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Abstract1— Integrity and authentication of long-term stored 

information are important issues that should be considered in secure 
storage systems. Digital archived information may include different 
types of objects with different representation, such as, documents, 
images and database tables. Authenticity of such information should 
be verified, especially when it transferred through communication 
channels. Authentication verification techniques are used to verify 
that information in the archive is authentic and has not been 
unintentionally or maliciously altered. In addition to detecting 
malicious attacks, integrity checks also identify data corrupted 
information. Message authentication code (MAC) algorithms are 
keyed hash functions whose specific purpose is message 
authentication. In most cases, MAC techniques use iterated hash 
functions, and those techniques are called iterated MACs. Such 
techniques usually use a MAC key that is used as an input to the 
compression function, and is involved in the compression function f 
at every stage. A wide range of authentication techniques use un-
keyed hash functions, which are known as modification detection 
codes (MDCs). MD4, MD5, SHA-1 and RIPEMD-160 are some of 
many. Recently, powerful new attacks on hash functions such MD5 
and SHA-1, among others, suggest introducing more secure hash 
functions. In this paper, we propose a new MAC methodology that 
uses an input MAC key on the compression function, to permute the 
order of message words and shifting operation in the compression 
function. The new methodology can be used in conjunction with a 
wide range of modification detection code techniques.  Using MD5 
algorithm as a model, a new MD5-MAC algorithm is presented. The 
MD5-MAC algorithm uses the MAC key in building the hash 
functions by defining the order for accessing source words and 
defining the number of bit positions for circular left shifts.  
 

Keywords— Message Authentication Code, Modification 
Detection Code, Information Security, Cryptography, Hashing, MD5 

I.  INTRODUCTION 

he integrity and authenticity of information transmitted 
or stored in an unreliable medium is considered as a 
prime necessity in modern environments of open 

communications [13, 18, 25]. Authentication is defined as the 
verification of the source of data, and that this data came from 
the claimed source [2, 14, 30]. Usually integrity comes in 
conjunction with the authentication algorithm. Integrity is 
assuring that, what the sender has transmitted, the receiver has 

                                                           

Manuscript received January 17, 2009: Revised version received April 30, 
2008. This work was supported by the Center of Excellence in Information 
Assurance, King Saud University.  

K. S. Alghathbar is with the Center of Excellence in Information Assurance 

and the College of Computer and Information Sciences, King Saud 
University, Riyadh 11543, KSA +96650-529-5367, fax: +9661-467-5423; e-
mail: kalghathbar@ksu.edu.sa. 

A. M. Hafez is with College of Computer and Information Sciences, King 
Saud University, Riyadh 11543, KSA +96650-529-5367, fax: +9661-467-
5423; e-mail: ahafez@ksu.edu.sa. 

received, and there is no accidental or intentional unauthorized 
modification of the transmitted data [6, 29, 33].  

Compared to a large number of modification detection code 
algorithms (MDC) [6, 12, 15], many of them are block-cipher 
based. Those with relatively short MAC bit lengths (e.g., 32-
bits for MAA [8]) or short keys (e.g., 56 bits for MACs based 
on DES-CBC [3]) may still offer adequate security. This is 
depending on the computational resources available to 
adversaries, and the particular environment of application. 
Many iterated MACs can be described as iterated hash 
functions. In this case, the MAC key is generally part of the 
output transformation; it may also be an input to the 
compression function in the first iteration, and be fed to the 
compression function at every stage. An upper bound on the 
security of MACs should be considered,  based on an iterated 
compression function, which has n bits of internal chaining 
variable, and is deterministic (i.e., the m-bit result is fully 
determined by the message). The MAC forgery is possible 
using O(2n/2) known text-MAC pairs. The most commonly 
used MAC algorithms are based on block ciphers that make 
use of cipher-block-chaining (CBC) [1, 4, 7, 10]. While CBC-
MAC is secure for messages of a fixed number of blocks t, 
additional measures are required if variable length messages 
are allowed. RIPE-MAC [17] is a variant of CBC-MAC, 
producing 64-bit MACs. The internal encryption function E 
being either single DES or two-key triple-DES, respectively, 
requiring a 56- or 112-bit key k. The compression function 
uses a non-invertible chaining  after padding, a final 64-bit 
length-block, giving bit length of original input, is appended; 
final output block is encrypted.  A common suggestion is to 
construct a MAC algorithm from a modification detection 
Codes (MDC) algorithm, by simply including a secret key k as 
part of the MDC input [6, 10, 28, 33]. A concern with this 
approach is that implicit but unverified assumptions are often 
made about the properties that MDCs have; in particular, 
while most MDCs are designed to provide one-wayness [28, 
32, 34]. Even in the case where a one-way hash function 
precludes recovery of a secret key that is used as a partial 
message, this does not guarantee the infeasibility of producing 
MACs for new inputs [9, 18].  A more conservative approach 
for  building  a MAC from an MDC is to make the MAC 
compression function depend on k, implying the secret key be 
involved in all intervening iterations; this provides additional 
protection in the case that weaknesses of the underlying hash 
function becomes known. Such technique is employed using 
MD5. It provides performance slightly slower to that of MD5. 
A MAC technique alternatively can be based on cyclic 
redundancy codes [15, 31]. 

