
 

 

  
Abstract—Electric power network components can be simulated 

with π  equivalent circuit. Establish the hybrid node voltage and 
branch current electricity network analysis model based on it, and then 
form the hybrid electric power network equations to research the 
reactive power optimization of power system. Firstly, define the node 
voltages and branch currents as the state variables in this model. The 
network flow is explicitly expressed along with the branch currents 
introduced, and they play a key role for the simplification of the 
calculation. Then, in the process of reactive optimization the optimal 
objective has been broken down into two sub-objectives: one is a 
network loss minimization objective augmented Lagrange function, 
forming the Kuhn-Tucker conditions, and the other is a linear 
equation. The calculated results of IEEE 30-bus system show that the 
complexity and high dimension of the model have been significantly 
reduced, the solving process becomes easier, and the solution is close 
to the global optimal solution. Compared with traditional optimal 
power flow algorithm, this algorithm can improve the computational 
efficiency of reactive power optimization. 
 

Keywords—Hybrid equation, Kuhn-Tucker condition, Power 
network flow, Reactive power optimization  

I. INTRODUCTION 
The status of electric power network can be enough reflected 

by physical quantities with nodal voltage, nodal injected active 
and reactive power, branch current. In addition, the branch 
active power is considered as variable only in simplified 
analysis with DC(direct current) power flow model of electric 
power network.  

The electric power network is traditionally modeled by 
node-voltage-based equations when the nodal voltage, nodal 
injected active or reactive power are used as variables. Except 
the node-voltage-based model, the loop-current-based model is 
developed by Goswami[1~4] etc for load flow calculation of 
distribution network with better convergence and meshed 
modeling while the grounding admittance is ignored and the 
constant load impedance model is used, but it is improper and 
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limited in the transmission network with such assumptions. 
The method of reactive power optimization has been to 

conduct some research [5~8]. At present, the reactive power 
optimization problem is generally described by an optimal 
power flow mode 
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Where, the x  denotes state variable with nodal voltage and 
the u  denotes control variable with nodal injected reactive 
power; the functions hgf  ,,  respectively denote network 
losses, equality constraint and inequality constraint.  

It has been proposed to solve problem (1) for various 
approaches including linear[9], quadric[10], non-linear 
programming algorithms[11~17], especially the interior point 
nonlinear programming algorithm[10, 12~17] and evolutionary 
algorithms[18~21] become the hot research topics in recent 
years. The all above mentioned algorithms are based on the 
node-voltage-based equations. Although the node analysis 
methods are very effective, but some questions and 
shortcomings have also emerged: 1) The flow which is a most 
remarkable character in electric power network is not directly 
exhibited, and many successful theories and arithmetic in 
network flow can be not used for electric power network 
analysis; 2) It is discommodious for the network losses that are 
generally represented by the sum of injective active powers at 
slack nodes or all nodes; 3) It is necessary to improve the 
computational efficiency of present reactive power optimization 
approaches due to the large numbers of inequality constraints.  

Therefore, the branch current introduced as network flow 
should overcome above difficulties. In this paper, the enlarged 
electric power network equations are established by regarding 
the grounding branch as a current source with node voltage and 
branch current variables, so the objective function can be wrote 
as the product of line current and resistance, and the reactive 
power optimization problem can be decomposed into two 
sub-problems with a minimum cost flow model and a linear 
equations. It is solved to the minimum cost flow model by a 
quadric programming approach, therefore the computational 
efficiency is improved and the found optimal solution is closed 
to global. The case study is made at the IEEE-30 system and the 
better results are obtained. 

The assumptions are introduced in this paper as following: 1) 
The reactive power optimization is aimed to the injective 
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reactive power at all nodes; 2) The transformer’s tap ratio 
optimization is ignored because it is not obvious to reduce the 
network losses; 3) The active power is considered as constant 
and the reactive power and node voltage at all nodes are 
regarded as variables except slack nodes; 4) The constant power 
load model is adopted; 5) The network conditions are 
considered as balanced three phase. 

