
Numerical analysis of MHD stagnation point
flow towards a radially stretching convectively

heated disk

Abstract—The steady stagnation point flow and heat transfer
of an electrically conducting incompressible viscous fluid is
extended to the case where the disk surface is convectively
heated and radially stretching. The fluid is subjected to an
external uniform magnetic field perpendicular to the plane
of the disk. The governing momentum and energy balance
equations give rise to non-linear boundary value problem.
Using a spectral relaxation method with a Chebyshev spectral
collocation method, the numerical solutions are obtained over
the entire range of the physical parameters. Emphasis has
been laid to study the effects of viscous dissipation and Joule
heating on the thermal boundary layer. Pertinent results on the
effects of various thermophysical parameters on the velocity
and temperature fields as well as local skin friction and local
Nusselt number are discussed in detail and shown graphically
and/or in tabular form.

Keywords—Radially stretching disk; Stagnation point flow;
Magnetic field; Convective heating.

I. INTRODUCTION

Stagnation-point flow appears in virtually all fields of
science and engineering. A flow can be stagnated by a
solid wall or a free stagnation-point or a line can exist in
the interior of the fluid domain. The study of stagnation-
point flow was pioneered by Hiemenz in 1911, who
solved the two dimensional stagnation-point problem
using a similarity transformation. Motsa et al. (2012)
formulated the Maxwell fluid for two-dimensional stag-
nation flow towards a shrinking sheet and then calculated
the numerical solution of transformed nonlinear ordinary
differential equations via the successive linearisation
method. Bhattacharyya et al. (2011) analyzed the effects
of partial slip on steady boundary layer stagnation-
point flow of an incompressible fluid and heat transfer
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towards a shrinking sheet. This investigation explored the
conditions of the non-existence, existence, uniqueness
and duality of the solutions of self-similar equations nu-
merically. Makinde and Charles (2012) presented com-
putational dynamics of hydromagnetic stagnation flow
towards a stretching sheet.

Governing equations modelling MHD flow and heat
transfer over stretching surfaces are highly nonlinear. To
that end, exact solutions are impossible to obtain. There-
fore numerical solutions have always been developed,
modified and highbred, as a bid of getting more accurate
and stable solutions. The current study seeks to extend
the steady stagnation point flow and heat transfer of an
electrically conducting incompressible viscous fluid to
the case where the disk surface is convectively heated
and radially stretching. We propose to numerically solve
the present problem using a recently developed iterative
method known as spectral relaxation method (SRM)
see Motsa et al. (2012). The SRM approach is based
on transforming nonlinear ordinary differential equation
into an iterative scheme. The iterative scheme is then
blended with chebyshev spectral method.

II. MODEL FORMULATION

We consider a steady stagnation-point flow of an
electrically conducting incompressible viscous fluid to-
wards a radially stretching convectively heated disk in
the presence of a transverse magnetic field of strength
B0 applied parallel to the z-axis. The sheet is stretched
with a linear velocity u = Uw(r) = ar, where a
is a real number. The bottom surface of the plate is
assumed to be heated by convection from a hot fluid at
temperature T, which provides a heat transfer coefficient,
h. The induced magnetic field due to the motion of
the electrically conducting fluid is negligible. It is also
assumed that the external electrical field is zero and that
the electric field due to the polarization of charges is
negligible. The relevant governing equations of fluid flow
and heat transfer are,
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with

u = Uw = ar, w = 0,−k
∂T

∂z
= h(Tf − T ) at z = 0,

u → U∞ = br, T → T∞ as z → ∞. (4)

A. Similarity Transformation
To make the problem amenable, following Butt and

Ali (2013), among others, we introduce the following
nondimensional quantities:
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Substituting equation (5) into equations (1)-(4), we
obtain

f ′′′ + 2ff ′′ − f ′2 −Ha(f ′ − 1) = −1, (6)

θ′′ + 2Prfθ′ + PrEcf ′′2 + PrEcHa(f ′ − 1)2 = 0,
(7)

with

f ′(0) = λ, f(0) = 0, θ′(0) = Bi(θ(0)− 1),

f ′(∞) = 1, θ(∞) = 0. (8)

In the above equations, prime denote differentiation
with respect to η , The physical quantities of practical
significance in this work are the local skin friction
coefficient Cf and the local Nusselt number Nu, which
are expressed as

Cf =
τw
ρU2

∞
, Nu =

rqw
k(Tf − T∞)

, (9)

where Cf is the skin friction, τ is the surface shear stress
and qw is the heat flux from the plate which are given
by

τw = µ
∂u

∂z
|z=0, qw = −k

∂T

∂z
|z=0. (10)

Substituting equation (10) into (9), we obtain

Re1/2r Cf = f ′′(0), Re−1/2
r Nu = −θ′(0), (11)

where Rer = U∞r/ν is the stagnation flow Reynolds
number.