T
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Powerful new attacks on the hash functions MD5 and SHA-
1, among others [12, 18, 19, 25, 28], have suggested 
introducing a new and presumably more secure hash function 
[12, 18]. In [28], an attack on MD5 has been introduced that 
finds collisions of MD5 in about 15 minutes to an hour 
computation time. The attack is a differential attack, where 
exclusive-ors are not used as a measure of difference. Instead 
of that, it uses modular integer subtraction as the measure. The 
same attack could find collisions of MD4 in less than a 
second. In [19], the attack was applied to SHA-0 and all 
variants of SHA-1.  The attack could find real collisions of 
SHA-0 in less than 239 hash operations. The attack was 
implemented on SHA-1, and collisions could be found in less 
than 233 hash operations.  

In [1], we have proposed a new approach that is based on 
the message authentication code approach NMACA. In 
NMACA a secret key K is used to determine the order of 
using message words. Different algorithms such as, MD5 and 
SHA-1, can be adopted for the approach implementation. In 
NMACA-MD5, the 128 bit secret key K is used to determine 
the MD5 algorithmic steps.  The access order for message 
words and the shift amounts in the distinct rounds are 
determined by K. Based on the experimental results, the 
algorithm is almost as fast as the MD5 and is as robust as 
MD5. In the performed experiments, the proposed algorithm 
has been compared to MD4, MD5, and MAC-MD5 
algorithms. The results have shown that the speed 
performances are comparable. Two measures are considered, 
the confession and diffusion measures, where number of bits 
changed in cipher code due to slight changes in the input 
message and/or MAC key, are used as measures of 
performance. Those measures illustrate the avalanche effect of 
the underlying hash function. Percentage of change in a 512 
bit message according to changes in number of bits shows that 
the new function NMACA-MD5 has a high avalanche effect. 
This is due to its high randomness.  

In this paper, the NMACA approach which is based on the 
message authentication code approach NMACA is explored. 
In this approach, a secret key K is used to form a fast robust 
MAC algorithm. Different algorithms such as, MD5 and SHA-
1, can be adopted for the approach implementation. 
Depending on the technique used, rather than using the secret 
key K as the initial chaining values to the algorithm, K is used 
to determine the access order for message words. In NMACA-
MD5, a 128 bit key K is used to determine the MD5 
algorithmic steps, rather than using the key as the initial 
chaining values to the algorithm.  K is used to determine the 
access order for message words and to determine the shift 
amounts in the distinct rounds.  
 

The rest of this paper is organized as follows: in section 2, 
we give related works in the area of message authentication 
coding. In section 3, we give the requirements needed for 
MAC techniques. In section 4, we give the problem definition.  
In section 5, we present the experimental results. The paper is 
concluded in section 6. 

 
 
 

II. RELATED WORK 

There are two major approaches to implement 
authentication/integrity mechanisms, the use of digital 
signature and the use of message authentication code [20, 26, 
33]. 

