
 

 

  

Abstract— The paper approaches the optimization of water 
distribution networks supplied from one or more node sources, 
according to demand variation. Traditionally, in pipe optimization, 
the objective function is always focused on the cost criteria of 
network components. In this study an improved linear model is 
developed, which has the advantage of using not only cost criteria, 
but also energy consumption, consumption of scarce resources, 
operating expenses etc. The paper treats looped networks wich have 
concentrated outflows or uniform outflow along the length of each 
pipe. An improved model is developed for optimal desing of new or 
partially extended water distribution networks, which operate either 
by means of gravity or a pump system.The model is based on the 
method of linear programming and allows the determination of an 
optimal distribution of commercial diameters for each pipe in the 
network and the length of the pipes which correspond to these 
diameters. Also, it is possible to take into account the various 
functional situations characteristic found during operation. This 
paper compares linear optimization model to the some others, such as 
the classic model of average economical velocities and Moshnin 
optimization model. This shows the good performance of the new 
model. For different analyzed networks, the saving of electrical 
energy, due to diminishing pressure losses and operation costs when 
applying the developed model, represents about 10…35 %. 
 

Keywords— Distribution, Linear optimization model, Looped 
networks, Water supply. 

I. INTRODUCTION 

ISTRIBUTION networks are an essential part of all water 
supply systems. The reliability of supply is much greater 

in the case of looped networks. Distribution system costs 
within any water supply scheme may be equal to or greater 
than 60 % of the entire cost of the project. Also, the energy 
consumed in a distribution network supplied by pumping may 
exceed 60 % of the total energy consumption of the system 
[20]. 

Attempts should be made to reduce the cost and energy 
consumption of the distribution system through optimization in 
analysis and design. A water distribution network that includes 
bosster pumps mounted in the pipes, pressure reducing valves, 
and check–valves can be analyzed by several common 
methods such as Hardy–Cross, linear theory, and Newton–
Raphson [27]. 

Traditionally, pipe diameters are chosen according to the 
average economical velocities (Hardy–Cross method) [6]. This 
procedure is cumbersome, uneconomical, and requires trials, 
seldom leading to an economical and technical op-timum. 

 
Ioan Sarbu is currently a Professor and Department Head at the Building 

Services Department, “Politehnica” University of Timisoara, 300233 
ROMANIA, e-mail address: ioan.sarbu@ct.upt.ro 

Nonlinear programming is one of the common methods that 
have been used to design water distribution systems, specially, 
in networks supplied by direct pumping [23]. 

Dynamic programming [29] is also used primarily to solve 
tree–shaped networks and could be extended to solve to 
looped systems [16]. 

For optimizing the design of pipe network with closed loops 
that is a nonlinear problem, the bulk transport function can be 
used as an objective function. Strictly, this will not be the 
optimum for nonlinear flow rate – cost relationships, since 
economy of scale is not introduced [27]. 

Dixit and Rao [9] have used a method in which only the cost 
of pipes is minimized. This method is only a tool to provide a 
good starting solution for the designer to further improve on 
the solution by using engineering judgement. There are other 
analytical and numerical models [1], [5], [18], [29] which 
make use of optimization of cost criteria, but have had 
relatively little succes. Some of these methods either require 
more feasible variants, or do not include the case of looped 
networks supplied by more sources and having bosster pmps 
installed in the pipes. On the other hand, all of these 
optimization models consider quadratic turblence flow, are 
based on the concentrated outflow and they permit the use of 
only one diameter for each pipe. 

More recently, genetic algorithms (GA) and simulated 
annealing have been integrated with hydaulic network solvers 
for the optimization of water distribution systems [7], [25], 
[26]. One disadvantage is that the GA technique requires the 
large number of hydraulic simulation evaluation 

This paper develops a linear model for optimal design of 
new and partially extended distribution systems supplied by 
pumping or gravitation. It is based on linear programming and 
allows for the determination of optimal distribution of 
commercial diameters along the length of each pipe and the 
length of pipe sectors corresponding to these diameters. It is 
possible to take into account various functional situations 
characteristic found during operation and uniform outflows 
along the length of each pipe. This model can serve as 
guidelines to supplement existing procedures of network 
design. 

