
 

 

  

Abstract— This paper presents a global solar energy estimation 

method using artificial neural networks (ANNs). The clearness index 

is used to calculate global solar irradiations. The ANN model is 

based on the feed forward multilayer perception model with four 

inputs and one output. The inputs are latitude, longitude, day number 

and sunshine ratio; the output is the clearness index. Based on the 

results, the average MAPE, mean bias error and root mean square 

error for the predicted global solar irradiation are 5.92%, 1.46% and 

7.96%.  

 

Keywords— Solar energy, solar energy prediction, artificial 

neural network, Malaysia           .  

I. INTRODUCTION 

OLAR energy is the portion of the sun’s energy available 

at the earth’s surface for useful applications, such as 

raising the temperature of water or exciting electrons in a 

photovoltaic cell, in addition to supplying energy to natural 

processes like photosynthesis. This energy is free, clean and 

abundant in most places throughout the year. Its effective 

harnessing and use are of importance to the world, especially 

at a time of high fossil fuel costs and the degradation of the 

atmosphere by the use of these fossil fuels. Solar radiation data 

provide information on how much of the sun’s energy strikes a 

surface at a location on the earth during a particular time 

period. These data are needed for effective research into solar-

energy utilization. Due to the cost of and difficulty in solar 

radiation measurements, these data are not readily available; 

therefore, alternative ways of generating these data are needed. 

A comprehensive solar radiation database is an integral part of 

an energy efficiency policy [1, 2]. In Malaysia, there are 

cities/regions that do not have measured solar radiation data; 

therefore, a predication tool should be developed to estimate 

the potential of solar energy based on location coordinates.  

In recent years, ANNs have been used in solar radiation 

modeling work for locations with different latitudes and 

climates, such as Saudi Arabia, Oman, Spain, Turkey, China, 

Egypt, Cyprus, Greece, India, Algeria and the UK [3-34]. 

Little work regarding solar energy prediction has been done 

for Malaysia. The only significant prediction methods have 
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been proposed in [35, 36] in 1982 and 1992. The authors in 

[35] have only proposed solar radiation data for three locations 

without any prediction algorithms, while the authors in [36] 

have proposed a prediction algorithm for monthly solar 

radiation based on the least square linear regression analysis 

using eight data locations. Consequently, an ANN model for 

solar energy prediction should be developed to provide a 

comprehensive database for the solar energy potential in 

Malaysia. Moreover, the proposed ANN model will be more 

accurate than the proposed methods in [35, 36], and it will 

provide hourly, daily and monthly solar radiation predictions 

for many different locations in Malaysia because the location 

coordinates are provided.    

The main objective of this research is divided into two sub 

objectives: develop a feed forward ANN model to predict the 

clearness index ( ) based on the number of sunshine hours, 

day number and location coordinates, and calculate the global 

( ) \ solar irradiation for Malaysia. This work has been based 

on long term data for solar irradiations (1984-2004) taken 

from the 28 sites in Malaysia. These data were provided by the 

Solar Energy Research Institute (SERI) of Universiti 

Kebangsaan Malaysia (UKM). 

II. SOLAR ENERGY MODELING 

Solar radiation is classified in two main parts, the 

extraterrestrial solar irradiation ( ) and the global solar 

irradiation ( ). The variable  stands for the total solar 

energy above the atmosphere while  is the total solar energy 

under the atmosphere. The value for  is given by 

             (1) 

where  is the solar constant, 1,367 , and N is the 

number of the day.  The day length is calculated by 

                           (2) 

where L is the latitude and  is the angle of declination, given 

by 

                                                  (3) 

The global solar irradiation ( ) on a tilted surface consists of 

three parts 

 (4)                                        

where  are beam (direct), diffused and 

reflected solar irradiation, respectively. On a horizontal 

surface, is equal to zero; therefore,   on a horizontal 

surface is given by 
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                                                                     (5) 

The global ( ) can be calculated using  as below,  

                                                                            (6) 

III. ARTIFICIAL NEURAL NETWORK FOR CLEARNESS INDEX 

PREDICTION  

Artificial neural networks (ANNs) are information processing 

systems that are non-algorithmic, non-digital and intensely 

parallel [37]. They learn the relationship between the input and 

output variables by studying previously recorded data. An 

ANN resembles a biological neural system, composed of 

layers of parallel elemental units called neurons. The neurons 

are connected by a large number of weighted links, over which 

signals or information can pass. A neuron receives inputs over 

its incoming connections, combines the inputs, generally 

performs a non-linear operation and outputs the final results. 