In digital signature approach, public key cryptography is 
used, which uses a public key and a private key. A sender 
signs a message digitally by computing a hash function (or 
checksum) over the data, and then encrypts the hash function 
value using the private key. The encrypted hashing value is 
sent to the receiver accompanied with the data. The receiver 
would verify the authenticity of the received data by 
recalculating the hash value and decrypting the transmitted 
hashing value using the public key.  The two hash values are 
compared, if matched then the message is authentic and came 
from the claimed sender. 

In Message Authentication Code (MAC), a shared secret 
key is used instead of the private key.  There are several ways 
to provide authentication/integrity by using the secret key [21, 
24]. The main two are Hash-Based Message Authentication 
Codes (HMAC), and Encryption-Based Message 
Authentication Codes. 

In HMAC, a strong hash function algorithm, such as MD5 
or SHA1, is used to create a hashing value over the data and 
the embedded secret key.  Different HMAC algorithms use 
different embedding strategies. At the receiver side, the same 
hash function is applied on the concatenated data and key. The 
authenticity and integrity of the received data is assured by 
matching the hashing value of the received message with the 
re-calculated hashing value. 

In Encryption-Based Message Authentication Codes, a 
combination of hashing and encryption is used [2, 14]. A 
hashing value is calculated over the data using the hashing 
algorithm. The encryption algorithm is used to encrypt the 
hashing value using the secret key. At the receiver side, the 
hashing value is recalculated, and using the secret key, the 
sent hashing value is decrypted. The authenticity and integrity 
of the received data is assured by matching the recalculated 
hashing value with the decrypted hashing value.  

Many algorithms have been proposed for mechanisms that 
provide integrity checks based on a secret key [6, 12, 21, 27]. 
Those mechanisms are known as message authentication 
codes (MACs) mechanisms. Message authentication codes are 
used with a secret key in order to authenticate transmitted or 
stored information. Typically those mechanisms use a 
cryptographic hash functions in conjunction with secret keys 
to guarantee that authenticity of information. Generally, MAC 
mechanisms should fulfill the following features: 
 

• The used hash function should be available, well 
defined and mostly doesn’t need much modification. 

• The performance of the hash function should not be 
changed due to the use in the proposed mechanisms.  

• Secret Keys should be handled in a simple way. 
• The cryptographic analysis of the authentication 

mechanism should be based on reasonable hash 
function assumptions. 
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• The hash function of the MAC mechanism should be 
easily replaced with other hash functions if 
necessary. 

III.  REQUIRMENTS FOR MAC’S 

In designing a MAC technique, some requirements should 
be satisfied. For a message X with cipher code Y, the 
requirements could be summarized as follows: 
 

• It is infeasible to find another message X’ with the 
same cipher code Y. 

• A cipher code Y should be uniformly distributed 
• A cipher code Y should depend equally on all bits of 

the message  
 

The above requirements are used in assessing the security of 
a MAC function, where the different types of attacks should 
be considered. In the first requirement, message replacement 
attacks are considered, where the attacker does not know the 
MAC key, and is still able to construct a new message X’ to 
match a given cipher code Y. The second requirement is 
concerned with preventing a brute-force attack based on 
certain input X.  The last requirement satisfies the condition 
that the MAC algorithm should not be weak with respect to 
certain parts of the message. 
 

A. Requirements for Hash Functions 
The purpose of a hash function is to produce a fixed length 

code that represents an input, which could be a message, an 
image, a file, or any other block of data.   A good hash 
function should satisfy some requirements that make it is 
extremely difficult to find two input  messages with the same 
hash code, and there is no obvious way to relate the message 
to its hash code. Hash functions and block ciphers have some 
similarities. A hash function h should satisfy the following 
requirements. 
 

• h can be applied on different messages X with 
different sizes.  

• The output of h produces a fixed-length output Y.  
• Easiness of computing Y=h(X) for any message X. 
• One-way hash function or preimage resistance, where 

for any specified output, it is computationally 
infeasible to find any input that is hashed to that 
output, or if given Y1 is the hash value of an 
unknown X1, then it is computationally infeasible  to 
find  X2 such that Y1=h(X2). 

