
 

 

  
Abstract—According to the Navy Register rules, ship electrical 

power system voltage fluctuations within ±10% of the nominal 
voltage are admissible if not lasting longer than 5 seconds; longer 
fluctuations are admissible if they are within ±5% of the nominal 
voltage. For the operation of a rotational speed Automatic Control 
System with a sliding-mode regulator, there is no need to identify the 
diesel and propeller parameters; however, one needs a quantitative 
assessment of the limits within which such parameters could change. 
To implement the algorithm of such sliding-mode regulator, it is 
enough to control the rotational speed deviation for the specified 
value 
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I. INTRODUCTION 
When the dynamic characteristics of the ship propeller, the 

generator, the main engine (ME), or the rotation frequency 
regulator wear are changed, the free component of the main 
shaft rotational speed transient process is changed as well. If 
the ship is equipped with shaft generators (SG), such changes 
result in the fluctuations of the voltage they generate. 
Experimental studies identified [1] that the real transient 
process of ME rotational speed frequency changes is 
accompanied by large-amplitude fluctuations in exceed of 10% 
and 5 seconds depending on the navigation conditions. If the 
transient process lasts longer than 5 seconds, there emerges a 
risk of SG desynchronization, which is why SG are not 
enabled for constant parallel operation with the diesel 
generators of the ship power plant, especially in storms. On the 
other hand, such SG and DG parallel operation is cost-
effective as it reduces the kWh costs of ship power, reduces 
fuel consumption, and increases the service life of the 
additional power plants [2]. 
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II. SOLUTION OF PROBLEM 
To enable the shaft generator for long parallel operation 

with the diesel generators of the ship power plant, one has to 
reduce the fluctuations in the shaft generator rotational speed 
(the diesel rotational speed) and the torque angle under the 
effect of the destabilizing factors. When operating the ME, it is 
impossible to identify the diesel and propeller parameters 
affecting the dynamic characteristics of the loaded ME under 
various conditions of ship navigation. Under such ME 
operating conditions, the dynamic characteristics of the 
rotational speed Automatic Control System (ACS) can be 
stabilized by adaptive controls this paper proposes, which are 
based on a sliding-mode regulator. For the operation of a 
rotational speed ACS with a sliding-mode regulator, there is 
no need to identify the diesel and propeller parameters; 
however, one needs a quantitative assessment of the limits 
within which such parameters could change. To implement the 
algorithm of such sliding-mode regulator, it is enough to 
control the rotational speed deviation for the specified value. 

Below is the equation of the dynamics of the ME rotational 
speed ACS in the parallel operation of SG and power plant 
generators: 
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h0, Мео are the initial conditions on the position of the 
control rack and the diesel torque; ndiz=428 rpm; J=610…678 
kg·m2 is the total moment of inertia of the ME, the flywheel, 
the SG, the propeller shaft, the propeller; partial derivatives 
are calculated per formulas  

 

Analytical Methods of Destabilizing Factors of 
Improving the Technical Systems Efficiency 

A. Zhilenkov, A. Nyrkov, S. Chernyi and S. Sokolov 
 

INTERNATIONAL JOURNAL OF ENERGY Volume 11, 2017

ISSN: 1998-4316 46

h K M0 ТЗ eoa ; a41 D 6 ,28 n 6 ,28 ndiz diz

⋅
= =

⋅ ⋅ ⋅



 

 

Mг
0ω

∂ 
 ∂ 

,  
M г
Xн 0

∂

∂

 
 
 

, 
M г
i f 0

∂

∂

 
 
 
 

, 
Mд

0ω

∂

∂

 
 
 

, КТЗ ; 
H

H0

∆
 

is the relative change in the propeller pitch; Н0 is the initial 
propeller pitch condition; f(t) is the equation taking into 
account the nature of propeller shaft resistance moment under 
storm conditions: 
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III. PRELIMINARY GENERATOR BLOCK CALCULATIONS 
Calculate the partial derivatives of the generator moment 

based on various signals. On speed: 
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On the active load resistance: 
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On the reactive load resistance: 
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On the current in the excitation winding: 
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where nH

nдиз
=

 is the diesel generator gear ratio, n is the 

nominal rotational speed of the generator, rpm, nдиз is the 
nominal rotational speed of the dieses, rpm. 

 

IV. CALCULATING THE PARTIAL DERIVATIVES OF THE DIESEL 
TORQUE PER THE ROTATIONAL SPEED AND THE CONTROL RACK 

POSITION 
We are going to calculate the partial derivatives of the 

diesel dynamics based on the universal characteristics of a 
8NVD48A2U ship diesel near the point with nд=350 rpm (see 
Figure 1). 
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Fig. 1 structural plot 

 

Derive the formula for calculating the partial derivative of 
the diesel torque based on the control rack position 

M Mд д К
ТЗh h

∆

∆

∂
≈ =

∂
. The increment of the diesel torque is 

calculated as the difference between the actual diesel power 
values at a constant rotational speed: 
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From the power equation, the position of the control rack: 
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Fuel consumption per hour: 
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From equation (8), we obtain: 
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Divide (7) by (9): 
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Coefficient с can be calculated based on the nominal engine 

specifications: geном1=224 g/kWh, ωд=ωдном1=36,6 rad/s (350 
rpm), Neном1=492 kWh (670 hp), hном1=0.04 m, 
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Substitute (11) in (10): 
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Minimum partial derivative value at Kemin=0.8: 
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Maximum partial derivative value at Kemax=1.04: 
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The gear ratio of the 8NVD48A2U fuel link can change 

within these limits: 
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Derive the formula for calculating the partial derivative of 

the diesel torque based on the rotational speed 
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Minimum partial derivative value at Kemax=1.04: 
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Maximum partial derivative value at Kemax=0.8: 
 

 
The partial derivative of the 8NVD48 diesel torque, based 

on the rotational speed, changes within these limits: 
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Recalculate the partial derivatives for the 8NVD48A2U 
diesel using the nominal data: geном2=218 g/kWh, ωдном2=45 
rad/s (428 rpm), Neном2=970.2 kW (1320 hp), hном2=0.04 m. 

CONCLUSIONS 
We have analytically obtained the qualitative assessments 

of the limits within which the diesel and propeller parameters 
could change depending on their technical condition. These 
data will be used in designing a sliding-mode regulator.  
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