II. BASIS OF HYDRAULIC CALCULATION 

A distribution network may be represented by orientation 
comprising a finite number of arcs (pipes, pumps, fittings) and 
a set of nodes as well as reservoirs and pumps or pipe 
intersections. 

For a looped network with a simple topology, using the 
Euler’s equation which gives the cyclomatic number of the 
graph, the following expression may be established between 
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the number of pipes T, nodes N and independent closed–loops 
(possibly containing bosster pmps installed in the pipes) M: 

        1+−= NTM          (1) 

 In the case of a complex topology, with reservoirs and 
pumps at the nodes, the number of open–loops (pseudoloops) 
NRP−1 is added to the number of closed–loops given by (1), so 
that the total number of independent loops is determined from 
the equation: 
        RPNNTM +−=        (2) 

where NRP is the total number of pressure generating fa-cilities. 
The hydraulic calculation of a distribution networks 

involves in determining the diameters, discharges and head 
losses in pipes, in order to guarantee at each node the 
necessary discharge and pressure. 

When performing the hydraulic calculation of a distri-bution 
network, the laws of water flow in all the pipes must be 
respected: 

– discharge continuity at nodes: 
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in which: fj is the residual discharge at the node j; Qij – 
discharge through pipe ij, with the sign (+) when entering node 
j and (–) when leaving it; qj – con-sumption discharge 
(demand) at node j with the sign (+) for node inflow and (–) 
for node outflow. 

– energy conservation in loops: 
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in which: ∆hm is the residual head loss (divergence) in the loop 
m; hij – head loss of the pipe ij; εij – orientation of flow 
through the pipe, having the values (+1) or (–1) as the water 
flow sense is the same or oposite to the path sense of the loop 
m, and (0) value if ij∉m; fm – pressure head introduced by the 
potential elements of the loop m, given by the relations: 
• simple closed–loops: 
          0=mf           (5) 

• closed–loops containing bosster pmps installed in the pipes: 
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• open–loops with pumps and/or reservoirs at nodes: 

         EIm ZZf −=          (7) 

where: ZI, ZE are piezometric heads at pressure devices at the 
entrance or exit from the loop; Hp,ij – pumping head of the 
bosster pump integrated on the pipe ij, for the discharge Qij, 
approximated by parabolic interpolation on the pump curve 
given by points: 

       CQBQAH ijijijp ++= 2
,       (8) 

the coefficients A, B, C can be determined from three points of 
operating data [20]. 

In the particular case of treee–shaped networks (M = 0,  
T =N−1), the number of N–1 node equations is sufficient for 
determining discharges as unknowns. 

The design of a looped network with T pipes involves 2 
kinds of unknowns: T values of discharges and T values of 
pipe diameters with a total of 2T unknowns. For computing 
there are T independent hydraulic equations: (3) and (4), being 
from the mathematical point of view an undetermined 
problem, with the undetermination degree equal to the cyclo-
matic number in the graph system. 

Classically, the undetermination is resolved by choosing 
diameters in a predesigned computation. In the method of 
optimization the undetermination must be removed by obtai-
ning the other T equations, i.e, by equating the partial deriva-
tives of the analytical optimization criterion with respect to 
pipe diameters to zero. Hence, theoretically there is a possi-
bility to obtain an absolutely optimal solution, but mathema-
tically it is very difficult to obtain a minimum, as is shown in 
the following. 

