorial style with
students able to progress at their own pace with a structured
work plan to facilitate learning. We also promote student-
oriented learning [19, 21, 22]. Collaborative group work and
peer review prove effective and useful. In addition, case
studies are used in lectures to facilitate students to build
pragmatic capabilities in problem solving.

This course employs a range of assessment methods to

promote a rounded, diverse and independent approach to
learning by the student. Summative assessment (examination)
features heavily in the more theoretical modules while
formative assessment (e.g. report writing, oral presentation,
group project work) features heavily in the workshops.

V. A GRID COMPUTING CASE STUDY
As mentioned in [20] practical work is important for

computing lectures. Case studies are used in lecture modules
to help students understand lecture materials. In this section,
we present a case study on rendering computer animation
frames using a grid computing environment managed by Sun
Grid Engine (http://gridengine.sunsource.net/). This case
study was used to demonstrate how grid computing can be
used to solve data and computationally intensive problems.

A. Sun Grid Engine (SGE) Architecture
Hosts (machines or nodes) in SGE are classified into four

categories, master, submission, execution, administration, and
shadow. Fig.2 shows the SGE architecture.

Fig.2 The SGE architecture.

• Master Host. A single host is selected to be the SGE
master host. This host handles all requests from
users, makes job-scheduling decisions, and
dispatches jobs to execution hosts.

• Submit Host. Submit hosts are machines configured
to submit, monitor, and administer jobs, and to
manage the entire cluster.

• Execution Host. Execution hosts have the permission
to run SGE jobs.

• Administration Host. SGE administrators use
administration hosts to make changes to the cluster’s
configuration, such as changing distributed resource
management parameters, configuring new nodes, or
adding or changing users.

• Shadow Master Host. While there is only one master
host, other machines in the cluster can be designated
as shadow master hosts to provide greater

Submit
Host

Master
Host

Administration
Host

Execution
Host

Execution
Host

Execution
Host

Shadow Master
Host (optional)

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 2, 2008

74

availability. A shadow master host continually
monitors the master host, and automatically and
transparently assumes control in the event that the
master host fails. Jobs already in the cluster are not
affected by a master host failure.

1) The Daemons in a SGE Cluster

As shown in Fig.3, to configure a SGE cluster, the

following daemons need to be started.

• sge_qmaster – the Master daemon

The sge_qmaster daemon is the centre of the cluster’s
management and scheduling activities; it maintains tables
about hosts, queues, jobs, system load, and user
permissions. It receives scheduling decisions from
sge_schedd daemon and requests actions from sge_execd
daemon on the appropriate execution host(s). The
sge_qmaster daemon runs on the master host.

Fig.3 The daemons in SGE.

• sge_schedd – the Scheduler daemon

The sge_sched is a scheduling daemon that maintains an
up-to-date view of the cluster’s status with the help of
sge_qmaster daemon. It makes the scheduling decision
about which job(s) are dispatched to which queue(s). It
then forwards these decisions to the sge_qmaster
daemon, which initiates the requisite actions. The
sge_schedd daemon also runs on the Master host.

• sge_execd – the Execution daemon

The sge_execd daemon is responsible for the queue(s) on
its host and for the execution of jobs in these queues by
starting sge_shepherd daemons. Periodically, it forwards
information, such as job status or load on its host, to the
sge_qmaster daemon. The sge_execd daemon runs on an
Execute host.

• sge_commd – the Communication daemon

The sge_commd daemon communicates over a well-
known TCP port and is used for all communication
among SGE components. The sge_commd daemon runs
on each Execute host and the Master host in a SGE
cluster.

• sge_shepherd – the Job Control daemon

Started by the sge_execd daemon, the sge_shepherd
daemon runs for each job being actually executed on a
host. The sge_shepherd daemon controls the job’s
process hierarchy and collects accounting data after the
job has completed.

2) Job Management in SGE

SGE supports four job types - batch, interactive, parallel

and array. The first three have obvious meanings, the fourth
type - array job, is where a single job can be replicated a
specified number times, each differing only by its input data
set, which is useful for parameter studies.

Submitted jobs are put into job queues. A SGE queue is a
container for a class of jobs allowed to execute on a particular
host concurrently. A queue determines certain job attributes;
for example, whether it may be migrated. Throughout their
lifetimes, running jobs are associated with their queues.
Association with a queue affects some of the actions that can
happen to a job. For example, if a queue is suspended, all the
jobs associated with that queue will also be suspended.

In SGE, there is no need to submit jobs directly to a queue.
A user only needs to specify the requirement profile of the job
(such as memory, operating system, and available software)
and SGE will dispatch the job to a suitable queue on a lightly
loaded host automatically. If a job is submitted to a particular
queue, the job will be bound to this queue and to its host, and
thus SGE daemons will be unable to select a lightly loaded or
better-suited resource.