II. ELECTRIC POWER NETWORK MODELING 
The electric network is generally simulated as an π  

equivalent circuit with an impedance branch and two grounding 
branches showed in figure 1, so the electric power network 
equations are composed with impedance branch equations and 
grounding branch equations.  
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G+jB G+jB
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Fig. 1 The π  equivalent circuit Ⅰ 

 

A. Impedance branch equations 
Please submit your manuscript electronically for review as 

e-mail attachments.  
Define the    VjVU θθ sincos +=  as node voltage 

vector and the jXRZ +=  as branch impedance matrix, 

where the symbol    denotes diagonal matrix. The impedance 
branch equations can be described as: 

UAZI T=                                      (2) 
Where, the A  denotes branch-node incidence matrix and the 

ra jIII +=  is branch current vector. To define 1−= ZY  
and to multiply the matrix A  along two sides of the formula 
(2), which is changed as: 

UAYAAI T=                                   (3) 
Where, jBGY +=  is branch admittance matrix; Define 

ssTs jBGAYAY +== , which is different from nodal 
admittance matrix, because the grounding branch admittance is 
not included in sY . It is obtained to extend the formula (3): 
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B.  Grounding branch equations 
The equivalent current source can be used to simulate the 

grounding branch as in figure 2. The LI  denotes the nodal 

injective load or generation current and the GI  denotes the 
equivalent current source of the grounding branch. To define the 
nodal injective power vector as jQPS +=  and the 

grounding branch admittance matrix as ggg jBGY += , so 

UYI g
G =  and SUI L
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  is the conjugate of node 

voltage vector U . The nodal injective current is as following: 
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because of: 
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It is obtained to extend the formula (6) and ignore the 
grounding branch conductance: 
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i.e. 
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Where, the r

n
a
n II ,  respectively are real and imaginary parts 

of the nodal injected current, then: 
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It is obtained to introduce the above formula into (9): 
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So the hybrid form of electric power network equations 
composing with formula (5), (11) and (12) is obtained by 
regarding the node voltage and branch current as state variables. 
There are characteristics that network equations are linear 
functions of branch current and non-linear functions of node 
voltage. The traditional power flow equations just with node 
voltage variables can be performed by introducing the formula 
(5) into (11) and (12). 
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Fig. 2 The π  equivalent circuit Ⅱ 

  

III. REACTIVE POWER OPTIMIZATION PROBLEM 

A. Mathematical model 
The network losses minimization and the objective function 

of reactive power optimization problem can be written as: 
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Subject to equality constraints (5), (11), (12) and inequality 
constraints as following: 

maxmin VVV ≤≤                             (14) 
maxmin QQQ ≤≤                             (15) 

Where, Ml ,,2,1 =  is the line set. The node voltage can 
be represented as the function of branch current from formula 
(5): 
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so the formula (14) is changed as: 
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The formula (15) is also changed as: 
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The mathematical model of reactive power optimization 
problem is composed with the formulas (13), (5), (11), (12), 
(17) and (18) and following characteristics: 1) The objective 
function is quadric function of branch current variables; 2) The 
constraints are linear function of branch current variables. 

B. The variable classification 
The nodal injective active power is constant at all nodes for 

the reactive power optimization problem. Therefore, there are 
three-kinds of variables with branch current, node voltage and 
nodal injective reactive power. The branch current and node 
voltage representing the network states are considered as state 
variables and the nodal injective reactive power is considered as 
control variable in the above model. The augmented Lagrangian 
function of above reactive power optimization model with 
formulas (13), (5), (11), (12), (17) and (18) is performed as 

following: 
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The derivative of control variable Q  is: 

0/ ==∂∂ qQL β                                (20) 
It is indicated that formula (11) is unnecessary because the 

control variable Q  is only appeared in formula (11), and the 
optimal solution is not affected by Q . The simplified reactive 
power optimization model is composed with formulas (13), (5), 
(12), (17) and (18), and the optimization is only implemented 

aiming to state variables [ ]TUI , . The final optimal nodal 
injective reactive power Q  can be obtained from formula (11) 
while the state variables are determined in order to minimize the 
network losses. 

IV. CALCULATIONS 
It is can be obtained to define 

   VFVE θθ sin,cos ==  as the real and imaginary parts 
of node voltage: 
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The reactive power optimization model called as problem A 
is composed with formulas (13), (21), (12), (17) and (18) by 
replacing the formula (5) with (21). 