III. NETWORK DESIGN OPTIMIZATION CRITERIA 

Optimization of distribution network diameters considers a 
mono– or multicriterial objective function. Cost or energy cri-
teria may be used, simple or complex, which considers the 
network cost, pumping energy cost, operating expenses, in-
cluded energy, consumed energy, total expenses etc. 
Newtork cost Cc is obtained by adding the costs of each 

compound pipe, by the relation: 

       ij
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where: T is the number of pipes in a network; a, b, α  – cost 
parameters depending on pipe material [21]; Dij, Lij – diameter 
and the length of pipe ij. 
Pumping station cost Cp, proportional to the installed 

power, is given by: 

     ( )0σ
η

81.9
HhQfC ijpp += ∑      (10) 

where: η is the efficiency of pump station; f – installation cost 
of unit power; σ – a factor greater than one which takes into 
account the installed reserve power; Qp – pumped discharge; 
Σhij – sum of head losses along a path between the pump 
station and the critical node; H0 – geodesic and utilization 
component of the pumping total dynamic head. 
Pumping energy cost Ce is defined by: 

  ( )∑ ∑ +Φ==
12

1
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η
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where: We is the pumping energy; e – cost of electrical energy; 
τ = Tp/8760 – pumping coefficient, which takes into account 
the effective number Tp of pumping hours per year; Φκ – ratio 
between the average monthly discharge and the pumped 
discharge, having the value 1 for industrial enter-prises to 
which a constant discharge is delivered throughout the year, 
coresponding ΣΦk = 12, while for population centres a 
sequence of 12 values can be taken, to which ΣΦk = 10.44, 
corresponds. 
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Annual operating expenses Cex are given by: 
       epcex CCpCpC ++= 21       (12) 

where p1  and p2 are represented by repair, maintenance and 
periodic testing part for network pipes and pump stations 
respectively. 
Annual total expenses Can are defined by the multicriterial 

function: 
       expcoan CCCC ++= )(β       (13) 

where β0 = 1/Tr is the amortization part for the operation 
period Tr. 
Total updated expenses Cac are given by the multicriterial 

function: 
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and is considered during the whole operation period (t = Tr). 
Network included energy Wc is defined by the binomial 

objective function of the form (1), where a, b, α parameters 
have statistically corresponding determined values [21]. 
Energetic consumption Wt represents the energy included in 

the pipes of the network and the energy consumed in net-work 
operation during one year and is expressed by: 
       ect WWpW ++= )β( 10        (15) 

where We is the pumping energy, having the expression 
determined from (3). 

Taking into account (9) to (15) and denoting: 
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a complex objective multicriterial function is determined, with 
the general form: 

 ∑ ∑∑
==

+++=
NP

j

jijjpij

T

ij

ijc HhQLDbaF
1

0,
1

α
1 )(ψ)(ξ  (19) 

where: t is the period for which the optimization criterion 
expressed by the objective function is applied, having the 
value 1 or Tr; NP – number of pump stations. 

For networks supplied by pumping, the literature [1], [5], 
[9], [28] suggests the use of minimum annual total expenses 
criterion (CAN), but choosing the optimal diameters obtained 
in this way, the networks become uneconomical at some time 
after construction, due to inflation. 

Therefore, it is recommended the fore–mentioned criterion 
be subject to dynamization by using the criterion of total 
updated minimum expenses (CTA), the former being in fact a 
specific case of the latter when the investment is realised 
within a year; the operating expenses are the same from one 
year to another and the expected life-time of the distribution 
system is high. In particular, the use of energetical criteria 
different from cost criteria is recommendable. Thus, another 
way to approach the problem, with has a better validity in time 

and the homogenization of the objective function is network 
design according to minimum energetic consumption (WT). 

The general function (19) enables us to obtain a particular 
objective function by particularization of the time parameter t 
and of the other economic and energetical parameters, cha-
racteristic of the distribution system. For example, from t = 1, 
ra = 1, e = 1, f = 0 the minimum energetic consumption 
criterion is obtained. 

IV. COMPUTATIONAL MODEL OF DISCHARGES OPTIMAL 

DISTRIBUTION 

It is known that looped networks usually require a greater 
financial outlay than tree–shaped networks which supply the 
same nodes and have the same hydraulic load. The security of 
supply is much grea-ter in the case of looped networks. 