3) Job Runtime Environments in SGE

SGE supports three execution modes – batch, interactive
and parallel. Batch mode is used to run straightforward
sequential programs. In interactive mode, users are given shell
access (command line) to some suitable host via, for example
X-windows. In a parallel mode, parallel programs using the
likes of MPI and PVM are supported.

4) Job Selection and Resource Matching in SGE

Jobs submitted to the Master host in a SGE cluster are held
in a spooling area until the scheduler determines that the job is
ready to run. SGE matches the available resources to a job’s
requirements; for example matching the available memory,
CPU speed, and available software licenses, which are
periodically collected by Execution hosts. The requirements of
the jobs may be very different and only certain hosts may be

sge_qmaster

sge_schedd sge_commd

Master Host

sge_commdsge_execd

sge_shepherd

job Execute Host

qsub
(submit a hob)

Submit Host

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 2, 2008

75

able to provide the corresponding services. Once a resource
becomes available for execution of a new job, SGE dispatches
the job with the highest priority and matching requirements.

Fundamentally, SGE uses two sets of criteria to schedule

jobs – job priorities and equal-share

a) Job Priorities
This criterion concerns the order of the scheduling of

different jobs, a first-in-first-out (FIFO) rule is applied by
default. All pending (not yet scheduled) jobs are inserted in a
list, with the first submitted job being at the head of the list,
followed by the second submitted job, and so on. SGE will
attempt to schedule the FIFO queue of jobs. If at least one
suitable queue is available, the job will be scheduled. SGE
will try to schedule the second job afterwards no matter
whether the first has been dispatched or not.

The cluster administrator via a priority value being assigned
to job may overrule this order of precedence among the
pending jobs. The actual priority value can be displayed by
using the qstat command (the priority value is contained in the
last column of the pending jobs display entitled P). The
default priority value that is assigned to a job at submission
time is 0. The priority values are positive and negative
integers and the pending job list is sorted correspondingly in
the order of descending priority values. By assigning a
relatively high priority value to a job, it is moved to the top of
the pending list. A Job will be given a negative priority value
after the job is just submitted. If there are several jobs with the
same priority value, the FIFO rule is applied to these jobs.

b) Equal-Share-Scheduling
The FIFO rule sometimes leads to problems, especially

when users tend to submit a series of jobs at almost the same
time (e.g., via a shell-script issuing a series of job
submissions). All the jobs that are submitted in this case will
be designated to the same group of queues will have to
potentially wait a very long time before executing. Equal-
share-scheduling avoids this problem by sorting the jobs of a
user already owning an executing job to the end of the
precedence list. The sorting is performed only among jobs
within the same priority value category. Equal-share-
scheduling is activated if the SGE scheduler configuration
entry user_sort switch is set to TRUE.

B. Rendering Computer Animation Frames using SGE
q3D [23] is a computer animation rendering application

written in C that can render 3D-like frames using either 2D
geometric shapes or raster images as input primitives which
are organized in layers called cels. q3D has basic 3D features
such as lighting, perspective projection and 3D movements. It
can handle hidden-surface elimination (cel intersection) when
rendering cels. Fig.4 shows four frames taken from an
animation rendered by q3D.

In the animation, the balloon moves gradually approaching
the camera and the background becomes darker. Each frame
in the animation has two cels, a balloon cel and a lake cel.
Each frame is rendered individually from an input file called
stack that contains the complete description of the frame such
as the 3D locations of the cels involved. These stack files are
generated by makeStacks from a script that describes the
animation such as the camera path, cels path and lighting.
makeStacks is a C program developed for q3D. We modeled
rendering of animation frames as grid jobs, and a SGE cluster
to render up to 500 frames.

Fig.4 Four frames rendered by q3D with two cels.

A Web user interface was implemented as shown in Fig.5

for submitting jobs to the SGE environment. Jobs once
submitted to the SGE can be monitored and results can be
downloaded.

Fig.5 A web user interface for SGE.

C. SGE Performance Evaluation
A SGE cluster was built with five computers connected by

a 100Mbps local area network. In the SGE cluster, one
computer was used as a SGE server. It was also used for job
submission and execution; the other four computers were only

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 2, 2008

76

used as SGE workers for job execution. Each computer is a
desktop with a Pentium IV 2.6GHz processor and 512MB
RAM, running Redhat Linux. Among the five computers, two
of them run Linux 9.0 and the other three run Linux 7.3. The
five computers in the SGE cluster shared a network file
system. The q3D legacy application was only installed on the
SGE server.