• Weak collision resistance or 2nd-preimage resistance, 
where for any specified input X1 , such that 
Y1=h(X1), it is computationally infeasible to find 
another input X2 such that Y1=h(X2). 

• Strong collision resistance, where for any two distinct 
inputs X1 and X2, it is computationally infeasible to 
have h(X1) = h(X2). 

 
B. Attacks on hash functions 
For a given hash function h, the security of h is the 

complexity of applicable attacks, and the storage complexity 
of the attacks. 

 
• For a message X1 and n-bit hash function h(x), 

finding an input X2 colliding with X1 could be done 
by picking a random message X2 and checking if 
h(X1) = h(X2). Assuming the hash value is uniformly 
distributed, the probability of finding a match is 2−n. 
Such case is known as a birthday attack which allows 
colliding pairs of messages X1, X2 with h(X1) = 
h(X2), to be found in about 2n/2 operations, and 
negligible memory. An n-bit hash function has ideal 
security if given a hash output Y, producing each of a 
preimage and a 2nd-preimage requires approximately 
2n operations; and  producing a collision requires 
approximately 2n/2 operations. 

• A MAC key could be determined by exhaustive 
search. For a known text-MAC pair (X, Y), an 
attacker may compute the n-bit cipher code on that 
text under all possible key values, and check the 
results against the input pair. For a k-bit key space, 
the number of such trails is 2k MAC operations, in 
which case 1+2k−n candidate keys remain. Assuming 
the MAC behaves as a random mapping, it can be 
shown that one can expect to reduce this to a unique 
key by testing the candidate keys using just over t/n 
text-MAC pairs. Ideally, a MAC key (or information 
of cryptographically equivalent value) would not be 
recoverable in fewer than 2k operations. As a 
probabilistic attack on the MAC key space distinct 
from key recovery (note that for a k-bit key and a 
fixed input), a randomly guessed key will yield a 
correct (n-bit) MAC with probability ~ 2−k for k < n. 

• MAC forgery is defined as producing any input-
MAC code (X, Y) without having the knowledge of 
the key K. For an MAC algorithm with n bits, 
guessing successively a MAC code Y for a given 
input X, or guessing a preimage X for a given MAC 
output code Y, has probability 2−n, same as for an 
MDC. A difference here, however, is that guessed 
MAC code cannot be verified without the knowledge 
of the (X, Y) pairs –either by knowledge of the key 
K, or an algorithm that provides MAC codes Y’s for 
given inputs X’s. In such case, an attacker could be 
able to produce new pairs (X, Y) with at most 
probability less than Max (2−k; 2−n). 

• For the preimage attacks and the second preimage 
attacks, an attacker, with large storage, can, off line, 
computes a large number of hash function (X, Y) 
pairs and could trade off the off line computation for 
subsequent attack time. For an n-bit hash value with 
2n possible values, if 2r randomly selected (X, Y) 
pairs are stored,   the attacker could decrease the 
number of possible computations to 2n-r. For 
comparable values of n and r, such case could find a 
preimage in a possible number of trials, e.g., if n =64 
and r=34, the probability of finding a preimage is 
increased from 2−64 to 2−30. Similarly, the probability 
of finding a second preimage is increased to 2r times 
its original value when 2r input-output pairs are off 
line computed and stored in memory. 
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• For a hash function h with n-bit hash codes, at least 
280 operations are acceptably beyond computational 
feasibility. For a one-way hash functions, n >=80 is 
one of the needed requirements. Off-line attacks 
require at most 2n operations. If off line computations 
are used, the number of computations could be 
reduced. For a collision resistant hash functions, n >= 
160 is considered as a needed requirements. For a 
MAC, a cipher code of length n bits; n >= 64, and a 
MAC key of 64-80 bits are considered sufficient for 
most applications. A MAC key should be regularly 
changed. If a MAC key remains in use, off-line 
attacks may be possible given one or more (X, Y) 
pairs. For a suitable MAC algorithm, preimage, 2nd-
preimage resistance, and collision resistance should 
follow directly from lack of knowledge of the key. 
For such attacks, security should depend only on the 
MAC key size.  

