
The Use of NMACA Approach in

Building a Secure Message Authentication Code

Khaled S. Alghathbar and Alaaeldin M. Hafez

Abstract1— Integrity and authentication of long-term stored

information are important issues that should be considered in secure
storage systems. Digital archived information may include different
types of objects with different representation, such as, documents,
images and database tables. Authenticity of such information should
be verified, especially when it transferred through communication
channels. Authentication verification techniques are used to verify
that information in the archive is authentic and has not been
unintentionally or maliciously altered. In addition to detecting
malicious attacks, integrity checks also identify data corrupted
information. Message authentication code (MAC) algorithms are
keyed hash functions whose specific purpose is message
authentication. In most cases, MAC techniques use iterated hash
functions, and those techniques are called iterated MACs. Such
techniques usually use a MAC key that is used as an input to the
compression function, and is involved in the compression function f
at every stage. A wide range of authentication techniques use un-
keyed hash functions, which are known as modification detection
codes (MDCs). MD4, MD5, SHA-1 and RIPEMD-160 are some of
many. Recently, powerful new attacks on hash functions such MD5
and SHA-1, among others, suggest introducing more secure hash
functions. In this paper, we propose a new MAC methodology that
uses an input MAC key on the compression function, to permute the
order of message words and shifting operation in the compression
function. The new methodology can be used in conjunction with a
wide range of modification detection code techniques. Using MD5
algorithm as a model, a new MD5-MAC algorithm is presented. The
MD5-MAC algorithm uses the MAC key in building the hash
functions by defining the order for accessing source words and
defining the number of bit positions for circular left shifts.

Keywords— Message Authentication Code, Modification
Detection Code, Information Security, Cryptography, Hashing, MD5

I. INTRODUCTION

he integrity and authenticity of information transmitted
or stored in an unreliable medium is considered as a
prime necessity in modern environments of open

communications [13, 18, 25]. Authentication is defined as the
verification of the source of data, and that this data came from
the claimed source [2, 14, 30]. Usually integrity comes in
conjunction with the authentication algorithm. Integrity is
assuring that, what the sender has transmitted, the receiver has

Manuscript received January 17, 2009: Revised version received April 30,
2008. This work was supported by the Center of Excellence in Information
Assurance, King Saud University.

K. S. Alghathbar is with the Center of Excellence in Information Assurance

and the College of Computer and Information Sciences, King Saud
University, Riyadh 11543, KSA +96650-529-5367, fax: +9661-467-5423; e-
mail: kalghathbar@ksu.edu.sa.

A. M. Hafez is with College of Computer and Information Sciences, King
Saud University, Riyadh 11543, KSA +96650-529-5367, fax: +9661-467-
5423; e-mail: ahafez@ksu.edu.sa.

received, and there is no accidental or intentional unauthorized
modification of the transmitted data [6, 29, 33].

Compared to a large number of modification detection code
algorithms (MDC) [6, 12, 15], many of them are block-cipher
based. Those with relatively short MAC bit lengths (e.g., 32-
bits for MAA [8]) or short keys (e.g., 56 bits for MACs based
on DES-CBC [3]) may still offer adequate security. This is
depending on the computational resources available to
adversaries, and the particular environment of application.
Many iterated MACs can be described as iterated hash
functions. In this case, the MAC key is generally part of the
output transformation; it may also be an input to the
compression function in the first iteration, and be fed to the
compression function at every stage. An upper bound on the
security of MACs should be considered, based on an iterated
compression function, which has n bits of internal chaining
variable, and is deterministic (i.e., the m-bit result is fully
determined by the message). The MAC forgery is possible
using O(2n/2) known text-MAC pairs. The most commonly
used MAC algorithms are based on block ciphers that make
use of cipher-block-chaining (CBC) [1, 4, 7, 10]. While CBC-
MAC is secure for messages of a fixed number of blocks t,
additional measures are required if variable length messages
are allowed. RIPE-MAC [17] is a variant of CBC-MAC,
producing 64-bit MACs. The internal encryption function E
being either single DES or two-key triple-DES, respectively,
requiring a 56- or 112-bit key k. The compression function
uses a non-invertible chaining after padding, a final 64-bit
length-block, giving bit length of original input, is appended;
final output block is encrypted. A common suggestion is to
construct a MAC algorithm from a modification detection
Codes (MDC) algorithm, by simply including a secret key k as
part of the MDC input [6, 10, 28, 33]. A concern with this
approach is that implicit but unverified assumptions are often
made about the properties that MDCs have; in particular,
while most MDCs are designed to provide one-wayness [28,
32, 34]. Even in the case where a one-way hash function
precludes recovery of a secret key that is used as a partial
message, this does not guarantee the infeasibility of producing
MACs for new inputs [9, 18]. A more conservative approach
for building a MAC from an MDC is to make the MAC
compression function depend on k, implying the secret key be
involved in all intervening iterations; this provides additional
protection in the case that weaknesses of the underlying hash
function becomes known. Such technique is employed using
MD5. It provides performance slightly slower to that of MD5.
A MAC technique alternatively can be based on cyclic
redundancy codes [15, 31].

