
 

 

  

Abstract— This paper presents a study of the dual reciprocity 

boundary element method (DRBEM) for the laminar heat convection 

problem between two coaxial cylinders with constant heat flux 

boundary condition. DRBEM is one of the most successful technique 

used to transform the domain integrals arising from the non-

homogeneous term of the Poisson equation into equivalent boundary 

only integrals. This recently developed and highly efficient nume-

rical method is tested for the solution accuracy of the fluid flow and 

heat transfer study between two coaxial cylinders. Since their exact 

solutions are available, DRBEM solutions are verified with different 

number of boundary element discretizations and internal points. The 

results obtained in this study are discussed with the relative error 

percentage of velocity and temperature solutions, and potential 

applicability of the method for the more complicated heat convection 

problems with arbitrary duct geometries. 

 

Keywords— Coaxial cylinders, Dual reciprocity boundary ele-

ment method, Heat flux boundary condition, Laminar heat convec-

tion, Numerical analysis.  

I. INTRODUCTION 

MONG the various numerical methods, the boundary 

element method (BEM) becomes one of the favorite 

analysis tool ever since its introduction to the solution of heat 

transfer problems. Its advantage over the finite difference or 

the finite element methods comes from the fact that instead of 

full domain discretization, only the boundary is discretized 

into elements and internal point position can be freely defined. 

Therefore the quantity of data necessary to solve the problems 

can be greatly reduced [8]. 

Until recent years the main area of the BEM application has 

been limited to the conduction heat transfer problems among 

different heat transfer modes and therefore, with various 

research efforts, BEM for the solution of heat conduction 

direct or inverse problem is now well established [13], [18]. 

However BEM study for the application of heat convection 

problems can be considered as insufficient and in still 

developing stage. Since the convection effects are of 

considerable importance in many heat transfer phenomena, 

they need much more research focus. The main difficulties of 

the BEM application to such problems are due to the facts that 
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the fundamental solutions are only available for the few 

governing equation types and, except Laplace equation, 

additional domain discretization is required to account source 

type domain integral terms [34]. 

The dual reciprocity boundary element method (DRBEM) 

which was introduced by Nardini and Brebbia [22] is thus far 

the most successful technique for dealing with above 

mentioned lack of fundamental solution types and domain 

integral problems. Since its introduction DRBEM has been 

applied in many field of engineering problems [26], [28], [36]. 

In the DRBEM, available fundamental soluion is used for the 

complete governing equation, and domain integral arising from 

the heat source–like term is transferred to the boundary by 

using the radial basis interpolation functions [27], [37]. 

This paper presents the application of DRBEM to the 

Poisson type equations, and fully developed laminar convec-

tion heat transfer problems between two coaxial cylinders are 

illustrated as their applicable examples. The concentric 

annulus is chosen because of its simplicity and available exact 

solutions, so that basic nature of the proposed method for the 

convection problems can be analyzed and revealed in a 

detailed manner [17], [19]. Therefore present research efforts 

are confirmed within basic study aiming at the establishment of 

DRBEM’s applicability for the heat convection analysis to be 

eventually extended in the future study of various heat transfer 

system. 

In this paper, hydrodynamically and thermally fully deve-

loped laminar flow with uniform heat flux through thermal 

boundary between two coaxial cylinders is studied by using the 

DRBEM. To verify the methods on heat convection pro-blems, 

numerical solutions with different number of boundary element 

discretizations and internal points are compared with the exact 

solutions for its convergence and accuracy. 

II. FORMULATION OF THE PROBLEM 

Consider an incompressible Newtonian fluid flow in a 

concentric annular tube as shown in Fig. 1. In the system to be 

analyzed, z coordinate represents the axial direction and x–y 

coordinates are attached to the cross–sectional surface. The 

inner and outer cylinder radii are taken as Ri and Ro. For the 

fully developed steady laminar flow with constant trans-port 

properties and negligible body forces, Navier–Stokes equation 

becomes simple pressure–driven Poiseuille flow equation. 

Since the flow is fully developed, axial flow velocity is a 

function of only x–y coordinates, and axial pressure gradient is 

constant. 

Numerical analysis of the laminar forced heat 

convection between two coaxial cylinders 
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Fig. 1 Geometry of the concentric annular tube 

In the energy equation, the viscous dissipation and axial 

heat conduction effects are neglected. Therefore the gover-

ning equation can be expressed in the form of a Poisson 

equation as follows: 

– momentum equation: 
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– energy equation: 
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in which: w is the axial flow velocity; µ – coefficient of 

viscosity; p – pressure; T – temperature; a=λ/ρc – thermal 

diffusivity. 

