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Abstract—A high-resolution, finite difference numerical study 
is reported on three-dimensional steady-state natural convection 
of air, for two Rayleigh numbers, in a cubical enclosure, which is 
heated differentially at one side walls. The temperature of the 
wall is TC except for the right vertical wall, in which is TH.The 
details of the three-dimensional flow and thermal characteristics 
are described. 
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I.  INTRODUCTION  
Natural convection flow analysis in enclosure has many 

thermal engineering applications, such as cooling of electronic 
devices, energy storage systems and compartment fires. In the 
present paper, a numerical study is reported on steady-state 
three-dimensional natural convection in an air-filled cubical 
enclosure, which is heated differentially at one side walls. As 
shown in Fig. 1, the temperature of the wall is TC except for the 
right vertical wall (at x = L0), in which is TH. The present geo-
metry and the boundary conditions are mathematically well 
posed and they provide a basic model for relevant thermal en-
gineering systems.   

Two-dimensional numerical analyses for a square cavity 
filled with air have been carried out in the past over a wide 
range of Rayleigh numbers. Results for 103 ≤ Ra ≤ 106  were 
presented in Markatos and Pericleous [l]. The laminar flow 
regime was assumed up to the Rayleigh number of 106, and 
for higher Rayleigh numbers, the k-ε turbulence model was 
used. For 103 ≤ Ra ≤ 106  and a Boussinesq fluid of Pr = 0.71, a 
set of benchmark solutions has been suggested by de Vahl 
Davis [2]. By resorting to systematic grid refinement practice 
and by concurrent use of the Richardson extrapolation to ob-
tain grid independent data, these solutions were claimed to be 
within accuracy of 1%. 

In order to simulate practical situations, three-dimensional 
flow calculations are highly desirable. Three-dimensional la-
minar flows have been studied for enclosures of the depth as-
pect ratio, Az, varying from 2 to 4 [3, 4]. Gross features ob-
served in the enclosures revealed highly three-dimensional 
structures of the flow. The enclosures with Az = 1 and 2 were 
considered in Lankhorst and Hoogendoorn [5] ; they were 

computed for three Rayleigh numbers: Ra = 106, 4ⅹ108 and 
1010. In the last two cases, the k-ε turbulence model was em-
ployed. However, it is emphasized that these previous calcula-
tions were executed by using relatively coarse finite difference 
meshes, of up to 45ⅹ 45ⅹ 20. 

The present investigation is implemented on a much finer 
mesh system with a view toward delineating steady-state three-
dimensional structures of the fields with sufficient resolution. 
The numerical resolution in the present three-dimensional cal-
culations is comparable to the highest one among the preceding 
two-dimensional results [2]. The Rayleigh number ranges from 
103 to 106. The Prandtl number of the fluid is held fixed at 0.71. 
Comprehensive details of the flow and temperature fields are 
presented by displaying elaborate three-dimensional color 
graphics and illustrative field quantities. By inspecting these 
results of the realistic three-dimensional calculations, the valid-
ity of the prior two-dimensional results can be also assessed. 

The majority of the past experimental works have studied 
high aspect ratio enclosures, but relatively little research en-
deavor has been devoted to the cases of small aspect ratio cavi-
ties [6-11]. In most of these experimental investigations, care 
was taken to justify the two-dimensional approximation. Depth 
aspect ratios, Az, greater than 5 were adopted in refs.[6-8] in an 
effort to minimize the end effect of the finite enclosure. By 
using a Mach -Zehnder interferometer technique. Bajorek and 
Lloyd [6] visualized the temperature field in square enclosures, 
with and without partitions, for 1.7ⅹ105 ≤ Ra ≤ 3ⅹ106. The me-
dia considered were air and carbon dioxide gas. Laser Doppler 
velocity measurements in the identical geometry were con-
ducted in ref. [7] for air at Rayleigh numbers of 105 and 106. 
The same measurement techniques were utilized by Krane and 
Jessee [8], who acquired both velocity and temperature distri-
butions at Ra = 1.89ⅹ105 and for air. 