T

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 3, 2009

187

Powerful new attacks on the hash functions MD5 and SHA-
1, among others [12, 18, 19, 25, 28], have suggested
introducing a new and presumably more secure hash function
[12, 18]. In [28], an attack on MD5 has been introduced that
finds collisions of MD5 in about 15 minutes to an hour
computation time. The attack is a differential attack, where
exclusive-ors are not used as a measure of difference. Instead
of that, it uses modular integer subtraction as the measure. The
same attack could find collisions of MD4 in less than a
second. In [19], the attack was applied to SHA-0 and all
variants of SHA-1. The attack could find real collisions of
SHA-0 in less than 239 hash operations. The attack was
implemented on SHA-1, and collisions could be found in less
than 233 hash operations.

In [1], we have proposed a new approach that is based on
the message authentication code approach NMACA. In
NMACA a secret key K is used to determine the order of
using message words. Different algorithms such as, MD5 and
SHA-1, can be adopted for the approach implementation. In
NMACA-MD5, the 128 bit secret key K is used to determine
the MD5 algorithmic steps. The access order for message
words and the shift amounts in the distinct rounds are
determined by K. Based on the experimental results, the
algorithm is almost as fast as the MD5 and is as robust as
MD5. In the performed experiments, the proposed algorithm
has been compared to MD4, MD5, and MAC-MD5
algorithms. The results have shown that the speed
performances are comparable. Two measures are considered,
the confession and diffusion measures, where number of bits
changed in cipher code due to slight changes in the input
message and/or MAC key, are used as measures of
performance. Those measures illustrate the avalanche effect of
the underlying hash function. Percentage of change in a 512
bit message according to changes in number of bits shows that
the new function NMACA-MD5 has a high avalanche effect.
This is due to its high randomness.

In this paper, the NMACA approach which is based on the
message authentication code approach NMACA is explored.
In this approach, a secret key K is used to form a fast robust
MAC algorithm. Different algorithms such as, MD5 and SHA-
1, can be adopted for the approach implementation.
Depending on the technique used, rather than using the secret
key K as the initial chaining values to the algorithm, K is used
to determine the access order for message words. In NMACA-
MD5, a 128 bit key K is used to determine the MD5
algorithmic steps, rather than using the key as the initial
chaining values to the algorithm. K is used to determine the
access order for message words and to determine the shift
amounts in the distinct rounds.

The rest of this paper is organized as follows: in section 2,
we give related works in the area of message authentication
coding. In section 3, we give the requirements needed for
MAC techniques. In section 4, we give the problem definition.
In section 5, we present the experimental results. The paper is
concluded in section 6.

II. RELATED WORK

There are two major approaches to implement
authentication/integrity mechanisms, the use of digital
signature and the use of message authentication code [20, 26,
33].

In digital signature approach, public key cryptography is
used, which uses a public key and a private key. A sender
signs a message digitally by computing a hash function (or
checksum) over the data, and then encrypts the hash function
value using the private key. The encrypted hashing value is
sent to the receiver accompanied with the data. The receiver
would verify the authenticity of the received data by
recalculating the hash value and decrypting the transmitted
hashing value using the public key. The two hash values are
compared, if matched then the message is authentic and came
from the claimed sender.

In Message Authentication Code (MAC), a shared secret
key is used instead of the private key. There are several ways
to provide authentication/integrity by using the secret key [21,
24]. The main two are Hash-Based Message Authentication
Codes (HMAC), and Encryption-Based Message
Authentication Codes.

In HMAC, a strong hash function algorithm, such as MD5
or SHA1, is used to create a hashing value over the data and
the embedded secret key. Different HMAC algorithms use
different embedding strategies. At the receiver side, the same
hash function is applied on the concatenated data and key. The
authenticity and integrity of the received data is assured by
matching the hashing value of the received message with the
re-calculated hashing value.

In Encryption-Based Message Authentication Codes, a
combination of hashing and encryption is used [2, 14]. A
hashing value is calculated over the data using the hashing
algorithm. The encryption algorithm is used to encrypt the
hashing value using the secret key. At the receiver side, the
hashing value is recalculated, and using the secret key, the
sent hashing value is decrypted. The authenticity and integrity
of the received data is assured by matching the recalculated
hashing value with the decrypted hashing value.

Many algorithms have been proposed for mechanisms that
provide integrity checks based on a secret key [6, 12, 21, 27].
Those mechanisms are known as message authentication
codes (MACs) mechanisms. Message authentication codes are
used with a secret key in order to authenticate transmitted or
stored information. Typically those mechanisms use a
cryptographic hash functions in conjunction with secret keys
to guarantee that authenticity of information. Generally, MAC
mechanisms should fulfill the following features:

• The used hash function should be available, well
defined and mostly doesn’t need much modification.

• The performance of the hash function should not be
changed due to the use in the proposed mechanisms.