MATLAB was used to train and develop the ANNs for 

clearness index prediction. The neural network adopted was a 

feed forward, multilayer perception (FFMLP) network, among 

the most commonly used neural networks that learn from 

examples. A schematic diagram of the basic architecture is 

shown in Figure 1. The network has three layers: the input, 

hidden and output layers. Each layer is interconnected by 

connection strengths, called weights. 

 
Figure 1 Topology of the FFMLP ANN used to predict the 

clearness index 

 

Four geographical and climatic variables were used as input 

parameters for the input nodes of the input layer. These 

variables were the day number, latitude, longitude and daily 

sunshine hours ratio (i.e., measured sunshine duration over 

daily maximum possible sunshine duration). A single node was 

at the output layer with the estimated daily clearness index 

prediction as the output. The transfer function adopted for the 

neurons was a logistic sigmoid function  

                                                                  (7) 

                                                      (8) 

where  is the weighted sum of the inputs,  is the incoming 

signal from the jth neuron (at the input layer), the weight 

on the connection directed from neuron  to neuron  (at the 

hidden layer) and  the bias of neuron . Neural networks 

learn to solve a problem rather than being programmed to do 

so. Learning is achieved through training. In other words, 

training is the procedure by which the networks learn, and 

learning is the end result. The most common methodology was 

used, supervised training. Measured daily clearness index data 

were given, and the network learned by comparing the 

measured data with the estimated output. The difference (i.e., 

an error) is propagated backward (using a back propagation 

training algorithm) from the output layer, via the hidden layer, 

to the input layer, and the weights on the interconnections 

between the neurons are updated as the error is back 

propagated. A multilayer network can mathematically 

approximate any continuous multivariate function to any 

degree of accuracy, provided that a sufficient number of 

hidden neurons are available. Thus, instead of learning and 

generalizing the basic structure of the data, the network may 

learn irrelevant details of individual cases. 

In this research, 28 weather stations’ data were used, 23 

stations’ data were used to train the network and 5 sites were 

used to test it.  

IV. RESULTS AND DISCUSSION 

To ensure the efficacy of the developed network, five main 

sites were chosen out of the 28 sited in Malaysia. The chosen 

sites are Kuala Lumpur, Ipoh, Alor Setar, Kuching and Johor 

Bharu. These sites span Malaysia and have been chosen to 

check the efficacy of the developed network over all of 

Malaysia. 

Figure 2 shows the predicted clearness indexes compared 

with the measured values for the five chosen stations. The 

figure shows good agreement between the measurements and 

the predictions. The best fit appears in the Johor Bharu and 

Kuching stations, while the worst is in the Alor Setar station. 

The fittings are all acceptable due to the low calculated error, 

as will be discussed later. 
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Figure 2 Comparison between measured and predicted clearness indexes

. 

To evaluate the developed network, the measured values of the 

sunshine ratio for the year 2000 in each of the chosen sites 

have been used to predict the global solar radiation for this 

year. The predicted data were then compared with the  

 

measured data, which were also taken from the chosen sites for 

the same year. Figure 3 shows a comparison between the 

measured and predicted daily global solar radiation of the 

chosen sites.  
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Figure 3 Comparison between the measured and predicted daily global radiation for the chosen five sites 

 

In general, the prediction of the global radiation was 

acceptable and accurate. Based on the results,  

it is clear that Malaysia has a stable climate throughout the 

year. Cloud cover generally reduces the radiation by 50%, so 

the global irradiation fluctuated in the range of 2 to 6 

.  The second part of the year (October to February) 

 

 saw more cloud cover, and consequently, poorer solar 

potential compared with the first part of the year (March to 

October). Table 1 shows the yearly average global solar 

irradiation for the five sites. From the table, the best prediction 

is at the Kuala Lumpur station, while the worst is at Alor Setar. 