The objective function (19), used for optimal design of 
looped networks, is a function of discharges Qij (by means of 
head losses hij) as well as diameters Dij of each pipe. Therefore 
big problems arise when obtaining analytically its minimum. 
By equating zero with the partial derivatives of the form 
∂Fc/∂Dij and ∂Fc/∂Qij it is shown that the objective function Fc 
admits extrema, but second order derivatives indi-cate that the 
objective function has minimum values with res-pect to 
diameters Dij and maximal values with respect to disharges Qij. 
This complicates the determination of the solution to the 
problem. 

Also, knowing nodes discharges with respect to flow, pipes 
discharges could be calculated in a variety of ways for set of 
equations (3) to be satisfied, this however affects the security 
and technical and economic–energy conditions of the system. 
Thus, if exclusively quantitative criteria (CAN, CTA, WT) are 
used for the optimal design of looped systems, supply branches 
with very different values of diameters may result [20], [24]. 

Hence, computation of the optimal design of looped net-
works must be performed in the following stages: 

– establishment of optimal distribution for discharges 
through pipes, Qij, according to the minimum bulk transport 
criterion, which takes into account the network reliability; 

– computation of optimal pipes diameters, Dk,ij, taking into 
account the optimized discharges. 

In order to optimize discharges the minimum transport work 
criterion may be used, which is expressed analytically by M 
objective functions of the form: 

    ∑
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where pipe lengths Lij are known and to which node–continuity 
equations (3) are added as constraints. 

In the model described by the set of equations (20), (3) 
provides the supply of network nodes in the shortest way and 
with a minimum of transporation effort, and is solved by 
applying the itteration method, computing a circulation flow 
∆Qm for the loop m, from the condition: 
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which requires that the derivative ∂Ft/∂∆Qm = f(∆Qm) should 
equal zero, that is: 
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of which, only two terms of the Mac–Laurin series are 
retained: 
     0)0()0()( =′∆+=∆ fQfQf mm     (23) 

Performing the differentiation of the function (22) and, in 
particular for ∆Qm = 0 results in: 
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Using this and (23) the following equations are obtained: 
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where discharges Qij are oriented quantities, having the sign 
(+) when their direction in pipes coincides with the loop path 
direction, and the sign (–) otherwise. 

Initial distribution of the discharges is obtained by consi-
dering null discharges in the pipes which do not belong to the 
primary virtually tree–shaped network [21] and determining 
recurrently the other discharges, starting from the extreme 
nodes of this network. Starting from the initial solution, the 
discharges are itteratively corrected, until the precision given 
by the maximum admissable error is attained on a loop. 

The effective discharge Qij is computed with (26) or (27) as 
the considered pipe is singular or common for the loops m and 
k: 

        mijij QQQ ∆+= )0(         (26) 

       kmijij QQQQ ∆−∆+= )0(       (27) 

where: Qij
)0(  is the discharge through pipe ij at the previous 

approximation; ∆Qm, ∆Qk – circulation flow for the loops m 
and k respectively. 

For 30 values of exponent γ between 0 and 4 were designed 
some looped networks with different geometry, contours, and 
inflow and outflow conditions using the Moshnin optimi-
zation model [1], where flow circulation model (25) is inclu-
ded and the optimization criteria CTA and WT are conside-
red. From the exponent γ has resulted the optimum value of 
1.8...2.2 [24] (for which the objective functions Ft and Fc have 
minimum value). Consequently, γ may be approximated to 2. 

The implementation of the mathematical model (25) into a 
computer program for optimal design of looped networks, 
leads not only to optimal diameters, but also guarantee high 
security of supply in their function. 

V. LINEAR OPTIMIZATION MODEL 

A. Generalization of relationship head loss–discharge for 

the pipe with uniform out-flow along their length 

For the evaluation of the energy disipated in pipes with 
variable discharge, a complex computational relation has been 
established by specialised studies [8]. The relation takes into 
account the complete hydrodynamic effects including the 
secondary (branch) ones, in the zones of consumption nodes. 

In particular, for pipes with uniform outflow along their 
length, the expression for head loss between extrem ends take 
the form: 
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where: Dij, Rij are the diameters and hydraulic resistance of the 
pipe ij; Q0 – inflow in the initial section of the pipe ij; Qc – 
outflow along the length of the pipe ij; α0 – nonuniformity 
coefficient of velocity distribution in the cross–sections of the 
pipe. 