III. METHOD OF SOLUTION

The set of Equations (6)-(7) together with the bound-
ary conditions (8) are coupled nonlinear which are to be
solved numerically using a spectral relaxation method
(SRM). This method involves, transforming equations
(6)-(7) into a set of linear ordinary differential equations.
The entire computation procedure is implemented using
a program written in MATLAB computer language.
From the process of numerical computation, the fluid
velocity, temperature, the local skin friction coefficient
and the local Nusselt number are determined. The SRM
algorithm starts with the assumption of having a system
of m non-linear ordinary differential equations in m
unknowns functions zi(η), i = 1, 2, .....,m where η ∈
[a, b] is the independent variable. To solve the resultant
iterative scheme, we then use the Chebyshev pseudo-
spectral method. The details of the spectral methods can
be found in (Canuto et al. 1988, Trefethen 2000). Before
applying the spectral method, the domain on which the
governing equation is defined to the interval [-1,1] on
which the spectral method can be implemented. We use
the transformation η = (b − a)(τ + 1)/2 to map the
interval [a, b] to [−1, 1].

Now to apply the SRM on (6) together with (7), we
set f ′(η) = g(η). In view of the SRM, we obtain the
following iteration scheme:

f ′
r+1 = gr, fr+1(0) = 0, (12)
g′′r+1 + 2fr+1g

′
r+1 −Hagr+1 = −1 + g2r −Ha,

gr+1(0) = λ, gr+1(∞) = 1, (13)
1

Pr
θ′′r+1 + 2fr+1θ

′
r+1 = −Ecg′2r+1 − EcHa(g − 1)2 = 0,

θr+1(0) =
Bi

1 +Bi
, θr+1(∞) = 0. (14)

We note that the equations now form a system of
linear decoupled equations which can be solved it-
eratively for r = 1, 2, ....., starting from initial
guesses/approximations (g0(η), θ(η)).

The initial approximation required to start the iterative
process is

g0(η) = λ− 1 + η + (1− λ)e−η, (15)

θ0(η) =
Bi

1 +Bi
e−η, (16)
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which are convenient random functions that satisfy the
boundary conditions. The iteration is repeated until
convergence is achieved. The convergence of the SRM
scheme is defined in terms of the infinity norm as

Er = Max(||fr+1 − fr||; ||θr+1 − θr||) (17)

If the iteration scheme converges, the error Er is will
decrease with an increase in the number of iterations.
Accuracy of the scheme was established by increasing
the number of collocation points N until the solutions
are consistent and further increase does not change the
value of the solutions.

IV. RESULTS AND DISCUSSION

The steady stagnation point flow and heat transfer of
an electrically conducting incompressible viscous fluid
with the disk surface being convectively heated and ra-
dially stretching is numerically solved using the spectral
relaxation method (SRM). We have used the bvp4c
method to validate the SRM solution. The bvp4c is an
in-built MATLAB solver for boundary value problems
and is based on fourth order Runge-Kutta schemes. The
tolerance level for both methods was set to be 10−8. The
figures were generated using N = 50 and η∞ = 15. In
order to gain physical insight into the flow properties,
default numerical values of the parameters encountered
in the problem are assigned. Their influences on the
velocity and temperature profiles as well as on the skin-
friction and the Nusselt number are tabulated and/or
displayed graphically.

TABLE I
VALUES OF THE LOCAL NUSSELT NUMBER FOR PARAMETERS BI,

EC, λ AND HA

Bi Ec λ −θ′(0)
0.0 -0.07207353
0.2 0.3 0.3 0.05773461
0.5 0.18754275
2.0 0.44715903

0.0 0.25961628
0.3 0.2 0.3 0.18754275

0.5 0.07994324
0.0 0.02032099

0.3 0.3 0.2 0.11131746
0.5 0.22034202

Table 1 displays the effects of the Biot number (Bi),
Eckert number (Ec), and the velocity stretching param-
eter (λ) on the Nusselt number (−θ′(0)). From this
table we observe that increasing the Biot number as
expected causes the local Nusselt number to increase.
Values of the Biot number more than 0.1 imply that
the heat convection away from the surface is much

faster than the heat inside the body. This gives rise to
high temperature gradients at the surface. More heat is
transferred from the wall when the values of the Biot
number increase thus causing the Nusselt number to
increase in our current study. We also observe from this
table that as the Eckert number increases, the Nusselt
number decreases. Physically, an increase in the Eckert
number decreases the temperature gradient between the
ambient and the plate. We observe that increasing the
values of the Hartman numbers leads to lowering of the
values of the Nusselt number. Lastly, we clearly see from
the table the Nusselt number is increased when the values
of the velocity parameter are increased.