The latency to render one frame on the SGE server is 30
seconds. We made 8 job submissions to the SGE cluster. We
observe that the overhead in sequentially running the q3D
legacy code on one computer is linearly increased with the
number of frames rendered. SGE speeds up the process in
rendering image frames, e.g., the latency to render 200 frames
in SGE is 4.27 times less than that of sequentially running the
q3D legacy code on one computer for 200 image frames.

We note that the performance gain of SGE is less than 5 in
rendering image frames. This is because SGE incurs overhead
in resource management.

According to Amdahl's Law [24], the potential speedup of a
computation with parallelization can be defined using
equation (1):

S
N
P

nComputatio speedup

+
=

1
 (1)

where

• P is the parallel fraction
• N is number of processors
• S is the serial fraction

Consider a computing environment where 5 computers are

involved for solving a domain problem, and P is 100%
meaning that the domain problem can be fully decomposed
into small independent jobs, and S is 0% meaning that no
serial work or communication is involved. Then the maximum
speedup in computation is 5 times faster than using 1
computer. This further explains why the SGE environment
achieved 4.27 times faster in performance when 5 computers
were used in the computation compared with the performance
of running the jobs on 1 computer.

VI. EXISTING UK COURSES IN GRID COMPUTING
In 2004, Cranfield University launched an MSc in Grid

Computing and e-Engineering, which was thought to have
been the first in UK and the second in the world after
University of Amsterdam. Six grid-related modules have been
designed, which are: Grid Fundamentals, Grid Middleware,
Grid Infrastructure, Grid Development and Applications,
High-Performance Computing on the Grids, and Nature
Inspired Grid Resource Management.

The MSc in Advanced Computing at Imperial College
London is a full-time course of 12 months' duration. The
programme offers students the opportunity to study a wide
variety of topics in depth and with dedicated experts and aims
to prepare students for a rewarding career in computing in

particular, and in IT in general. The Grid Computing module
includes: Service oriented architectures, Web services,
programming models for Grid environments, Grid
infrastructures (Globus, Condor, Condor-G), Open Grid
Services Architecture, security issues, resource election and
job placement, computational economics models.

The e-Science and Grid module has been part of the MSc in
Advanced Computer Science at the University of Manchester
since 2004, The module is also taken by MSc students in
Advanced Computer Science and ICT Management. The
module is unique in the UK, being based on the Unicore
software (http://www.unicore.eu/).

Compared with these existing courses in grid computing,
our course provides a more coherent and systematic way in
introducing grid computing technologies with a well-designed
structure.

VII. CONCLUSION
In this paper, we have presented the curriculum design of a

one-year taught MSc in Distributed Computing Systems
Engineering course currently running at Brunel University.
The MSc course has been running successfully in Esslingen
Germany as an off-campus course for over 10 years. We
introduced grid computing to the course in 2007 and 24
students are currently on the course. Most of the students on
the course are from industry. The feedback from the students
is highly positive. We will be running this course on campus
at Brunel University in the Unite Kingdom in Sept. 2008.

REFERENCES
[1] I. Foster and C. Kesselman, “The grid, blueprint for a new computing

infrastructure,” Morgan Kaufmann, 1998.
[2] QAA Framework for High Education Qualifications in England, Wales,

and Northern Ireland,
http://www.qaa.ac.uk/academicinfrastructure/FHEQ/EWNI/default.asp

[3] QAA Benchmark “Annex to Academic Standards – Engineering,
http://www.qaa.ac.uk/academicinfrastructure/benchmark/masters/MEngi
ntro.asp

[4] Grid Security Infrastructure,
http://www.globus.org/security/overview.htm

[5] M. P. Atkinson, D. De Roure, A. N. Dunlop, G. Fox, P. Henderson, A. J.
G. Hey, N. W. Paton, S. Newhouse, S. Parastatidis, A. E. Trefethen, P.
Watson, J. Webber, “Web service grids: an evolutionary approach,”
Concurrency - Practice and Experience, vol. 17, no. 2-4, pp. 377-389,
2005.

[6] I. Foster, C. Kesselman, J. M. Nick, S. Tuecke, “Grid services for
distributed system integration,” IEEE Computer, vol. 35, no. 6, pp. 37-
46, 2002.

[7] M. Li and M.A.Baker, “The grid: core technologies,” Wiley, England,
2005.

[8] M. J. Dunkin, and J. Barnes, J, “Research on teaching in higher
education,” in M. C. Wittrock (Ed.) Handbook of Research on Teaching,
3rd edition. New York: Macmillan. pp 754-777, 1986.

[9] P. Ramsden, “Learning to teach in higher education,” London:
Routledge, 1992.