In actual experiments, it is nearly impossible to perfectly 
insulate the surfaces, especially when air is chosen as the me-
dium. Heat transfer from the supposedly adiabatic walls is un-
avoidable. The effects of conducting horizontal walls have 
been  
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of considerable interest. The behavior of steady periodic oscil-
lations in the flow field was the subject of the experimental 
work by Briggs and Jones [9] with a cubical enclosure having a 
linear temperature profile on the horizontal walls. Bohn et al. 
[10] constructed a water-tilled cube with isothermal walls, and 
the combined effects of the side and bottom heating on the heat 
transfer rate for water were studied. 

A recent investigation [11] was conducted in a differential-
ly heated cubical enclosure (the geometry of present interest) 
for a high Prandtl number fluid (Pr = 6000). Visualization ex-
periments with liquid crystal tracers suspended in mixtures of 
glycerol and water were made for 104 ≤ Ra ≤ 2ⅹ107 : the Ray-
leigh number range overlaps that of the present analysis. The 
streamline patterns were compared with the parallel numerical 
results executed on a finite difference mesh system of 31’. 
Global features were in agreement, although the changes in the 
structure of the streamlines occurred at different Rayleigh 
numbers between the measurements and the computations. 

The primary impetus of the present work is to portray the de-
tails of the three-dimensional local characteristics of the fields. 
Given the fact that any realistic laboratory experiment is three-
dimensional in nature the two-dimensional numerical simula-
tions to date have been unable to fully describe the salient fea-
tures associated with the real systems. As mentioned earlier, 
the existing three-dimensional numerical simulations are still in 
a rudimentary stage. The existing numerical studies have, by 
and large, suffered from insufficient resolution : the prominent 
characteristics of complicated three-dimensional situations 
have not been described in sufficient depth. In particular, at  

 

high Rayleigh numbers, greatly enhanced numerical capabili-
ties are essential to depict the significant dynamic features in 
thin boundary layers. 

In the present study, a massive utilization of the state-of-
the-art computational resources has been made. The vastly ex-
panded hardware capabilities together with such advanced 
computational techniques, will enable us to implement the 
three-dimensional numerical simulations of the flow and heat 
transfer properties in the enclosure. These numerical results 
will allow proper verification of the experimental observations. 
It is also noteworthy that, by cross-checking the results, the 
extent of the applicability of the earlier two-dimensional results 
to actual three-dimensional systems will be illuminated. 

 

 
Fig.  1. The flow geometry in a cube of length L0. The solid walls temperature 

is TC, except for x* = 0 and L0 as noted. 

 

NOMENCLATURE 

A          aspect ratio, (enclosure height/width)                                  T0                 reference temperature. (7; + r-,, )~2 

Az         depth aspect ratio, (enclosure                                              TC , TH          cooled and heated side wall 

depth/width)                                                                                              temperatures 

cp         specific heat at constant pressure                                          u0                 reference velocity,  [g*β*L0*(TH – TC)]1/2 

Fr        Froude number,  u0
2/g*L0                                                      u, v, w          velocity components in the and x-, y- and 

g         gravitational acceleration :                                                                          z-directions 

k          thermal conductivity                                                              x, y, z           Cartesian coordinates 

L0            reference length (enclosure height) 

p         pressure                                                                                  Greek symbols 

p0       reference pressure (hydrostatic pressure)                                   β              thermal expansion coefficient 

Pr       Prandtl number. cp*μ*/k*                                                          δ               overheat ratio, (TH – TC)/ T0 

Ra       Rayleigh number,                                                                      μ               viscosity 

g*β* cp*ρ2L0
3(TH – TC)/ μ*k*                                                   ρ               density. 

Re       Reynolds number,  ρ* u0 L0/μ*                                             

t           time                                                                                        Superscript 

T         temperature                                                                                *               dimensional quantities. 
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II. MATHEMATICAL MODEL 
The flow field is described by the incompressible Navier-

Stokes equations and the energy equation. The Boussinesq 
approximation is invoked for the fluid properties. The non-
dimensionalized form of the governing equations can be ex-
pressed in tensor notation as  

0j

j

u
x
∂

=
∂

                                                                           (1) 

2

2
1 1( )i i

j i i
j i j j
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where 6, is the Kronecker delta (δij = 1 if i =j, and δij = 0 oth-
erwise). The viscous dissipation and the pressure work terms 
are neglected in the energy equation. 