The sub-problem called as problem S is defined with 
formulas (13), (12), (17) and (18). It is divided into two steps to 
solve the problem A, which are to solve the problem S and linear 
equations (21) in turn. The iteration steps are as following: 

1) To define k =0 and set the initial value )(kU  of node 
voltage; 
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2) The branch current )(kI  is obtained by solving quadric 
sub-problem S regarding the branch current as state variable 
with )(kU ; 

3) The iterations are ended if ε≤−+ )()1( kk II ( ε  is a 

small positive number) and it is returned to step 5), otherwise to 
continue; 

4) It is to solve node voltage by formula (21), define 
1+= kk  and return to step 2); 

5) The nodal injective reactive power is obtained by formula 
(11). 

V. COMPUTATIONAL EFFICIENCY 
The computational costs are obviously reduced while the 

problem A is divided into two sub-problems. The problem A 
can be described as following normal mathematical 
programming form: 

Problem A：   

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uxg
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                           (22) 

Where, the u  is the branch current vector with its real and 
imaginary parts; x  is the node voltage vector with its 
magnitude and single. Because there is no node voltage vector 
in the objective function, so it can be changed as following: 

)(min uf                                 (23) 

The formula 0),( ≤uxh  denotes the equality and 
inequality constraints as formulas (12), (17) and (18). The 
formula 0),( =uxg  denotes equality constraint as formula 
(21). The Kuhn-Tucker optimal conditions of problem A can be 
wrote as following: 

0=++ βα T
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T
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uu ghf                         (24-2) 

0),( ≤uxh                                   (24-3) 

0≥α                                         (24-4) 

0),( =Tuxh α                                 (24-5) 

0),( =uxg                                   (24-6) 

Where, 0=xf ; βα ,  are Lagrangian multipliers 

corresponding the constraints 0),( ≤uxh  and 0),( =uxg . 
It is obtained by formula (24-1): 

αβ T
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T
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To introduce formula (25) into (24-2), it is changed as: 
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T
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T
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The Kuhn-Tucker optimal conditions of problem A can be 
rewrote as: 
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0),( =uxg                                    (27-5) 
In the same way, the normal mathematical programming form 

of sub-problem S can be described as following: 

Sub-problem S：  
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
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≤ 0),(
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                        (28) 

If the u  is considered as variable, the Kuhn-Tucker optimal 
conditions are: 

0=+ αT
uu hf                           (29-1) 

0),( ≤uxh                              (29-2) 

0≥α                                    (29-3) 

0),( =Tuxh α                            (29-4) 
It can be seen that differences between formulas (27) and (29) 

with 0),( =uxg  are exhibited in following formula: 

αT
x

T
x

T
u hggu 1' )( −−=∆                        (30) 

The simultaneous solution of the sub-problem S and linear 
equations (21) is different from the solution of problem A with 

'u∆ . In order to obtain the accurate solution of reactive power 
optimization, it must be corrected for variable u  according to 
formula (30) after the sub-problem S is resolved. 

The solution of sub-problem S is global optimal due to it is a 
convex quadric programming problem with line resistance 

0≥lR , and there is unique solution for the formula (21) 
because it is linear. Therefore, it is possible to cause 
multi-solutions of reactive power optimization problem A just 
in transforming the real and imaginary parts of node voltage as 
magnitude and single. In practice, the magnitude and single of 
node voltage is taken to approach the normal operation 
conditions of power system, so the obtained optimal solution is 
enough closed to global. 

VI. CASE STUDY 
The case study is made at IEEE-30 system with active set 

arithmetic solved the sub-problem S. The upper limit of voltage 
at node 10 is set as 1.0421 and the upper limit of voltage at node 
24 is set as 1.0261 while upper limit of voltage is set as 1.1 and 
lower limit of voltage is set as 0.95 at all nodes. 

The final calculating results are listed in table 1, and the 
reactive powers at node 10 and 24 are 0.144558 and 0.0914809 
calculated by the nodal injective current. 