In [17], Shannon defined the entropy h(p) as  

C. Attacks on key selection 

 
h(p)= - ∑pilog2(pi) 

 
h(p) is a measure of the number of uncertainty bits associated 
with symbols i that has probability pi.  Key guessing attacks 
can be determined by measuring how bad a key distribution is. 
This is done by calculating key K entropy. Entropy of K; 
E(K), is the number of real bits of information in K. Key K 
can be determined in 2E(K)guesses, and  
 

E(K)= - ∑pKlog2(pK) 
 

pk is the probability of key K. Guessability is a related 
measure that is used to measure how the key can be guessed. 
Many measures are used in calculating guessability.  One of 
those measures is the expected number of guesses required to 
get the correct key. Dictionary attacks brute force attacks 
strategies are considered as common strategies that are used in 
getting the right key. In brute force attacks, all key symbols 
are guessed in random order.  In dictionary attacks, those 
symbols that deemed more probable are guessed first. A 
modified version of the dictionary attacks is called the optimal 
dictionary attack. In optimal dictionary attack, symbols are 
guessed in decreasing order of probability. After each symbol 
guessing, those symbols produced by the source are relabeled 
so that the first symbol in order has probability p1 is the most 
likely and the sequence of other symbols i with probability pi 
are ordered in a non-increasing order. The expected number of 
guesses is  

 
G(p)= - ∑ipi 

 
The average value of G(p) is  
 

(n+1)/2 
 

This is the number of guesses needed to correctly guess the 
key K from n equally likely possibilities. To relate G(p) with 
h(p), we define a measure H(p) as  
 

H(p)= (2h(p) +1)/2 
 

Experimentally [16], the relationship between G(p) and h(p) is  

0.7 H(p) ≤ G(p) ≤ H(p) 

In this work, in addition to the analytical comparisons done 
in section 4, two more measures are used to justify the 
strength of MAC hash functions, namely, the confusion and 
the diffusion.  The confusion measure is defined as the 
complexity of the relation between the key and the hash value, 
while the diffusion is defined as the relationship between the 
input message and the hash value. 

D. Confusion and Diffusion 

The confusion of a hash function h is evaluated by 
recognizing changes in the hash value with respect to a slight 
change in the MAC key. For message X and MAC key K, the 
generated hash value Y is defined as a function h of both X 
and K. If K is slightly changed to K1, the generated hash value 
should be changed to Y1, and Y1 is completely unrelated to Y. 
In other words, it is highly inapplicable to find a relation 
between Y = h(X,K) and Y1 = h(X,K1) where K and K1 are 
different, even if difference between the both of them is very 
little. A hash function h is considered highly confused if the 
generated hash values for slightly different MAC keys, even in 
one bit, then the generated hash values are completely 
different. Since the probability of having one bit of the hash 
value flipped is ½, then, assuming the distribution of such 
change is uniformly distributed, then half of the randomly 
located bits, would be flipped. If the hash function has a weak 
confusion property, one can easily use brute force attacks to 
determine the MAC value. In such case, searching in the 
search space will be computationally acceptable. By changing 
few bits in K, then measure the relative or normalized number 
of changed bits in Y and Y1,  α , where 

α =Normalized number of bits changed in (h(X,K), h(X,K1)) 
 

By comparing α with a threshold value αmin , 0≤αmin≤1, if α 
≥αmin , then the hash function h has a high confusion value 
with respect to MAC key K. 