• Secret Keys should be handled in a simple way.
• The cryptographic analysis of the authentication

mechanism should be based on reasonable hash
function assumptions.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 3, 2009

188

• The hash function of the MAC mechanism should be
easily replaced with other hash functions if
necessary.

III. REQUIRMENTS FOR MAC’S

In designing a MAC technique, some requirements should
be satisfied. For a message X with cipher code Y, the
requirements could be summarized as follows:

• It is infeasible to find another message X’ with the
same cipher code Y.

• A cipher code Y should be uniformly distributed
• A cipher code Y should depend equally on all bits of

the message

The above requirements are used in assessing the security of
a MAC function, where the different types of attacks should
be considered. In the first requirement, message replacement
attacks are considered, where the attacker does not know the
MAC key, and is still able to construct a new message X’ to
match a given cipher code Y. The second requirement is
concerned with preventing a brute-force attack based on
certain input X. The last requirement satisfies the condition
that the MAC algorithm should not be weak with respect to
certain parts of the message.

A. Requirements for Hash Functions
The purpose of a hash function is to produce a fixed length

code that represents an input, which could be a message, an
image, a file, or any other block of data. A good hash
function should satisfy some requirements that make it is
extremely difficult to find two input messages with the same
hash code, and there is no obvious way to relate the message
to its hash code. Hash functions and block ciphers have some
similarities. A hash function h should satisfy the following
requirements.

• h can be applied on different messages X with
different sizes.

• The output of h produces a fixed-length output Y.
• Easiness of computing Y=h(X) for any message X.
• One-way hash function or preimage resistance, where

for any specified output, it is computationally
infeasible to find any input that is hashed to that
output, or if given Y1 is the hash value of an
unknown X1, then it is computationally infeasible to
find X2 such that Y1=h(X2).

• Weak collision resistance or 2nd-preimage resistance,
where for any specified input X1 , such that
Y1=h(X1), it is computationally infeasible to find
another input X2 such that Y1=h(X2).

• Strong collision resistance, where for any two distinct
inputs X1 and X2, it is computationally infeasible to
have h(X1) = h(X2).

B. Attacks on hash functions
For a given hash function h, the security of h is the

complexity of applicable attacks, and the storage complexity
of the attacks.

• For a message X1 and n-bit hash function h(x),

finding an input X2 colliding with X1 could be done
by picking a random message X2 and checking if
h(X1) = h(X2). Assuming the hash value is uniformly
distributed, the probability of finding a match is 2−n.
Such case is known as a birthday attack which allows
colliding pairs of messages X1, X2 with h(X1) =
h(X2), to be found in about 2n/2 operations, and
negligible memory. An n-bit hash function has ideal
security if given a hash output Y, producing each of a
preimage and a 2nd-preimage requires approximately
2n operations; and producing a collision requires
approximately 2n/2 operations.

• A MAC key could be determined by exhaustive
search. For a known text-MAC pair (X, Y), an
attacker may compute the n-bit cipher code on that
text under all possible key values, and check the
results against the input pair. For a k-bit key space,
the number of such trails is 2k MAC operations, in
which case 1+2k−n candidate keys remain. Assuming
the MAC behaves as a random mapping, it can be
shown that one can expect to reduce this to a unique
key by testing the candidate keys using just over t/n
text-MAC pairs. Ideally, a MAC key (or information
of cryptographically equivalent value) would not be
recoverable in fewer than 2k operations. As a
probabilistic attack on the MAC key space distinct
from key recovery (note that for a k-bit key and a
fixed input), a randomly guessed key will yield a
correct (n-bit) MAC with probability ~ 2−k for k < n.

• MAC forgery is defined as producing any input-
MAC code (X, Y) without having the knowledge of
the key K. For an MAC algorithm with n bits,
guessing successively a MAC code Y for a given
input X, or guessing a preimage X for a given MAC
output code Y, has probability 2−n, same as for an
MDC. A difference here, however, is that guessed
MAC code cannot be verified without the knowledge
of the (X, Y) pairs –either by knowledge of the key
K, or an algorithm that provides MAC codes Y’s for
given inputs X’s. In such case, an attacker could be
able to produce new pairs (X, Y) with at most
probability less than Max (2−k; 2−n).

• For the preimage attacks and the second preimage
attacks, an attacker, with large storage, can, off line,
computes a large number of hash function (X, Y)
pairs and could trade off the off line computation for
subsequent attack time. For an n-bit hash value with
2n possible values, if 2r randomly selected (X, Y)
pairs are stored, the attacker could decrease the
number of possible computations to 2n-r. For
comparable values of n and r, such case could find a
preimage in a possible number of trials, e.g., if n =64
and r=34, the probability of finding a preimage is
increased from 2−64 to 2−30. Similarly, the probability
of finding a second preimage is increased to 2r times
its original value when 2r input-output pairs are off
line computed and stored in memory.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 3, 2009

189

• For a hash function h with n-bit hash codes, at least
280 operations are acceptably beyond computational
feasibility. For a one-way hash functions, n >=80 is
one of the needed requirements. Off-line attacks
require at most 2n operations. If off line computations
are used, the number of computations could be
reduced. For a collision resistant hash functions, n >=
160 is considered as a needed requirements. For a
MAC, a cipher code of length n bits; n >= 64, and a
MAC key of 64-80 bits are considered sufficient for
most applications. A MAC key should be regularly
changed. If a MAC key remains in use, off-line
attacks may be possible given one or more (X, Y)
pairs. For a suitable MAC algorithm, preimage, 2nd-
preimage resistance, and collision resistance should
follow directly from lack of knowledge of the key.
For such attacks, security should depend only on the
MAC key size.