TABLE II
COMPARISON OF SRM SOLUTIONS FOR f ′′(0) AGAINST THOSE OF

THE bvp4c FOR λ AND HA WHEN PR =0.71, BI =0.3, EC =0.1

f ′′(0)
λ Ha SRM bvp4c

0.0 1.64532167 1.64532167
0.2 1.0 1.38320821 1.38320821
0.5 0.92353421 1.38320821

0.0 0.78032335 0.78032335
1.0 0.92353421 0.92353421

0.5 5.0 1.35766817 1.35766817
10.0 1.75767520 1.75767520

Table 2 displays the influence of the Hartman num-
ber Ha, and velocity parameter λ. The skin friction is
greatly reduced by increasing the velocity parameter. As
can be seen from the velocity boundary conditions, λ
is increased by increasing the stretching parameter a.
Stretching the surface radially reduces the drag force
on the wall surface thus reducing the skin friction.
Stretching of the surface may lead to smothering of
the surface area thereby reduces the drag force on the
wall. We also observe in Table 2 that the Hartman
number has significant effect on the skin-friction. As
the magnetic strength increases, the dragging effect is
clearly seen by the significant increments in the skin
friction. The influence of different parameters on the
velocity field f ′(η) and temperature profile θ(η) are
depicted in Figures 1 to ??. In this table we observe
an excellent agreement between the two methods for up
to eight decimal places. However, the SRM is converges
much faster than the bvp4c both in terms of CPU time
and number of iterations. This gives us much confidence
in the SRM solutions.
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Fig. 1. Influence of Ha on the velocity profiles when λ = 2, Pr=0.71,
Bi=0.3, Ec =0.2.

Figure 1 depicts the effects of the Hartmann number
Ha on the velocity distributions. In this figure, we
observe that the velocity decreases with η as the values
of Ha are increased. Thus, the presence of the magnetic
field reduces the momentum boundary layer thickness
and increases the power needed to stretch the sheet.
The presence of a moderate magnetic field can be used
to stabilize the flow thereby delaying the transition
from laminar to turbulent. Physically, the presence of a
transverse magnetic field gives rise to a drag force known
as Lorentz force which results in retarding the velocity
field. Figure 2 displays the effect of increasing the
velocity parameter λ on the velocity profiles. Increasing
the stretching parameter causes the velocity to increase
and reduces the boundary layer. The fluid flow is aided as
the radially stretched surface is stretched. This explains
why the velocity increases when the stretching parameter
increases. The maximum value for the velocity is a unity
(one) in dimensionless variables so as the stretching
parameter increases, the velocity tend to converge to this
value, thus explaining why the boundary layer thickness
is reduced.

In Figure 3 we depict the effect of the Biot number on
the temperature profiles. The temperature distributions
within the fluid flow clearly increase when the Biot
number increases. By the mathematical definition of the
Biot number increasing its values means that the convec-
tive heat transfer coefficient increases thereby enhancing
more heat transfer from the surface. This then causes
the fluid to heat up thus increasing the fluid temperature
distributions. The influence of the Eckert number Ec
on the temperature profiles is shown on Figure 4. We
observe that the temperature is an increasing function of
Ec. This is because increasing the values of the Eckert

number generates heat in the fluid due to frictional
heating. Thus the effect of increasing Ec is to enhance
the temperature at any point.
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Fig. 2. Variation of the velocity profiles with λ when Pr=0.71, Ha=1,
Bi=0.3, Ec=0.3.
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Fig. 3. Influence of Biot number Bi on the temperature profiles when
Pr=0.3, Ha=1, λ=0.2, Ec =0.2.
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Fig. 4. Influence of Eckert number Ec on the temperature profiles
when Pr=0.3, Ha=1, λ=0.2, Bi =0.3.

Figure 5 displays the effect of increasing the velocity
parameter λ on the fluid temperature. The temperature is
reduced as λ increases. Lastly, Figure 6 depicts the effect
of the Prandtl number on the temperature. It can clearly
observed that the temperature as well as the thermal
boundary layer rapidly decrease with increasing values
of the Prandtl number. Physically, an increase in the
Prandtl number means an increase in fluid velocity which
in turn causes a decrease in the temperature.
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Fig. 5. Influence of velocity parameter on the temperature profiles
when Pr=0.3, Ha=1, Bi=0.3, Ec =0.2.
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Fig. 6. Variation of the temperature profiles with Pr when Bi=0.3,
Ha=1, λ=0.2, Ec =0.2.

V. CONCLUSION

This work is a worthwhile attempt to study the effects
of convective heating, viscous dissipation and Joule heat-
ing on the stagnation point flow and heat transfer of an
electrically conducting fluid towards a radially stretching
disk. An effective relaxation spectral algorithm with
Chebyshev spectral scheme has been adopted to solve
the resulting system of non-linear differential equations
subject to the convective boundary conditions. The ac-
curacy of the SRM is validated against the MATLAB in-
built bvp4c routine for solving boundary value problems.
The combined effects of the convective heating and the
magnetic interaction parameter are studied in detail. The
velocity field was found to increase as the Hartmann
number and velocity parameter increase. The fluid tem-
perature increases by increasing values of Biot number,
Eckert number and the Hartmann number it decreases
as the Prandtl number and velocity parameter increase.
We also found in this study that the rate of heat transfer
at the surface increases as the Biot number (convective
parameter) increases.
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