For the thermally fully developed flow with constant heat 

flux boundary condition, (2) can be rewritten by using the 

mixed mean temperature Tm [19] as: 
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where ∂T/∂z=dTm/dz=const. from the given conditions. The 

boundary conditions associated with (1) and (3) are: 

    oat0,at0 RRwRRw i ====      (4) 

    oo atat RRTTRRTT ii ====     (5) 

where subscripts i and o represent for the inner and outer 

surfaces. 

For the solution of temperatures, velocity from (1) is obtai-

ned first and then (3) can be solved in sequence since the 

assumption of constant viscosity uncoupled the momentum and 

energy equations. 

III. DUAL RECIPROCITY BOUNDARY ELEMENT EQUATION 

For the BEM solution, (1) and (3) subject to (4) and (5) can 

be generalized as the following type of Poisson equation [26]: 

    Ω∈=∇ ),(),,(),(2 yxyxbyxu     (6) 

with the boundary conditions: 
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and to represent convective heat transfer problems: 
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where: Γ1+Γ2=Γ is the total boundary of solution domain Ω; n 

– normal to the boundary; u and q  – specified values at each 

boundary. 

Applying the usual boundary element technique to (6), an 

integral equation can be deduced as follows [8]: 

    Ω=Γ−Γ+ ∫∫∫ Ω

∗

Γ

∗

Γ

∗ ddd buquuquc ii    (10) 

where the constant ci depends on the geometry at point i as: 
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where θ is the angle between the tangent to Γ on either side of 

point i. 

The key method of DRM is to take the domain integral of 

equation (10) to the boundary and remove the needs of 

complicated domain discretization. To accomplish this idea, 

the source term b(x, y) is expanded as its values at each node j 

and a set of interpolating functions fj are used as [26], [28], 

[36]: 
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where: αj is a set of initially unknown coefficients; N+L – the 

number of boundary nodes plus internal points. 

If the function ju can be found such that: 

          jj fu =∇ 2
         (13) 

then the domain integral can be transferred to the boundary. 

Substituting (13) into (12), and applying integration by parts 

twice for the domain integral term of (10) leads to: 

   ×=Γ−Γ+ ∑∫∫
+

=
Γ

∗

Γ

∗
LN

j

jii quuquc
1

dd α  

INTERNATIONAL JOURNAL OF ENERGY, Issue 4, Vol. 3, 2009

52



 

 

    ( )Γ−Γ+× ∗

Γ

∗

Γ ∫∫ dˆdˆˆ uqquuc jjiji      (14) 

For the two-dimensional domain of interest in this study, u
∗
, 

q
∗
 and û , q̂ can be derived as: 

        

nr
r

q

r
u

�
⋅∇

−
=

=

∗

∗

π2

1

)
1

ln(
π2

1

        (15) 

        

nr
rr

q

rr
u

�
⋅∇+=

+=

)
32

(ˆ

94
ˆ

2

32

       (16) 

where r stands for the distance from a source point i or a DRM 

collocation point j to a field point (x, y). As for the equation 

(13), a radial basis function f =1+r is chosen as an 

interpolating function which was shown to be generally 

sufficient [27], [28], [37]. 

In the numerical solution of the integral equation (14), u, q, 

û and q̂  in the integrals are modelled using the linear 

interpolation functions as: 
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Here the first subscript of (21) and (22) refers to the specific 

position of the point where the flow velocity or temperature is 

evaluated; the second subscript refers to the boundary element 

over which the contour integral is carried out. The superscript 

1 and 2 designate the linear interpolation function Φ1 and Φ2 

respectively, with which the u
∗
 and q

∗
 functions are weighted 

in the integrals in equation (17) through (20). 

For the boundary 21 ΓΓ=Γ ∪ discretized into N elements, 

integral terms in equation (14) can be rewritten as: 
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where 22
0 iNi hh =  and 22

0 iNi gg = . Introducing (23) and (24) into 

(14) and manipulating results yields a dual reciprocity boun-

dary element equation as: 
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IV. NUMERICAL SOLUTION 

For the computer implementation of numerical solution, 

(25) can now be written in a matrix form as: 

      αQGUHGQHU )ˆˆ( −=−       (26) 

where H and G are matrices of their elements being Hik and 

Gik, with ci being incoroperated into the principal diagonal 

element, respectively. U, Q and their terms with hat of (26) 

correspond to vectors of uk, qk and matrices with jth column 

vectors of hat ukj, qkj. It is noted that vector αααα of unknown 

coefficients j can be evaluated from (12) with chosen inter-

polating function fj and the function b(x, y) of governing 

equation. Therefore introducing the boundary conditions into 

the nodes of uk and qk vectors and rearranging by taking known 

quantities to the right hand side and unknowns to the left hand 

side leads to a set of simultaneous linear equations of the form: 

          BAX =           (27) 

Using the DRBEM matrix equation, the numerical solution 

of laminar convection heat transfer problem in a concentric 

annulus can be readily obtained as x being the flow velocity w 

for momentum equation and also temperature T for energy 

equation or their normal derivatives, respectively. 