In [17], Shannon defined the entropy h(p) as

C. Attacks on key selection

h(p)= - ∑pilog2(pi)

h(p) is a measure of the number of uncertainty bits associated
with symbols i that has probability pi. Key guessing attacks
can be determined by measuring how bad a key distribution is.
This is done by calculating key K entropy. Entropy of K;
E(K), is the number of real bits of information in K. Key K
can be determined in 2E(K)guesses, and

E(K)= - ∑pKlog2(pK)

pk is the probability of key K. Guessability is a related
measure that is used to measure how the key can be guessed.
Many measures are used in calculating guessability. One of
those measures is the expected number of guesses required to
get the correct key. Dictionary attacks brute force attacks
strategies are considered as common strategies that are used in
getting the right key. In brute force attacks, all key symbols
are guessed in random order. In dictionary attacks, those
symbols that deemed more probable are guessed first. A
modified version of the dictionary attacks is called the optimal
dictionary attack. In optimal dictionary attack, symbols are
guessed in decreasing order of probability. After each symbol
guessing, those symbols produced by the source are relabeled
so that the first symbol in order has probability p1 is the most
likely and the sequence of other symbols i with probability pi
are ordered in a non-increasing order. The expected number of
guesses is

G(p)= - ∑ipi

The average value of G(p) is

(n+1)/2

This is the number of guesses needed to correctly guess the
key K from n equally likely possibilities. To relate G(p) with
h(p), we define a measure H(p) as

H(p)= (2h(p) +1)/2

Experimentally [16], the relationship between G(p) and h(p) is

0.7 H(p) ≤ G(p) ≤ H(p)

In this work, in addition to the analytical comparisons done
in section 4, two more measures are used to justify the
strength of MAC hash functions, namely, the confusion and
the diffusion. The confusion measure is defined as the
complexity of the relation between the key and the hash value,
while the diffusion is defined as the relationship between the
input message and the hash value.

D. Confusion and Diffusion

The confusion of a hash function h is evaluated by
recognizing changes in the hash value with respect to a slight
change in the MAC key. For message X and MAC key K, the
generated hash value Y is defined as a function h of both X
and K. If K is slightly changed to K1, the generated hash value
should be changed to Y1, and Y1 is completely unrelated to Y.
In other words, it is highly inapplicable to find a relation
between Y = h(X,K) and Y1 = h(X,K1) where K and K1 are
different, even if difference between the both of them is very
little. A hash function h is considered highly confused if the
generated hash values for slightly different MAC keys, even in
one bit, then the generated hash values are completely
different. Since the probability of having one bit of the hash
value flipped is ½, then, assuming the distribution of such
change is uniformly distributed, then half of the randomly
located bits, would be flipped. If the hash function has a weak
confusion property, one can easily use brute force attacks to
determine the MAC value. In such case, searching in the
search space will be computationally acceptable. By changing
few bits in K, then measure the relative or normalized number
of changed bits in Y and Y1, α , where

α =Normalized number of bits changed in (h(X,K), h(X,K1))

By comparing α with a threshold value αmin , 0≤αmin≤1, if α
≥αmin , then the hash function h has a high confusion value
with respect to MAC key K.

Similar to the confusion measure, the diffusion of a hash
function h is observed by getting changes in the hash value
with respect to slight changes in input message X. For
message X and MAC key K, the generated hash value Y is
defined as a function h of both X and K. If X1 is a slightly
changed message from X1, the generated hash value is
changed to Y1. Ideally Y1 should be completely unrelated to
Y. In other words, it is highly inapplicable to find a relation
between Y = h(X, K) and Y1 = h(X1, K) where X and X1 are
different. This could happen even if the difference between the
X and X1 is quite little, say one bit. A hash function h has a
good diffusion if for slightly different messages, could be one
bit difference, the generated hash values are completely
different. Using the same argument we used in the confusion

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 3, 2009

190

measure, the probability of having one bit of the hash value
flipped is ½, then, assuming the distribution of such change is
uniformly distributed, then half of the randomly located bits,
would be flipped. If the hash function has a weak diffusion
property, one can easily use brute force attacks to determine
the message X. If few bits of X are changed, the diffusion
measure is the relative or normalized number of changed bits
in Y; β, where

 β =Normalized number of bits changed in (h(X,K), h(X1 ,K))

By comparing β a threshold βmin, 0≤βmin≤1, if β ≥βmin , then
the hash function h has a high diffusion value with respect to
the input message X.