 
Tab. 1 Node Data of IEEE-30 System (After Calculation) 

Node 
Number 

Voltage 
Magnitude 

Voltage 
Single 

Real Part of 
Nodal Injective 

Current 

Imaginary Part 
of Nodal 
Injective 
Current 

1 1.001 -12.867 0.0994 -0.0422 
2 1.034 -2.773 -0.3471 0.0024 
3 1.031 -4.746 0.0243 0.0118 
4 1.026 -5.686 0.0778 -0.0470 
5 1.006 -9.054 0.6936 -0.0466 
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6 1.022 -6.561 0.0075 -0.1056 
7 1.007 -8.112 0.2114 -0.1204 
8 1.023 -6.565 -0.0430 0.0520 
9 1.054 -8.392 -0.0030 0.0770 

10 1.039 -10.181 0.0914 0.1781 
11 1.091 -6.854 -0.1456 0.1647 
12 1.053 -9.537 0.1044 0.0277 
13 1.089 -8.830 -0.1198 0.2407 
14 1.038 -10.440 0.0560 -0.0260 
15 1.034 -10.550 0.0736 -0.0382 
16 1.040 -10.084 0.0301 -0.0229 
17 1.034 -10.361 0.0754 -0.0708 
18 1.024 -11.121 0.0290 -0.0146 
19 1.021 -11.267 0.0848 -0.0508 
20 1.024 -11.053 0.0197 -0.0108 
21 1.028 -10.674 0.1471 -0.1386 
22 1.030 -10.675 -4.9789×10-5 8.0926×10-5 
23 1.027 -11.021 0.0277 -0.0213 
24 1.026 -11.299 0.0787 0.0085 
25 1.024 -11.141 -6.6480×10-6 1.9351×10-5 
26 1.006 -11.557 0.0296 -0.0294 
27 1.032 -10.783 0.0090 0.1032 
28 1.018 -6.980 0.0011 -0.0788 
29 1.012 -11.996 0.0214 -0.0136 
30 1.050 0 -1.3347 0.0185 

 
The thirteen iterations are needed with step 3.24 listed in 

tables 2. The upper limit of voltage at node 10 is violated in 
iteration 4, then the search direction is changed and the violation 
is eliminated with Lagrangian multiplier 0.0178555. Up to 
iteration 12, the upper limit of voltage at 24 is violated and it is 
eliminated with Lagrangian multiplier 0.00792428. The final 
network losses are reduced from 0.0879016 to 0.0863921. 

 
Tab. 2 Calculating Process Information 

Iterations Network 
losses 

Lagrangian 
Multipliers 

Voltage 
Magnitude at 

Node 10 

Voltage 
Magnitude 
at Node 24 

1 0.0879016 0 1.04077 1.02017 
2 0.0878057 0 1.04146 1.02195 
3 0.0877322 0 1.04190 1.02334 
4 0.0876737 0.0178555 1.04214 1.02441 
5 0.0876258 0 1.03724 1.01923 
6 0.0876102 0 1.03812 1.02109 
7 0.0875532 0 1.03873 1.02254 
8 0.0875103 0 1.03913 1.02367 
9 0.0874768 0 1.03936 1.02454 
10 0.0874499 0 1.03947 1.02521 
11 0.0874275 0 1.03949 1.02573 
12 0.0874085 0.00792428 1.03943 1.02612 
13 0.0873921 0 1.03662 1.02269 

 
The comparing results of proposed approach with Newton 

method and reduced gradient algorithm are listed in table 3 
while the inequality constraints are ignored. It can be seen that 
optimization effect of proposed approach is better than Newton 
method and reduced gradient algorithm.  

 
Tab. 3 Comparing results with others 

Arithmetic Proposed in 
This Paper Newton Method Gradient 

Method 
Network Losses 0.0852368 0.0854694 0.0854816 

Injective Reactive 0.1746810 0.2937780 0.2872100 

Power at Node 10 
Injective Reactive 
Power at Node 24 0.0157019 0.1408180 0.1534660 

VII. DISCUSSION AND OUTLOOK 
The hybrid electric power network equations composed of 

node voltage and loop current can also provide useful ideas to 
solve practical problems of power system in several other areas 
in addition to the excellent performance in the reactive power 
optimization. 

A. Explicit expression of node voltage high and low solution 
The equation (31) can be deduced by the equation (11) and 

(12), node i , for example: 

i
g

ii
il

a
lii

il

r
lii

i
il

r
lii

il

a
lii

qBfeifie

pifie

−=+−−

=+

∑∑

∑∑

∈∈

∈∈

)( 22
  (31) 

where ： ii jqp −  is the load of node i , 

∑∑∑
∈∈∈

+=
il

li
r

il
li

a

il
li ijii  is the sum of the injection current 

of node i ， iii jfeu +=
⋅

 is the voltages of node i . 