Similar to the confusion measure, the diffusion of a hash 
function h is observed by getting changes in the hash value 
with respect to slight changes in input message X. For 
message X and MAC key K, the generated hash value Y is 
defined as a function h of both X and K. If X1 is a slightly 
changed message from X1, the generated hash value is 
changed to Y1. Ideally Y1 should be completely unrelated to 
Y. In other words, it is highly inapplicable to find a relation 
between Y = h(X, K) and Y1 = h(X1, K) where X and X1 are 
different. This could happen even if the difference between the 
X and X1 is quite little, say one bit. A hash function h has a 
good diffusion if for slightly different messages, could be one 
bit difference, the generated hash values are completely 
different. Using the same argument we used in the confusion 
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measure, the probability of having one bit of the hash value 
flipped is ½, then, assuming the distribution of such change is 
uniformly distributed, then half of the randomly located bits, 
would be flipped. If the hash function has a weak diffusion 
property, one can easily use brute force attacks to determine 
the message X. If few bits of X are changed, the diffusion 
measure is the relative or normalized number of changed bits 
in Y; β, where 
 
 β  =Normalized number of bits changed in  (h(X,K), h(X1 ,K)) 
 

By comparing  β  a threshold βmin, 0≤βmin≤1, if β ≥βmin , then 
the hash function h has a high diffusion value with respect to 
the input message X. 

IV.  The NMACA Approach 

In this section, the NMACA approach is demonstrated on 
the MD5 technique. The new technique is called the NMACA-
MD5 message authentication code algorithm. NMACA-MD5 
takes as an input, a message X of arbitrary length and a secret 
128 key. The produced cipher code is a 128-bit MAC. It is 
conjectured that it is computationally infeasible to produce 
two messages having the same MAC, or to produce any 
message having a given pre-specified target MAC.  NMACA-
MD5 algorithm does not require any large substitution tables; 
the algorithm can be coded quite compactly. NMACA-MD5 is 
more conservative in design than previous well known 
algorithms. The details of the NMACA-MD5 algorithm will 
be described in section 4.1. 

The structure of the proposed algorithm is illustrated in 
figure 1. 

 
A. The NMACA-MD5 message authentication code 

algorithm 
A more conservative approach to build a MAC from an 

MDC is to arrange the MAC compression procedure such that 
it depends on secret key k, implying that k is involved in all 
intervening iterations. This provides an additional protection 
in case when weaknesses of the underlying hash function 
becomes known. Algorithm MD5-MAC is such a technique. 
MD5-MAC is obtained from MD5 by replacing the four 32-bit 
IV’s of MD5 by the secret key K [1].  We propose the new 
NMACA-MD5 by involving the key K in the different steps of 
MD5 algorithmic, rather than using the key as the initial 
chaining values to the algorithm.  K is used to determine the 
access order for message words and to determine the shift 
amounts in the distinct rounds. In the proposed algorithm, only 
two changes are done to the MD5 algorithm. Both algorithms 
use the same initial chaining values (IV’s), apply the same 
hash functions, and use the same padding process to adjust the 
length of the transmitted message. The two differences 
between the MD5 and the NMACA-MD5 techniques are the 
order of message words, and the order of values that are used 
in circular left shifts on the four auxiliary functions. The 128-
bit secret key K is divided into two parts, each of 64 bits. The 
first 64 bits are used to rearrange the order of the message 
words. Those 64 bits of K are divided into four divisions; each 
has 16 bits. Each of the 16 bits of K is used to rearrange a 
block of 16 words (32-bit words) of the input message. 

Starting from a vector of a predefined order of accessing each 
of 16 words, the order of such vector is changed according to 
the related part in K. The other 64 bits of K are used to define 
the numbers of circular left shifts used in the four auxiliary 
functions. Using the same key related permutations, the order 
of circular shifts in each of the four auxiliary functions is 
defined by using one of the 16-bits of K. 

 

 
(a) General NMACA-MD5 

 

 
(b) Detailed NMACA-MD5 

 
Figure 1.  NMACA-MD5 

 
The proposed algorithm is as fast as MD5 and is as robust as 
MD5. The algorithm is depicted below. 
 