IV. The NMACA Approach

In this section, the NMACA approach is demonstrated on
the MD5 technique. The new technique is called the NMACA-
MD5 message authentication code algorithm. NMACA-MD5
takes as an input, a message X of arbitrary length and a secret
128 key. The produced cipher code is a 128-bit MAC. It is
conjectured that it is computationally infeasible to produce
two messages having the same MAC, or to produce any
message having a given pre-specified target MAC. NMACA-
MD5 algorithm does not require any large substitution tables;
the algorithm can be coded quite compactly. NMACA-MD5 is
more conservative in design than previous well known
algorithms. The details of the NMACA-MD5 algorithm will
be described in section 4.1.

The structure of the proposed algorithm is illustrated in
figure 1.

A. The NMACA-MD5 message authentication code

algorithm
A more conservative approach to build a MAC from an

MDC is to arrange the MAC compression procedure such that
it depends on secret key k, implying that k is involved in all
intervening iterations. This provides an additional protection
in case when weaknesses of the underlying hash function
becomes known. Algorithm MD5-MAC is such a technique.
MD5-MAC is obtained from MD5 by replacing the four 32-bit
IV’s of MD5 by the secret key K [1]. We propose the new
NMACA-MD5 by involving the key K in the different steps of
MD5 algorithmic, rather than using the key as the initial
chaining values to the algorithm. K is used to determine the
access order for message words and to determine the shift
amounts in the distinct rounds. In the proposed algorithm, only
two changes are done to the MD5 algorithm. Both algorithms
use the same initial chaining values (IV’s), apply the same
hash functions, and use the same padding process to adjust the
length of the transmitted message. The two differences
between the MD5 and the NMACA-MD5 techniques are the
order of message words, and the order of values that are used
in circular left shifts on the four auxiliary functions. The 128-
bit secret key K is divided into two parts, each of 64 bits. The
first 64 bits are used to rearrange the order of the message
words. Those 64 bits of K are divided into four divisions; each
has 16 bits. Each of the 16 bits of K is used to rearrange a
block of 16 words (32-bit words) of the input message.

Starting from a vector of a predefined order of accessing each
of 16 words, the order of such vector is changed according to
the related part in K. The other 64 bits of K are used to define
the numbers of circular left shifts used in the four auxiliary
functions. Using the same key related permutations, the order
of circular shifts in each of the four auxiliary functions is
defined by using one of the 16-bits of K.

(a) General NMACA-MD5

(b) Detailed NMACA-MD5

Figure 1. NMACA-MD5

The proposed algorithm is as fast as MD5 and is as robust as
MD5. The algorithm is depicted below.

Algorithm NMACA- MD5

INPUT: bit string x of arbitrary bit length b ≥ 0 and128-bit
key K.
OUTPUT: 128-bit hash-code of x.

a) Define four 32-bit initial chaining values (IVs):

h1=0x67452301,h2= 0xefcdab89, h3 = 0x98badcfe,
h4=0x10325476.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 3, 2009

191

b) Four auxiliary functions are defined, such that each

takes as input three 32-bit words and produce, as an
output, a 32-bit word. They apply the logical operators
and, or, not and xor on the input bits.
f(B, C, D)= (B and C) or (not(B) and D)
g(B, C, D)= (B and D) or (C and not(D))
h(B, C, D)= (B xor C xor D)
i(B, C, D)= (C xor (B or not(D))

c) Define additive 32-bit constants:
y[j] = first 32 bits of binary value abs(sin(j+1)), 0 ≤ j ≤
63, where j is in radians and “abs” denotes absolute
value.

d) Use secret key:

d.1) Define order for accessing source words by using the
secret key K:
z[0::15] = [Permutation PO of the 1st 16 bits of K, P0 :
{ 0, 1, …, 15} → {O i | 0 ≤ Oi ≤ 15}],
z[16::31] = [Permutation P1 of the 2nd 16 bits of K, P1 :
{ 16, 17, …, 31}→ {O i | 16 ≤ Oi ≤ 31}],
z[32::47] = [Permutation P2 of the 3rd 16 bits of K, P2 :
{ 32, 33, …, 47} → {O i | 32 ≤ Oi ≤ 47}],
z[48::63] = [Permutation P3 of the 4th 16 bits of K, P3 :
{ 48, 49, …, 63}
 → {O i | 48 ≤ Oi ≤ 63}]

d.2) Define the number of bit positions for left shifts
(rotates) by using the secret key K:
s[0::63] = [Permutation Ps of the last 64 bits of K, Ps :
{ 0, 1, …, 63} → {O i | 0 ≤ Oi ≤ 63}],

e) Preprocessing:
Pad x such that its bit length is a multiple of 512, as
follows. Append a single a bit of 1, then append (r−1)
bits of 0’s, r=512-(b+64) mod 512, r≥ 0. Finally append
the least significant 32 bits of b, then append the next
least significant 32bits of b, i.e., the last 64 bits of b with
least significant word first. Let m be the number of 512-
bit blocks in the resulting string (b + r + 64 = 512m =32
x 16m). The formatted input consists of 16m 32-bit
words: x0 x1 … x16m-1. Initialize: (H1; H2; H3; H4) ← (h1;
h2; h3; h4).