The second term of (28) represents the energy loss due to 
variation of outflow along the length of the pipe and deter-
mines a diminishing of the total head loss. 

The discharge in the pipes of a network could be consi-
dered constant, equalizing head loss in a pipe with uniform 
outflow along its length with head loss in a simple pipe with 
concentrated outflow: 
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where: Re,ij is the equivalent hydraulic resistance of the pipe ij; 
Qij – discharge through pipe ij. 

By equating relations (28) and (29), from elementary 
computations, the following expression of the equivalent 
hydraulic resistance is arrived at: 
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in which the following nondimensional characteristics have 
been used: 

– for outflow:   
0

θ
Q

Qc
ij =             (31) 

– for pipe:    
ijij
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L

D
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α
ω 0=            (32) 

The total length of a pipe ij, with the discharge Qij, may be 
divided into sij partial length (sector), k, of Dk,ij diameters and 
Xk,ij lengths. Taking into account the Darcy–Weisbach’s 
functional equation, the friction slope Jk,ij for each sector k of 
the pipe ij can be calculated, in the hypothesis of concentrated 
outflow, with the equation: 
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where: r is an exponent having the value 5.0; g – gravi-tational 
acceleration; λk,ij – friction factor of sector k in pipe ij, can be 
calculated using the Colebrook–White formula, or the explicit 
equation proposed in [2] for the transitory turbulence flow. 

Since in real conditions the discharge decreases from one 
cross–section to another in the sense of outflow, an increase of 
pressure is accomplished at the outlet of the pipe, by a 
phenomenon similar to rebound, which has as the effect of 
diminishing the head loss. Thus, it is taked into account (30) 
and the notations (34), (35) are introduced in (33): 
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where θij has the value 1.00 if Qij ≤ Qc,ij/2, and otherwise has 
the value given by (36) for the pipes of the primary tree–
shaped network or by (37) for virtually supressed pipes from 
the given network, in the case of looped systems: 
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The expression of friction slope in each sector k of the pipe 
ij, for the uniform outflow along the length of the pipe, is 
rewritten as: 
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For Θij=1 and Ωk,ij=0 the general equation (38) takes the 
particular form (33), valid for pipes with constant discharge. 
Specific consumption of energy for distribution of water wsd, 
in kWh/m3, is obtained by referring the hydraulic power dissi-
pated in pipes to the sum of discharges: 
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where ,
jq is the outflow at the node j. 

B. Development of the mathematical model 

The discharges Qij are determined for each operating 
condition. The distribution of discharges is optimized by using 
model (25) with γ = 2. 

The series of commercial diameters which can be used  
Dk,ij ∈ [Dmax,ij, Dmin,ij] for each pipe ij are established using the 
limit values of optimal diameters Dmax,ij and Dmin,ij, com-puted 
by (40) for pumping operation networks or by (41) for gravity 
networks: 
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in which: 
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where: Qij is the discharge of the pipe ij; Qp = ΣQp,j – pumped 
discharge; Vmin, Vmax – limits of the economic velocities; n’ – 
Manning roughness coefficient of the pipes (Table 1); E – 
economy-energy factor of the pipes [1], [20], which has a 
maximum value and a minimum value, corresponding to the 
limit values of the variation of economy-energy parameters 
(p1, p2, η, f, σ, e, τ, ∑Φk) for the distribution system, included 
in ψ and ξ1. Table I contains Emin and Emax values, computed 
for conditions specific to Romania. 

A penalty coefficient pij is used when optimizing diameters 
in the case of extending a network, which has the value equal 
to the value of corresponding imposed diameter, for pipes with 
fixed diameters, resulting in Dk,ij = pij. 