Consider the geometry illustrated in Fig. 2. For the sake of 

simplification, the surface temperatures of two cylinders are 

assumed to be equal. Thus, the solution satisfies the following 

boundary conditions: 
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As a note, no slip conditions are applied for the velocity 

boundary condition. 
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For the numerical test case, following numerical values in 

(1) and (3) are taken from the paper [33] where the spectral 

collocation method is used for the exccentric annuli heat 

convection analysis:  
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V. RESULTS AND DISCUSSION 

In order to confirm the accuracy of the dual reciprocity 

boundary element method for the present heat convection 

problem, each boundary of outer and inner surface is equally 

discretized as 36, 48, 60, 72 and 84 elements respectively. The 

nodes on every boundary and the unternal points of the 

analysis domain are located as shown in Fig. 2. Therefore total 

number of internal points used in the analysis are 90, 120, 150, 

180 and 210 for each 36, 48, 60, 72 and 84 boundary element 

cases respectively. 

To obtain the axial flow velocity distribution w(x,y), 

equation (1) is solved first. Their results for the boundary and 

internal nodes are shown in Table I, for the radial basis 

function f =1+r and in Table II, for f =1+r+r
2
. Here the normal 

derivative of velocity w at the boundary is listed as well, and 

all the numerical solutions are compared with the exact 

solutions [19] for their accuracy. 

 

 

Fig. 2 Boundary element nodes and internal points  

for the system to be analyzed 

Table I. DRBEM results with exact solutions for the boundary and internal locations in flow velocity analysis (f=1+r) 

Solution 

variable 

Radial 

location 

R [m] 

DRBEM solution 

(number of boundary elements case) 
Exact 

solution 
36 48 60 72 84 

∂w/∂n 0.055 −9.570611 −9.614363 −9.632446 −9.646733 −9.649446 −9.667904 

∂w/∂n 0.030 −11.961390 −11.931682 −11.910987 −11.902295 −11.900702 −11.883840 

w 0.0342 0.040336 0.039937 0.039755 0.039656 0.039614 0.039413 

w 0.0383 0.061518 0.061112 0.060926 0.060825 0.060760 0.060591 

w 0.0425 0.066727 0.066320 0.066133 0.066030 0.065973 0.065803 

w 0.0466 0.057611 0.057196 0.057006 0.056908 0.056853 0.056682 

w 0.0508 0.035084 0.034883 0.034733 0.034638 0.034606 0.034439 

 

Table II. DRBEM results with exact solutions for the boundary and internal locations in flow velocity analysis (f=1+r+r2) 

Solution 

variable 

Radial 

location 

DRBEM solution 

(number of boundary elements case) 

Exact 

solution 
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R [m] 36 48 60 72 84 

∂w/∂n 0.055 −9.570477 −9.615427 −9.632632 −9.647164 −9.651780 −9.667904 

∂w/∂n 0.030 −11.960900 −11.929878 −11.906732 −11.899952 −11.898130 −11.883840 

w 0.0342 0.040334 0.039938 0.039754 0.039654 0.039601 0.039413 

w 0.0383 0.061519 0.061112 0.060927 0.060820 0.060761 0.060591 

w 0.0425 0.066725 0.066321 0.066136 0.066031 0.065974 0.065803 

w 0.0466 0.057609 0.057193 0.057012 0.056906 0.056850 0.056682 

w 0.0508 0.035080 0.034880 0.034726 0.034635 0.034604 0.034439 

 

Fig. 3, 4, 5 and 6 show the convergence plot of DRBEM 

velocity and its normal derivative solutions as the number of 

boundary elements and internal points increase. DRBEM 

solutions are in close agreement with the exact solutions and 

relative errors are within 2.3% for the above 36 element cases.  

As noted in Fig. 3 and 4 velocity solutions at location of 

R=0.0508 m and R=0.0342 m are less accurate than the others 

and, in between, R=0.0342 point gives more inaccurate 

solution than R=0.0508. And for the normal derivatives of 

velocity at boundary R=0.055 m is less accurate than R=0.030 

m as shown in Fig. 5 and 6. These results are due to the facts 

that the outer boundary element size is larger than the inner 

boundary element size and distribution of internal points is 

getting sparse to the outward direction, whereas rapid change 

of velocity occurs at inner and outer boundary sides as 

illustrated in Fig. 2, 7 and 8. 