[10] H. Fry, S. Ketteridge, and S. Marshall, “Understanding student
learning,” in Fry, H., Ketteridge, S. And Marshall, S. (Ed.) A Handbook
for Teaching and Learning in Higher Education: Enhancing Academic
Practice, 2nd edition. London & New York: RoutledgeFalmer. pp 9-25,
2004.

[11] D. P. Ausubel, J.D.Novak, and H. Hanesian, “Educational psychology: a
cognitive view,” New York: Holt, Rinehart & Winston, 1968.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 2, 2008

77

[12] R. Goldman and R. Warren, “Configuration in discriminate space: a
heuristic approach to study techniques,” In Proc. of Western
Psychological Association, Portland, 1972.

[13] F. Marton and R. Saljo, “On qualitative differences in learning: outcome
and process,” British Journal of Educational Psychology, Vol. 46 pp 4-
11, 1976.

[14] M.C. Wittrock, “Students' thought processes,” In Wittrock M.C. (Ed.)
Handbook of Research on Teaching. Third Edition. New York:
Macmillan, 1986.

[15] P.R.Thomas and J.D. Bain, “contextual dependence of learning
approaches: the effects of assessments,” Human Learning, vol. 3 pp 227-
240, 1984.

[16] L. Svensson, “On qualitative differences in learning: III - study skill and
learning,” British Journal of Educational Psychology, Vol. 47 pp 233-
243, 1977.

[17] D.A. Kolb, “Experiential learning: experience at the source of learning
and development,” Prentice-Hall, Englewood Cliffs, NJ, 1984.

[18] S. Brown, “The art of teaching small groups,” New Academic, Spring
1997, pp3-6.

[19] R.M. Felder, and R. Brent, “Effective strategies for cooperative
learning,” J. Cooperation & Collaboration in College Teaching, vol. 10,
no. 2, pp. 63–69, 2001.

[20] Z. Mahmood, “Provision of computing education in Pakistan: an
experience report,” International Journal of Education and Information
Technology, vol. 1, no. 1, pp. 157-160, 2007. NAUN Press.

[21] Z. Mahmood, “A framework for software engineering education: a group
projects approach,” International Journal of Education and Information
Technology, vol. 1, no. 1, pp. 153-156, 2007. NAUN Press.

[22] S. Campanella, G. Dimauro, A. Ferrante, D. Impedovo, S. Impedovo ,
M. G. Lucchese, R. Modugno, G. Pirlo, L. Sarcinella, E. Stasolla, C. A.
Trullo, “Engineering e-learning surveys: a new approach,” International
Journal of Education and Information Technology, vol. 1, no.1, pp.127-
135, 2007. NAUN Press.

[23] M. Qi, and P. Willis, “Quasi3D cel based animation”, Proc. of Vision,
Video and Graphics 2003 (VVG03), Bath, UK, 2003.

[24] G. Amdahl, “Validity of the single-processor approach to achieving
large scale computing capabilities,” AFIPS Conference Proceedings,
vol. 30, AFIPS Press, 1967, pp. 483–485.

Maozhen Li is a Lecturer in the School of Engineering and Design at Brunel
University, UK. He received the PhD in 1997 from Institute of Software,
Chinese Academy of Sciences, Beijing. He joined Brunel University as a full-
time lecturer in 2002. His research interests are in the areas of grid computing,
distributed problem-solving environments for large-scale simulations,
intelligent systems, service-oriented computing, semantic web. He has over 50
scientific publications in these areas including journals of IEEE Transactions
on Knowledge and Data Engineering, IEEE Transactions on Neural Networks,
IEEE Distributed Systems. He authored “The Grid: Core Technologies”, a
well-recognized textbook on grid computing which was published by Wiley in
2005. This book introduces grid computing in a systematic way. He has served
the Technical Programme Committee of over 30 conferences. He is on the
editorial boards of Encyclopedia of Grid Computing Technologies and
Applications, and the International Journal of Grid and High Performance
Computing (IGI). He is the course director for MSc in Distributed Computing
Systems Engineering. He is a member of IEEE.

Marios Hadjinicolaou received the BSc (honours) degree in Electronics from
the University of London in 1979 and the M.Sc. and Ph.D. degrees in
Electronic and Electrical Engineering from Brunel University, U.K., in 1982
and 1986 respectively. He is a Senior Lecturer at the Department of Electronic
and Computer Engineering at Brunel University engaged in teaching wireless
communications. Also, he is a Member of the Centre for Media
Communications Research at Brunel University. His research interests are in
the field of multiple access systems, video-on-demand, telemedicine,
teletraffic engineering and QoS studies for multimedia applications. He has
published more than 50 papers in refereed journals and conferences. He is a
regular reviewer for IEEE/IET journals. He is a Chartered Engineer, Member
of the IET and Member of the IEEE.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 1, Volume 2, 2008

78