Algorithm NMACA- MD5 
 
INPUT: bit string x of arbitrary bit length b ≥ 0 and128-bit 
key K.  
OUTPUT: 128-bit hash-code of x.  
 
a) Define four 32-bit initial chaining values (IVs): 

h1=0x67452301,h2= 0xefcdab89, h3 = 0x98badcfe, 
h4=0x10325476. 
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b) Four auxiliary functions  are defined, such that each 

takes as input three 32-bit words and produce, as an 
output, a 32-bit word. They apply the logical operators 
and, or, not and xor on the input bits. 
f(B, C, D)= (B and C) or (not(B) and D) 
g(B, C, D)= (B and D) or (C and not(D)) 
h(B, C, D)= (B xor C xor D) 
i(B, C, D)= (C xor (B or not(D)) 
 

c) Define additive 32-bit constants:  
y[j] = first 32 bits of binary value abs(sin(j+1)), 0 ≤ j ≤ 
63, where j is in radians and “abs” denotes absolute 
value. 
 

d) Use secret key: 
 

d.1) Define order for accessing source words by using the 
secret key K:   
z[0::15]   = [Permutation PO of the 1st 16 bits of K,  P0 : 
{ 0, 1, …, 15} → {O i | 0 ≤ Oi ≤ 15}], 
z[16::31] = [Permutation P1 of the 2nd 16 bits of K,  P1 : 
{ 16, 17, …, 31}→ {O i | 16 ≤ Oi ≤ 31}], 
z[32::47] = [Permutation P2 of the 3rd 16 bits of K,  P2 : 
{ 32, 33, …, 47} → {O i | 32 ≤ Oi ≤ 47}], 
z[48::63] = [Permutation P3 of the 4th 16 bits of K,  P3 : 
{ 48, 49, …, 63} 
 → {O i | 48 ≤ Oi ≤ 63}] 

d.2) Define the number of bit positions for left shifts 
(rotates) by using the secret key K: 
s[0::63] =  [Permutation Ps of the last 64 bits of K,  Ps : 
{ 0, 1, …, 63} → {O i | 0 ≤ Oi ≤ 63}], 
 

e) Preprocessing: 
Pad x such that its bit length is a multiple of 512, as 
follows. Append a single a bit of 1, then append (r−1) 
bits of 0’s, r=512-(b+64) mod 512,   r≥ 0. Finally append 
the least significant 32 bits of b, then append the next 
least significant 32bits of b, i.e., the last 64 bits of b with 
least significant word first.  Let m be the number of 512-
bit blocks in the resulting string (b + r + 64 = 512m =32 
x 16m). The formatted input consists of 16m 32-bit 
words: x0 x1 … x16m-1. Initialize: (H1; H2; H3; H4) ← (h1; 
h2; h3; h4). 
  

f) Processing: 
For each i from 0 to m − 1, copy the ith block of 16 32-
bit words into temporary storage: X[j] =x16i+j; 0 ≤  j ≤  
15, then process these as below in four 16-step rounds 
before updating the chaining variables: 
(initialize working variables) 
 

(A;B;C;D) ← (H1; H2; H3; H4). 
 

(Round 1)  
For j from 0 to 15 do the following: 
t ←  (A + f(B;C;D) + X[z[j]] + y[j]),  
(A;B;C;D) ← (D; t ← s[j];B; C). 
 

(Round 2) 
For j from 16 to 31 do the following: 
t ← (A + g(B;C;D) + X[z[j]] + y[j]),  
(A;B;C;D) ← (D; t ← s[j];B; C). 

 
(Round 3) 

For j from 32 to 47 do the following: 
t ← (A + h(B;C;D) + X[z[j]] + y[j]), (A;B;C;D) ← 
(D; t ← s[j];B; C). 

 
(Round 4) 

For j from 48 to 63 do the following: 
t ← (A + k(B;C;D) + X[z[j]] + y[j]),  
(A;B;C;D) ← (D; t ← s[j];B; C). 

 
(update chaining values) 

(H1;H2;H3;H4) ← (H1+A;H2+B;H3+C;H4+D). 
 

g) Completion 
The final MAC value is the concatenation: H1||H2||H3||H4 
(with first and last bytes the low- and high-order bytes of 
H1, H4, respectively). 