f) Processing:
For each i from 0 to m − 1, copy the ith block of 16 32-
bit words into temporary storage: X[j] =x16i+j; 0 ≤ j ≤
15, then process these as below in four 16-step rounds
before updating the chaining variables:
(initialize working variables)

(A;B;C;D) ← (H1; H2; H3; H4).

(Round 1)
For j from 0 to 15 do the following:
t ← (A + f(B;C;D) + X[z[j]] + y[j]),
(A;B;C;D) ← (D; t ← s[j];B; C).

(Round 2)
For j from 16 to 31 do the following:
t ← (A + g(B;C;D) + X[z[j]] + y[j]),
(A;B;C;D) ← (D; t ← s[j];B; C).

(Round 3)

For j from 32 to 47 do the following:
t ← (A + h(B;C;D) + X[z[j]] + y[j]), (A;B;C;D) ←
(D; t ← s[j];B; C).

(Round 4)

For j from 48 to 63 do the following:
t ← (A + k(B;C;D) + X[z[j]] + y[j]),
(A;B;C;D) ← (D; t ← s[j];B; C).

(update chaining values)

(H1;H2;H3;H4) ← (H1+A;H2+B;H3+C;H4+D).

g) Completion
The final MAC value is the concatenation: H1||H2||H3||H4
(with first and last bytes the low- and high-order bytes of
H1, H4, respectively).

V. EXPERIMENTAL RESULTS

In this section, experiments results are shown, that are used
to show the performance of MD5 and NMACA-MD5 in terms
of speed and avalanche effect. We have run our experiments
on a 2.4 GHz machine, with 4 GB of RAM and running
windows Vista. Messages of up to 1Mbytes are used. From the
results obtained in figure 2, we have found that, the speed
performance of the NMACA-MD5 algorithm is comparable to
the speed of the MD5 algorithm. Actually, such performance
is predictable. The difference between the performance of
MD5 and NMACA-MD5 comes from three different factors,

• The initial time needed in calculating the order of

message words.

• The initial time needed in calculating the number of
circular left shifts

• The time needed for circular left shifting. Depending on
the key K, the time needed for circular left shifting in
NMACA-MD5 could be less or more than the time
needed in MD5.

The first two factors are fixed for all messages regarding
its length, and the third factor depends on the message length
and should have some effect on the performance of NMACA-
MD5.

Also, the experimental results have shown that by using

different bit changes in the MAC key K, we have found that
the confusion effect of the proposed approach is almost 50%,
which is considered an indicator of the quality of the hash
function used. The results is the same as in the MD5 approach,
which means the use of NMACA with MD5 has not degraded
the quality of the MD5 approach. The same applies to the
diffusion effect.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 3, 2009

192

Changed Bits
(In MAC Key) NMACA-MD5

5 50.26%
10 50.39%
15 50.18%
20 49.89%
25 49.94%
30 50.05%
35 49.96%
40 49.91%
45 49.57%
50 49.96%

(a)

(b)

Change Bits
(In Input Message) MD5 NMACA-MD5

5 49.86 50.019
10 49.08 49.991
15 50.01 50.013
20 49.43 50.036
25 49.58 50.056
30 49.9 49.971
35 50.07 49.955
40 50.19 50.031
45 49.66 50.034
50 49.61 49.933

(a)

(b)

VI. CONCLUSIONS

We have proposed a new approach that is based on the
message authentication code approach NMACA. In NMACA,
using any of the MDC techniques, such as, MD5 and SHA-1,
a secret key K is involved in all steps of applying the used
MDC technique. In this work, we have adopted the MD5
technique to demonstrate the proposed NMACA approach; we
call it NMACA-MD5. In NMACA-MD5, a 128 bit secret key
K is used to determine the MD5 algorithmic steps. The access
order of message words and the shift amounts of the distinct
rounds are determined by K. Based on our experimental
results, NMACA-MD5 has been compared to MD5. The
results have shown that the speed performance results of both
implementations are almost the same. That is due to the fact