Table I. Emin and Emax values of the economy–energy factor  
of the pipes 

No. 
Pipe 

material 
n’ 

CAN  CTA  WT  
Emin Emax Emin Emax Emin Emax 

0 1 2 3 4 5 6 7 8 

1 
Reinforced 
concrete 

0.0120 0.46 2.28 0.21 1.46 0.34 1.38 

2 Cast iron 0.0120 0.24 1.11 0.14 0.78 0.20 0.80 
3 Steel 0.0120 0.46 2.28 0.21 1.46 0.34 1.38 
4 PVC 0.0111 0.28 1.20 0.13 0.90 0.17 0.51 
5 PE–HD 0.0111 0.28 1.22 0.13 0.95 0.17 0.55 

Admitting that a pipe ij of length Lij of a pumping ope-ration 
network made up of T pipes, can be divided into sij sectors k of 
diameters Dk,ij and lengths Xk,ij and taking into account the 
notations: 

       )(ξ α
,1, ijkijk Dbac +=∗         (43) 
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the objective function (19) takes the form: 
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The unknowns of the objective function are variables Xk,ij 

and ZIPP,j, being ∑
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 in number. 

When the pressure device is comprised of one or more 
reservoirs (ψ = 0), the expresion (45) of the objective function 
becomes: 
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minimizing the included energy or the network cost and having 
as unknowns the variables Xk,ij. 

Hence, the values of the variables must be determined in 
order to minimize the objective function Fc, provided the 
following constraints are satisfied: 

– constructive constraints: 

     ),...,1(
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–functional constraints which are written for each opera-
ting situation, and which must provide the necessary pressure 
HNo at the critical nodes, starting on different path from the 
pressure devices IPPj (Fig. 1): 
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where: NTj is the pipes number of a path IPPj – O; ZTo – 
elevation head at the critical node O; ZIPP,j – available 
piezometric head at the pressure device j; Hp,ij – pumping head 
of the bosster pump mounted in the pipe ij, having the 
expression (8). 

 

Fig. 1 Scheme of a path IPPj – critical node O 

– hydraulic constraints characteristic only for looped net-
works, expressing the energy conservation in loops: 
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in which εij is the orientation of the pipes and the pressure head 
fm is given by (5), (6) and (7). 

In the case that the available piezometric heads ZIPP,j are 
known, and it being unnecessary to determine them by 
optimization, the objective function (45) takes the form (46), 
while values ZIPP,j are contained in the free term of constraints 
(48) and (49). 

As the objective function (45) or (46) and constraints (47), 
(48), (49) are linear with respect to the unknowns of system 
the optimal solution is determined according to the linear 
programming method, using the Simplex algorythm. 

Computing the unknowns ZIPP,j by optimization, for pum-
ping operation networks results in the corresponding pum-ping 
head: 

       jSPjIPPjp ZZH ,,, −=        (50) 

where ZSP,j is the water level in the suction basin of IPPj. 
Taking into account head loss HIPP,j-n on the path IPPj – n: 

   ∑∑
= =

− −Θ=
j

NT

ij

ij
s

k

ijkijkijnjIPP XJH
1 1

,,,  

      ∑ ∑
= = 













+Ω−

j
NT

ij

ij
s

k

ijpijkijk HJ
1 1

,,,       (51) 

the piezometric head Zn and the residual pressure head Hn at 
the node n are determined from the relations: 
       njIPPjIPPn HZZ −−= ,,        (52) 

        nnn ZTZH −=          (53) 

where ZTn is the elevation head at the node n. 
For an optimal design, the piezometric line of a path of NTj 

pipes, situated in the same pressure zone, must represent a 
polygonal line which resemble as closely as possible the 
optimal form expressed by the equation: 
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in which: Zn is the piezometric head at the node n; d – distance 
between node n and the pressure device j. 

The computer program OPLIRA has been elaborated based 
on the linear optimization model, in the FORTRAN program-
ming language for IBM–PC compatible microsystems. 

VI. NUMERICAL APPLICATION 

The looped distribution network with the topology from Fig. 
2 is considered. It is made of cast iron and is supplied by 
pumping with a discharge of 0.23 m3/s. The following data is 
known: pipes length Lij, in m, elevation head ZTj, in m, and 
necessary pressure HNj  = 24 m H2O. 