The physical quantities are non-dimensionalized in the fol-
lowing manner : 

(x,y,z) = (x*,y*,z*)/L0,      (u,v,w) = (u*,v*,w*)/u0 

t = t*u0/L0,       p = (p*-p0)/ρ*u0
2,      T = T*/T0 

where an asterisk(*) denotes dimensional values. The reference 
scales for length, velocity, pressure and temperature are the 
enclosure height (L0), the convective velocity (u0 = [g*β* 
L0(TH-TC)]1/2), the hydrostatic pressure (p0) and the film tem-
perature (T0 = (TC+TH)/2), respectively. In the present non-
dimensionalization, the Rayleigh, Prandtl and Reynolds num-
bers are related as Ra = Re2 Pr. The Prandtl number is held 
fixed at 0.71 for air in the present. 

The boundary conditions are  

 u = v = w = 0 on all the walls                     (4) 

T = (2-δ)/2 at x = 0, T = (2+δ)/2 at x = 1, 

and ∂ T/ ∂ n = 0 at y = 0,1 and z = 0,1                 (5) 

where n indicates the coordinate normal to the surface. The 
overheat ratio, S, is set equal to 0.1 in the present analysis. 

III. SOLUTION METHOD 
A discretized form of the governing equations (l)-(3) is se-

cured by a control-volume based finite difference procedure. 
Numerical solutions are acquired by an iterative method, to-
gether with the pressure correction algorithm, SIMPLE [12]. 
The present technique employs the Strongly Implicit Scheme 
(SIP) [13] to accelerate convergence characteristics of the solu-
tions. SIP is applied to the planes of constant z in order to de-
termine simultaneously the dependent variables in the x- and y-
directions on each plane. 

The convection terms in the momentum equation (2) are 
treated by the QUICK methodology [14, 15]. The QUICK 
scheme involves a third-order accurate upwind differencing, 
which possesses the stability of the first-order upwind formula 
and is free from substantial numerical diffusion experienced 

with the usual first-order techniques. In the present numerical 
procedure, a non-uniform grid version is adopted. The convec-
tion terms in the energy equation (3) are dealt with by a hybrid 
scheme [12]. 

The entire enclosure constitutes the full computational do-
main. The number of grid points for computations is 62 ⅹ 62 ⅹ 
62. Variable grid spacing is introduced to resolve steep gra-
dients of the velocity and the temperature near the walls.  

Convergence of computations is declared when the follow-
ing convergence criterion is satisfied : 

1 4

maximum

10n n

n

φ φ
φ

− −−
≤       for  all φ                    (6)  

where φ  represents any dependent variable, and n 
refers to the value of $J at the nth iteration level. 

At each Rayleigh number, the converged solution for a 
lower Rayleigh number is used as the initial guess. In actual 
computations, transient calculations are conducted by an impli-
cit method to generate steady-state solutions. 

 

 
Fig.  2. Grid distribution of computational domain 

 

IV. RESULTS 
The global field characteristics arc cxamincd by viewing 

comprehensive three-dimensional contours of the temperature 
and Bow fields. Results for three Rayleigh numbers are in-
spected in detail in the following three subsections : Ra = 103, 
104 and 105 . The former cast exemplifies a flow field in which 
the relative importance of convection is generally less signifi-
cant. However, the latter case is representative of the flow 
structure in which convection is intense such that distinct 
boundary layers are discernible near the isothermal solid walls. 
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(a) 

 
(b) 

Fig.  3. The temperature field at Ra=103 : (a) Fusegi et al.[16] ; (b) present 
results 

 

 
(a) 

 
(b) 

Fig.  4. The temperature field at Ra=104 : (a) Fusegi et al. ; (b) present results 
 

 
(a) 

 
(b) 

Fig.  5. The temperature field at Ra=105 : (a) Fusegi et al. ; (b) present results 
 

 
(a) 

 
(b) 

Fig.  6. Comparison of the temperature profiles in the symmetry plane at  
z = 0.5 (Ra = 105) : (a) Fusegi et al. ; (b) present results 
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(a) 

 
(b) 

Fig.  7. Comparison of the velocity profiles in the symmetry plane at  
z = 0.5 (Ra = 105) : (a) at x = 0.5 ; (b) at y = 0.5 
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