V. EXPERIMENTAL RESULTS 

In this section, experiments results are shown, that are used 
to show the performance of MD5 and NMACA-MD5 in terms 
of speed and avalanche effect. We have run our experiments 
on a 2.4 GHz machine, with 4 GB of RAM and running 
windows Vista. Messages of up to 1Mbytes are used. From the 
results obtained in figure 2, we have found that, the speed 
performance of the NMACA-MD5 algorithm is comparable to 
the speed of the MD5 algorithm. Actually, such performance 
is predictable. The difference between the performance of 
MD5 and NMACA-MD5 comes from three different factors,   

 
• The initial time needed in calculating the order of 

message words. 

• The initial time needed in calculating the number of 
circular left shifts 

• The time needed for circular left shifting. Depending on 
the key K, the time needed for circular left shifting in 
NMACA-MD5 could be less or more than the time 
needed in MD5. 
 

The first two factors are fixed for all messages regarding 
its length, and the third factor depends on the message length 
and should have some effect on the performance of NMACA-
MD5.  

 
Also, the experimental results have shown that by using 

different bit changes in the MAC key K, we have found that 
the confusion effect of the proposed approach is almost 50%, 
which is considered an indicator of the quality of the hash 
function used. The results is the same as in the MD5 approach, 
which means the use of NMACA with MD5 has not degraded 
the quality of the MD5 approach. The same applies to the 
diffusion effect.  
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Changed Bits 
(In MAC Key) NMACA-MD5 

5 50.26% 
10 50.39% 
15 50.18% 
20 49.89% 
25 49.94% 
30 50.05% 
35 49.96% 
40 49.91% 
45 49.57% 
50 49.96% 

 
(a) 

 

 
 

(b) 
 
 

 
 
 
 

Change Bits 
(In Input Message) MD5 NMACA-MD5 

5 49.86 50.019 
10 49.08 49.991 
15 50.01 50.013 
20 49.43 50.036 
25 49.58 50.056 
30 49.9 49.971 
35 50.07 49.955 
40 50.19 50.031 
45 49.66 50.034 
50 49.61 49.933 

 
(a) 

 

 
 

(b) 
 
 
 

VI. CONCLUSIONS 

We have proposed a new approach that is based on the 
message authentication code approach NMACA. In NMACA, 
using any of the MDC techniques, such as, MD5 and SHA-1, 
a secret key K is involved in all steps of applying the used 
MDC technique. In this work, we have adopted the MD5 
technique to demonstrate the proposed NMACA approach; we 
call it NMACA-MD5. In NMACA-MD5, a 128 bit secret key 
K is used to determine the MD5 algorithmic steps.  The access 
order of message words and the shift amounts of the distinct 
rounds are determined by K. Based on our experimental 
results, NMACA-MD5 has been compared to MD5. The 
results have shown that the speed performance results of both 
implementations are almost the same. That is due to the fact 

0

5

10

15

20

25

200K 400K 600K 800K 1000K

S
p

e
e

d
 i
n

 μ
se

c

Messege Size

MD5 NMACA-MD5

40

45

50

55

60

0 20 40 60

%
 c

h
a

n
g

e
 i

n
 C

ip
h

e
r 

C
o

d
e

Bits Changed in MAC Key K

NMACA-MD5 Confusion 

Measure

NMACA-MD5

40

45

50

55

60

0 20 40 60

%
 C

h
a

n
e

 i
n

 C
ip

h
e

r 
C

o
d

e

Bits Changed in Input Message

MD5 & NMACA-MD5 Diffusion Measure

MD5

NMACA-MD5

Figure 2. Speed performance of MD5 and 
NMACA-MD5  

Figure 3. Confusion Measure or the 
Avalanche Effect of MAC key K 

 

Figure 4. Diffusion Measure or the 
Avalanche Effect of Message X 
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that the only extra overhead needed for NMACA-MD5 is the 
processing time of defining the reordering of message words 
and circular left shifts. The diffusion and confusion effects are 
studied by studying the effect of changes in a message bits 
(diffusion) and MAC key bits (confusion). Those two 
measures illustrate the avalanche effect of the underlying hash 
function. The experimental results have shown that, by using 
different bit changes in the input message and the MAC key 
K, we have found that the confusion and diffusion effects of 
the proposed approach are almost 50%, which is considered an 
indicator of the quality of the hash function used.  
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