A comparative study of network dimensioning is performed 
using the classic model of average economical velocities 
(MVE), Moshnin optimization model (MOM) [1] and the 
linear optimization model (MOL) developed above, the last 
being applied in the hypothesis of concentrated outflow 
(MOL–N), as well as of uniform outflow along the lenght of 
the pipes (MOL–D). 

 
Fig. 2 Scheme of the designed distribution network 
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Calculus was performed considering a transitory turbulence 
regime of water flow and the optimization criterion used was 
that of minimum energetic consumption. Results of the nume-
rical solution performed by means of an IBM–PC computer, 
referring to the hydraulic characteristics of the pipes are 
presented in Tables II and III. 

The significance of (–) sign of discharges and head losses in 
Tables II and III is the change of flow sense in the res-pective 
pipes with respect to the initial sense considered in the Fig. 2. 

In Fig. 3 there is a graphic representation, starting from the 
node source 8 to the control node 1, on the path 8–5–2–1, the 
piezometric lines being obtained using the three mentioned 
models of computation, evidencing their deviation from the 
optimal theoretical form. Fig. 3 also includes the corres-
ponding values of the objective function Fc, the network 
included energy Wc, pumping energy We, as well as specific 
energy consumption for water distribution wsd. 

 

Table II. Hydraulic characteristics of the pipes determined with  
the models MVE and MOM 

Pipe 
i - j 

L 

[m] 

MVE MOM 
Qij Dij hij Vij Qij Dij hij Vij 

[m3/s] [mm] [m] [m/s] [m3/s]  [mm] [m] [m/s] 
0 1 2 3 4 5 6 7 8 9 

4-1 300 0.00782 100 4.009 1.00 0.00786 150 0.510 0.45 
4-2 200 0.00512 100 1.177 0.65 -0.00174 100 -0.154 0.22 
4-3 200 0.00512 100 1.177 0.65 -0.00174 100 -0.154 0.22 
7-4 400 0.05924 300 0.963 0.84 0.04557 250 1.473 0.93 
7-5 200 0.00517 100 1.199 0.66 0.00097 100 0.052 0.15 
7-6 200 0.00517 100 1.199 0.66 0.00097 100 0.052 0.15 
8-7 300 0.09576 350 0.833 1.00 0.07370 300 1.104 1.04 
2-1 400 0.01669 150 2.886 0.94 0.01666 200 0.662 0.53 
3-1 400 0.01669 150 2.886 0.94 0.01666 200 0.662 0.53 
5-2 400 0.03538 250 0.902 0.72 0.04221 250 1.270 0.86 
6-3 400 0.03538 250 0.902 0.72 0.04221 250 1.270 0.86 
8-5 400 0.05403 250 2.051 1.10 0.06506 300 1.155 0.92 
8-6 400 0.05403 250 2.051 1.10 0.06506 300 1.155 0.92 

Table III. Hydraulic characteristics of the pipes determined with  
the models MOL–N and MOL–D 

Pipe 
i - j 

MOL-N MOL-D 
Qij 

[m3/s] 
k Xk,ij 

[m] 
Dk,ij 

[mm] 
hk,ij 
[m] 

Vk,ij 
[m/s] 

Qij 
[m3/s] 

k Xk,ij 
[m] 

Dk,ij 
[mm] 

hk,ij 

[m] 
Vk,ij 

[m/s] 

0 1 2 3 4 5 6 7 8 9 10 11 12 

4-1   0.01462 
1 107 250 0.045 0.30 

  0.01458 
1 254 250 0.226 0.30 

2  193 200 0.249 0.47 2   46 200 0.070 0.46 
4-2 -0.00484 1 200 150 -0.136 0.30  -0.00501 1 200 150 -0.176 0.28 
4-3 -0.00484 1 200 150 -0.136 0.30  -0.00500 1 200 150 -0.176 0.28 
7-4   0.04612 1 400 250 1.508 0.94   0.04575 1 400 250 1.442 0.93 
7-5   0.00380 1 200 125 0.224 0.32   0.00383 1 200 150 0.108 0.25 
7-6   0.00380 1 200 125 0.224 0.32   0,00383 1 200 150 0.108 0.25 