The Kuala Lumpur region has the highest solar potential.  

 

Table 1 Annual global solar radiation averages for five different sites in Malaysia 

Site Average  per annum (Measured)  ( ) Average  per annum (Predicted ) ( ) 

Kuala Lumpur 4.84 4.83 

Johor Bharu 4.51 4.55 

Ipoh 4.54 4.64 

Alor Setar 4.66 4.8 

Kuching 4.62 4.66 

 

To get an idea of the monthly solar irradiation profile in 

Malaysia, the chosen five sites’ weather data were used again 

to predict the daily global solar irradiations at the five sites for 

five years (1999-2004). The monthly average  

 

global solar irradiations were then calculated and compared 

with the monthly averages of the measured data. Figure 4 

shows the monthly average of the predicted global solar 

irradiations compared with the measured values.  
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Figure 4 Comparison between the monthly average of the predicted and the measured global solar irradiations 

 

As mentioned previously and also from Figure 4, the global 

solar irradiation values were clearly degraded in the wet 

season (October to February) due to the heavy cloud cover and 

rains; however, most of the monthly  

 As mentioned above, predicted values (daily global and 

diffused irradiations) have been compared with measured 

values to calculate the mean absolute percentage error 

(MAPE). The MAPE is defined as 

            (9) 

The MAPE values of the chosen sites are listed in Table 2. 

The average error in predicting the global solar irradiation was 

5.86%.  

Additionally, most authors who have worked in this field 

evaluated the performance of the utilized ANN models  

 

 

 

quantitatively, and ascertain whether there is any underlying 

trend in the performance of the ANN models in different 

climates using statistical analysis involving mean bias error 

(MBE) and root mean square error (RMSE). These statistics 

were determined as 

                                                    (10) 

                                             (11) 

where  is the predicted daily global irradiation on a 

horizontal surface,  is the measured daily global radiation on 

a horizontal surface and n is the number of observations. 

MBE is an indication of the average deviation of the 

predicted values from the corresponding measured data and 

can provide information for the long term performance of the 

models. A positive MBE value indicates the amount of 

overestimation in the predicted global solar radiation and vice 
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versa. RMSE provides information on the short term 

performance and is a measure of the variation of the predicted 

values around the measured data, indicated by the scattering of 

data around the linear lines shown in Figure 2. Table 6 shows 

the MBE and RMSE values for the chosen sites. 

 

Table 2 MBE and RMSE for the five sites 

Site MBE 

( ) 

MBE 

(%) 

RMSE 

( ) 

RMSE 

(%) 

Kuala 

Lumpur  

-0.0087 -

0.18% 

0.348 7.2% 

Alor 

Setar 

0.161 3.45% 0.419 9% 

Johor 

Bharu 

0.043 0.95% 0.342 7.6% 

Kuching  0.036 0.78% 0.353 7.6% 

Ipoh 0.105 2.3% 0.380 8.4% 

 

From Table 2, the MBE of the Kuala Lumpur station was -

0.18%, meaning the predicted values are underestimated by 

0.018%, while every others station showed a slight 

overestimation. The average MBE for the developed network 

is 0.673 , meaning the predicted values were 

overestimated by 1.46%.  

The RMSE shows the efficiency of the developed network in 

predicting future individual values. A large positive RMSE 

means a large deviation in the predicted value from the real 

value. The average RMSE for the developed network is 0.3684 

, meaning a deviation of 7.96% is possible in a 

predicted individual value.  

I. CONCLUSION 

A prediction of global solar irradiation using ANN is 

developed. This prediction was based on collected data from 

28 sites in Malaysia. The developed network predicted the 

clearness indexes. The clearness indexes were then used to 

predict the global solar irradiation. Additionally, estimations 

of the diffused solar radiation were proposed using an equation 

developed for Malaysia. This equation calculates the diffused 

solar irradiation as a function of the global solar irradiation 

and the clearness index. Five main sites in Malaysia have been 

used to test the proposed approach. The average MAPE, MBE 

and RMSE for the predicted global solar irradiation are 5.92%, 

1.46% and 7.96.  
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