 

Fig. 3 Accuracy test for the velocity solution at the selected  

internal points 

 Therefore solution’s error magnitude regarding to the radial 

location is closely related to both the physical and the 

mathematical aspects and nevertheless overall solution 

accuracy is shown to be fairly acceptable. Thus, 36 element 

solution case shows maximum 2.34% error at radial position 

R=0.0342 and later results in accurate temperature solution. 

 
Fig. 4 Accuracy test for the velocity solution at the selected internal 

points 

 
Fig. 5 Accuracy test for the normal derivative of velocity solution at 

the inner and outer boundaries 

Then these DRM velocity solutions are, in turn, used in the 

energy equation (3) to solve for the temperature distribution. 

Tables III and IV shows the results, and it is found that DRM 

solutions are in excellent agreement with exact solutions and 

relative errors are within 5% for the above 36 element cases 

(Fig. 9 – 14). 
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Fig. 6 Accuracy test for the normal derivative of velocity solution at 

the inner and outer boundaries 

 
Fig. 7 Velocity profile of exact solution compared  

with DRBEM results 

 
Fig. 8 Velocity profile of exact solution compared  

with DRBEM results 

 
Fig. 9 Accuracy test for the temperature solution at the selected 

internal points 

 
Fig. 10 Accuracy test for the temperature solution at the selected 

internal points 

 

Fig. 11 Accuracy test for the normal derivative of temperature 

solution at the inner and outer boundaries 
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Table III. DRBEM results with exact solutions for the boundary and internal locations in temperature analysis (f=1+r) 

Solution 

variable 

Radial 

location 

R [m] 

DRBEM solution 

(number of boundary elements case) 
Exact 

solution 
36 48 60 72 84 

∂T*/∂n 0.055 172056.38 170824.22 171362.75 171600.75 171628.56 170484.20 

∂T*/∂n 0.030 233420.45 229217.02 230340.65 230698.70 230771.22 229506.90 

T* 0.0342 804.26 828.59 847.40 853.78 855.04 858.72 

T* 0.0383 1268.86 1298.52 1311.65 1315.86 1317.26 1320.13 

T* 0.0425 1383.48 1413.28 1426.46 1429.68 1431.26 1433.69 

T* 0.0466 1180.68 1209.26 1224.48 1230.46 1231.92 1234.96 

T* 0.0508 711.52 730.65 741.78 746.86 747.90 750.34 

Table IV. DRBEM results with exact solutions for the boundary and internal locations in temperature analysis (f=1+r+r2) 

Solution 

variable 

Radial 

location 

R [m] 

DRBEM solution 

(number of boundary elements case) 
Exact 

solution 
36 48 60 72 84 

∂T*/∂n 0.055 171989.88 170768.08 171293.14 171535.45 171598.75 170484.20 

∂T*/∂n 0.030 233300.36 229286.02 230294.05 230618.22 230708.55 229506.90 

T* 0.0342 805.85 829.69 848.14 854.14 855.78 858.72 

T* 0.0383 1271.14 1299.86 1312.24 1316.04 1317.68 1320.13 

T* 0.0425 1385.24 1414.58 1427.24 1430.02 1431.76 1433.69 

T* 0.0466 1182.72 1210.64 1225.78 1230.98 1232.04 1234.96 

T* 0.0508 713.38 731.68 742.87 747.12 748.03 750.34 

 

 
Fig. 12 Accuracy test for the normal derivative of temperature 

solution at the inner and outer boundaries 

 
Fig. 13 Temperature profile T* of exact solution compared with 

DRBEM results 

 

Fig. 14 Temperature profile T* of exact solution compared with 

DRBEM results 

Although the converging trend in Fig. 11 and 12 is not 

monotonic and radial location effect about arror magnitude is 

not exactly following the previously discussed velocity solu-

tion case, solution trends can be considered as indistin-

guishable within 1% relative error. 

These test results validate the power of dual reciprocity 

boundary element method and its solution accuracy, since the 

numerically solved velocity was used as an input in (3) and 

source–like function b(x, y) of (12) in (3) is approximated with 

interpolating function and nodal values of internal points. 

As a final note, all the element cases turns out to be 

adequate for the solution of this problem. Errors of the 

velocity and the temperature solution are acceptable. 
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VI. CONCLUSIONS 

A dual reciprocity boundary element method has been 

presented for the solution of laminar heat convection problem 

in a concentric annulus imposed with constant heat flux. 

DRBEM matrix is formulated to perform the numerical 

implementation, and five cases of boundary element discre-

tization are tested with the corresponding number of internal 

points. Five radial locations are selected to obtain the velocity 

and temperature solutions. Test results are shown to be in 

excellent agreement with exact solutions for the above 36 

element case. 

As a final remark, recently developed dual reciprocity 

boundary element method is successfully applied to solving 

the laminar heat convection problem in a concentric annulus, 

and also current study shows its broad potentiality for further 

applications. 
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