8-7   0.08007  
1 200 350 0.394 0.83 

  0.07962  
1   82 350 0.075 0.82 

2 100 300 0.430 1.13 2 218 300 0.782 1.12 
2-1   0.01329 1  400 200 0.429 0.42   0.01331 1 400 200 0.470 0.42 
3-1   0.01329 1 400 200 0.429 0.42   0.01331 1 400 200 0.470 0.42 

5-2   0.04194 
1 56 300 0.069 0.59 

  0.04212 1 400 250 1.159 0.86 
2  344 250 1.078 0.85 

6-3   0.04194 
1    56 300 0.069 0.59 

  0.04212 1 400 250 1.159 0.86 
2 344 250 1.078 0.85 

8-5   0.06187 1 400 300 1.048 0.88   0.06210 1 400 300 0.964 0.88 
8-6   0.06187 1 400 300 1.048 0.88   0.06210 1 400 300 0.964 0.88 

 
According to the performed study it was established that: 
– all the pipes of the network are operating in a transitory 

turbulence regime of water flow; 
– there is a general increase of pipes diameters obtained by 

optimization models (MOM, MOL) with respect to MVE, 
because the classical model does not take into account the 
minimum consumption of energy and the diversity of econo-
mical parameters; 

– in comparison with the results obtained by MVE, the ones 
obtained by optimization models are more economical, a 
substantial reduction of specific energy consumption for water 
distribution is achieved (MOM – 21.3 %, MOL-N – 41.3 %, 
MOL-D – 45.3 %) as well as a reduction of pumping energy 
(MOM – 6,4%, MOL-N – 10.3%, MOL-D – 10.6%), at the 
same time the objective function has also smaller values 
(MOM – 2.3 %, MOL-N – 4.5 %, MOL-D – 4.8 %); 
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Fig. 3 Piezometric lines along the path 8–5–2–1 

– the optimal results obtained using MOL are superior 
energetically to those offered by MOM, leading to pumping 
energy savings of 5 %; 

– also, the application of MOL for uniform outflow along 
the lenght of the pipes, has led to the minimum deviation from 
the optimal form of the piezometric line, especially to a more 
uniform distribution of the pumping energy, by elimi-nation of 
a high level of available pressure at some nodes even at 
maximum consumption. The smallest value of the specific 
energetic consumption, namely that of 0.0041 kWh/m3, also 
supports this assertion; 

– reduction of the pressure in the distribution network 
achieved in this way, is of major practical import, contri-
buting to the diminishing of water losses from the system. 

VII. CONCLUSIONS 

The mathematical programming, as a fundamental proce-
dure for optimizing the structures in general, together with 
graph theory and the increasing implication of computers in 
solving mathematical formulations have created conditions for 
solving efficiently some optimization problems of design of 
water distribution networks. The different types of pro-
gramming which exist (linear, nonlinear, whole, geometric 
etc.) provide multiple possibilities for solving specific pro-
blems. 

The proposed optimization model, a very general and 
practical one, offers the possibility of optimal design of water 
supply networks using multiple optimization criteria and 
considers the transitory or quadratic turbulence flow. It has the 
advantage of using not only cost criteria, but also energy 
consumption, consumption of scarce resources, and other 
criteria can be expressed by simple options in the objective 
function (19). 

The model of linear optimization could be applied to any 
looped or tree–shaped network, either when piezometric heads 
at pressure devices (pump stations or tanks) must be 
determined or when these heads are given. It permits the 
determination of an optimal distribution of comercial dia-

meters along the length of each pipe of the network and the 
length of pipe sectors corresponding to these diameters. Also, 
this facilitates the consideration of uniform outflow along the 
length of the pipes network. A more uniform distribution of 
pumping energy is achieved so that head losses and para-
meters of pump stations can be determined more precisely. 

For different analized networks, the saving of electrical 
energy due to diminishing pressure losses and operation costs 
when applying the model of linear optimization represents 
about 10...35 %, which is of great importance, considering the 
general energy issues. 
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