0

5

10

15

20

25

200K 400K 600K 800K 1000K

S
p

e
e

d
 i
n

 μ
se

c

Messege Size

MD5 NMACA-MD5

40

45

50

55

60

0 20 40 60

%
 c

h
a

n
g

e
 i

n
 C

ip
h

e
r

C
o

d
e

Bits Changed in MAC Key K

NMACA-MD5 Confusion

Measure

NMACA-MD5

40

45

50

55

60

0 20 40 60

%
 C

h
a

n
e

 i
n

 C
ip

h
e

r
C

o
d

e

Bits Changed in Input Message

MD5 & NMACA-MD5 Diffusion Measure

MD5

NMACA-MD5

Figure 2. Speed performance of MD5 and
NMACA-MD5

Figure 3. Confusion Measure or the
Avalanche Effect of MAC key K

Figure 4. Diffusion Measure or the
Avalanche Effect of Message X

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 3, 2009

193

that the only extra overhead needed for NMACA-MD5 is the
processing time of defining the reordering of message words
and circular left shifts. The diffusion and confusion effects are
studied by studying the effect of changes in a message bits
(diffusion) and MAC key bits (confusion). Those two
measures illustrate the avalanche effect of the underlying hash
function. The experimental results have shown that, by using
different bit changes in the input message and the MAC key
K, we have found that the confusion and diffusion effects of
the proposed approach are almost 50%, which is considered an
indicator of the quality of the hash function used.

References
[1] K. Alghathbar, A. Hafez, F. B. Muhaya, and H. M.

Abdalla, “NMACA: A Novel Methodology for
Message Authentication Code Algorithms”, 8th
WSEAS Int. Conf. on Telecommunications and
Informatics (TELE-INFO '09), Istanbul, Turkey, May
30 - June 1, 2009.

[2] T. Aura, P. Nikander, and J. Leiwo, “DOS-resistant
authentication with client puzzles”, volume 2133 of
Lecture Notes in Computer Science, pages 170–177.
Springer-Verlag, Berlin, Germany, 2001.

[3] S. Bellovin, "An Issue With DES-CBC When Used
Without Strong Integrity", Proceedings of the 32nd
IETF, Danvers,MA, April 1995.

[4] J. Black and P. Rogaway, “CBC MACs for arbitrary-
length messages: The three-key constructions",
Advances in Cryptology - CRYPTO '2000 Proceedings,
Volume 1880 of Lecture Notes in Computer Science
(Mihir Bellare, ed.), pp. 197-215. Springer-Verlag,
2000.

[5] H. Chien, T. Hsu, and Y. Tang, “Fast Pre-authentication
with Minimized Overhead and High Security for
WLAN Handoff”, WSEAS TRANSACTIONS on
COMPUTERS, No. 2, Vol. 7, pp. 46-51, February
2008.

[6] M. D. Corner and B. D. Noble, “Zero-Interaction
Authentication,” in IEEE/ACM MOBICOM, pp. 1–11,
September 2002.

[7] B. Coskun, N. Memon, "Confusion/Diffusion
Capabilities of Some Robust Hash Functions", CISS
2006: Conference on Information Sciences and
Systems, March 22-24, 2006, Princeton, NJ.

[8] D. W. Davies, “The Message Authenticator Algorithm
(MAA) and its Implementation”, National Physical
Laboratory, Teddington, Middlesex TW11 0LW, UK,
1988.
http://www.cix.co.uk/~klockstone/maa.htm

[9] O. Elkeelany, M. M. Matalgah, K. Sheikh, M. Thaker,
G. Chaudhary, D. Medhi, and J. Qaddour, “Perfomance
Analysis Of IPSEC Protocol: Encryption and
Authentication,” in IEEE Communication Conference
(ICC), pp. 1164–1168, May 2002.

[10] D. B. Faria and D. R. Cheriton, “DoS and
Authentication in Wireless Public Access Networks,”
pp. 47–56, September 2002.

[11] J. Fridrich, “Robust bit extraction from images,” in
ICMCS ’99, Florence,Italy, June 1999.

[12] S. Haber, P. Kamat, and K. Kamineni, “A content
integrity service for digital repositories,” Open
Repositories, Southampton, UK, January 2008.

[13] S. Haber and P. Kamat,”A Content Integrity Service
For Long-Term Digital Archives”, the IS&T Archiving
2006 Conference, 23-26 May 2006, Ottawa, Canada.

[14] S. Haber and W. S. Stornetta, “How to time-stamp a
digital document,” Journal of Cryptology, 1991.

[15] T. Karygiannis and L. Owens, “Wireless Network
Security 802.11, Bluetoothand Handheld Devices,”
National Institute of Technology, Special Publication,
pp. 800–848, November 2002.

[16] D. Malone and W. Sullivan, “Guesswork is not a
substitute for entropy”, In Proceedings of the
Information Technology and Telecommunications
Conference, October 2005.

[17] J. Menezes and P. C. van Oorschot, "Handbook of
Applied Cryptography", CRC Press, 1997.

[18] Y. Matsunaga, A. Merino, T. Suzuki, and R. H. Katz,
“Secure Authentication System for Public WLAN
Roaming,” pp. 113–121, 2003.

[19] M. K. Mihcak and R. Venkatesan, “New iterative
geometric methods for robust perceptual image
hashing,” in Proceedings gf the Digital Rights
Management Workshop, November 2001.