Suppose： ∑
∈

=
il

a
lii ix , ∑

∈

=
il

r
lii iy . To the PQ node, by 

the formula (31), the node voltage can be derived as: 

[ ]













+













−+++

±+−

=

−=

)(2
4)(4)(

)(2

/)(

22

2222222

22

ii
g

i
g

iii
g

iii

iiiii
g

i

iiiii

yxB
pByxqByxx

yxxypB

f

xyfpe

     (32) 
The equation (32) is the node voltage analytical expression 

represented by the branch current. It represents the high and low 
solutions of node voltage. 

B.  Voltage instability region (unstable round) 
If the equation (32) has solutions the following condition 

must be met: 
04)(4)( 2222222 ≥−+++ i

g
iii

g
ii pByxqByx  

[ ] 222222 )2(2)( ii
g

i
g

ii qpBqByx +≥++⇒  

2222 22 ii
g

i
g

ii qpBqByx ++−≥+⇒           (33) 

The meaning of equation (33) is: 1) When the square of the 
amplitude of the injection current of nodes is out of the circle of 

which the center is i
g qB2  and the radius is 222 ii

g pqB + , 

that is only ‘>’ condition has been met in the equation (33), the 
high and low solutions of equation (32) exist, and the system is 
stable. 2) When the square of the amplitude of the injection 
current of nodes is in the circle, that is only ‘<’ condition has 
been met in the equation (33), no solutions of equation (32) 
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exist, so the system is unstable. 3) Equation (32) has a unique 
solution and the solution is on the circle when ‘=’ condition has 
been met in the equation (33), so the unique solution is the 
stable margin of system. System voltage collapse point can be 
found if calculate the power flow equations under this 
conditions. 

Node types also include PU node and balance node in power 
system analysis, the voltage of balance node is considered to be 
known, and so do not need to be calculated. The voltage 
expression of PU node is similar with PQ node, and the 
difference is that the voltage equation of PU node is instead of 
reactive power equation of PQ node. 









+

−+−±
=

−=

22

2222222 ))((

/)(

ii

iiiiiiiii
i

iiiii

yx
xVpyxypyp

f

xyfpe

 (34) 

also： 

0))(( 2222222 ≥−+− iiiiiii xUpyxyp                  

022222 ≥+−⇒ iiiii yUpxU                          

2

2
22

i

i
ii U

p
yx ≥+⇒                      (35) 

The equation (34) has solutions if the equation (35) has been 
met, and there is a voltage instability circle, too. The circle’s 
center is origin and the radius is ii Up / , the unstable region is 
in the circle, stability margin is on the circle. 

C.  Voltage stability critical condition 
When the Equality of equation (33) and (35) meet the two 

solution curves intersect, and reach the voltage stability critical 
point. So, the voltage stability critical condition is: 

iiii Byx γ0
22 2)( =+                     (36) 

or： 

2

2
22 )(

i

i
ii U

pyx =+                        (37) 

Where: 22
iiii qpq ++=γ . The corresponding node 

voltage changes as follows:  










+
=

−
=

ii

iiii
i

ii

iiii
i

B
xypf

B
yxpe

γ
γ

γ
γ

0

0

2

2
                    (38) 

or： 





=
=

iii

iii

yUf
xUe

                               (39) 

The formula (36) and (37) are called the characteristics of the 
voltage stability critical point. When formula (36) or (37) was 
met in any node the voltage instability will occur. 

When the loop current and node voltage are as variables the 
expressive information is more abundant, and can solve the 
problem difficult to resolve in the past. So the hybrid electric 
network equations can be applied to research in different fields 
of power system. 

VIII. CONCLUSIONS 
It can be seen that electric power network flow is similar to 

the traffic network flow while the branch current is taken into 
the network equations, and the computational complexity is just 
increased because the limitations of power system operation to 
the node voltage and nodal injective powers are required.  

It is easy to solve for the sub-problems divided by the reactive 
power optimization problem, so the computational efficiency is 
improved. The following conclusions are obtained: 1) The 
electric power network equations can be described as 
node-voltage-based and branch-current-based hybrid form; 2) 
The obtained solution is closed to global optimal while the error 
of node voltage is small.  

It is indicated that mathematical model based on 
node-voltage-based and branch-current-based equations can be 
also applied in other problems of electric power network 
optimization in order to improve calculation efficiency.  
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