[20] L. Y. Por, X. T. Lim, M. T. Su, and F. Kianoush, “The
Design and Implementation of Background Pass-Go
Scheme Towards Security Threats”, WSEAS
TRANSACTIONS on INFORMATION SCIENCE &
APPLICATIONS, No. 6, Vol. 5, pp. 943-952, June
2008.

[21] B. Preneel and P. Oorschot, "MDx-MAC and building
fast MACs from hash functions," Lecture Notes in
Computer Science, Volume 963, pp. 1-14. Springer-
Verlag, 1995.

[22] C. E. Shannon, “Communication theory of secrecy
systems,” Bell System Technical Journal, vol. 28, pp.
656–715, October 1949.

[23] G. Skinner, “Making A CASE for PACE: Components
of the Combined Authentication Scheme Encapsulation
for a Privacy Augmented Collaborative Environment”,
WSEAS TRANSACTIONS on COMPUTERS, No. 6,
Vol. 7, pp. 630-639, June 2008.

[24] S. Song and J. JaJa, “ACE: A Novel Software Platform
to Ensure the Integrity of Long Term Archives”,
Proceedings of the Archiving 2007 Conference, May
2007, Washington, DC.

[25] M. Stevens, A. Lenstra, and B. deWeger, Chosen-prefix
collisions for MD5 and colliding X.509 certificates for
different identities, EUROCRYPT 2007 (Moni Naor,
ed.), LNCS, vol. 4515, Springer, 2007, pp. 1–22.

[26] Q. Sun, J. Apostolopoulos, C. Chen, S. -Fu Chang,
“Quality-Optimized and Secure End-to-End
Authentication”, Proceedings of the IEEE, Vol. 96, No.
1, January 2008

[27] R. Venkatesan, S. Koon, M. Jakubowski, and P.
Moulin, “Robust image hashing,” in Proc. IEEE Int.
Conf. Image Processing, 2000.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 3, 2009

194

[28] X. Wang and H. Yu. “How to break MD5 and other
hash functions.” In Ronald Cramer, editor, Advances in
Cryptology – EUROCRYPT 2005, Volume 3494 of
Lecture Notes in Computer Science, 2005.

[29] X. Wang, Y. L. Yin, and H. Yu. “Finding collisions in
the full SHA-1.” In Victor Shoup, editor, Advances in
Cryptology — CRYPTO 2005, volume 3621 of Lecture
Notes in Computer Science, 2005.

[30] C. Wright, R. Spillane, G. Sivathanu, and E. Zadok,
“Extending ACID Semantics to the File System”, ACM
Transactions on Storage (TOS), May 2007.

[31] E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C.
Wright, On Incremental File System Development”,
ACM Transactions on Storage (TOS), May 2006.

[32] Y. Zahur and T. A. Yang, “Wireless LAN Security and
Laboratory Designs,” Journal of Computing Sciences in
Colleges, vol. 19, pp. 44–60, January 2004..

[33] IETF, “PPP EAP TLS Authentication Protocol,” RFC
2716, October 1999.

[34] “The Keyed-Hash Message Authentication Code
(HMAC)”, Federal Information Processing Standards
Publication 198, March 2002.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
Issue 3, Volume 3, 2009

195

	19-107
	I. Goal Of This Research
	II. Literature Review
	A. Teacher’s knowledge management
	B. Classroom climate
	C. Learning attitude

	III. Methodology
	A. The research structure
	B. Population of research

	IV. Result and conclusion
	A. Conclusion

	V. Suggestion
	A. For the educational administrative division
	B. For the administrative division
	C. For high school teachers

	VI. VI Distance Research

	19-108
	I. Introduction
	A. Background
	B. Research purpose and questions

	II. Development history of Literature
	A. The idea and strategy of cooperative learning
	B. The local education incorporated in the science and technology curriculum

	III. Methodology And Tool
	A. Research design
	B. Research target
	C. Research Tool
	D. Data analysis

	IV. Result and conclusion
	A. Student’s reflection of cooperative learning
	B. The implementation effects of student’s curriculum
	C. The questionnaire of local identity

	V. Conclusion
	A. Student’s feedback in the cooperative learning process
	B. The Cognitive effectiveness of the curriculum implements
	C. The local recognition after the curriculum implementation

	VI. Suggestion
	Appendix I: The Lesson Plan of Water Resources and Landform Balance

	19-110
	I. RELATED WORKS
	A. The development of CAA
	B. Agent Based System

	II. main components identification
	III. main functional tasks
	IV. agents’ role
	A. Coordinator Agent
	B. Personal Agent
	C. Assessment Agent

	V. Student assessment method
	A. Question design and selection
	B. Selection of evaluation criteria
	C. Students performance

	VI. Overall system architecture
	VII. Evaluation
	A. Students’ perception
	B. Performance test

	VIII. Results and discussion
	A. Students’ perception
	B. Performance test

	IX. conclusion and future works

	19-122
	eit-88
	I. INTRODUCTION
	II. EVALUATION of IBEM
	A. Task
	B. Individual
	C. Device
	D. Context

	III. Conclusions

	eit-92
	eit-94

