
 

 

  

Abstract—The problem of steady, laminar, double-diffusive 

mixed convective flow of a non-Newtonian power-law fluid past a 

vertical semi-infinite permeable surface embedded in a porous 

medium with uniform heat and mass fluxes in the presence of heat 

generation or absorption effects.  A mixed convection parameter for 

the entire range of free-forced-mixed convection is employed and a 

set of non-similar equations are obtained. These equations are solved 

numerically by an efficient implicit, iterative, finite-difference 

method. The obtained results are checked against previously 

published work for special cases of the problem and are found to be 

in good agreement. A parametric study illustrating the influence of 

the concentration to thermal buoyancy ratio, power-law fluid 

viscosity index, mixed convection parameter, suction or injection 

parameter, dimensionless heat generation or absorption parameter 

and the Lewis number on the local Nusselt and the Sherwood 

numbers is conducted.  The obtained results are shown graphically 

and the physical aspects of the problem are discussed. 

 

Keywords—Mixed convection, porous media, suction or 

injection, heat generation or absorption, numerical solution, non-

Newtonian fluid.  

I. INTRODUCTION 

ONVECTION heat transfer from vertical surfaces 

embedded in porous media has been the subject of many 

investigations. This is due fact that these flows have many 

engineering and geophysical applications such as geothermal 

reservoirs, drying of porous solids, thermal insulation, 

enhanced oil recovery, groundwater pollution, and 

underground energy transport. Cheng and Minkowycz [1] have 

presented similarity solutions for free thermal convection from 

a vertical plate in a fluid-saturated porous medium. 

Ranganathan and Viskanta [2] have considered mixed 

convection boundary layer flow along a vertical surface in a 

porous medium. Nakayama and Koyama [3] have suggested 
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similarity transformations for pure, combined and forced 

convection in Darcian and non-Darcian porous media. Lai [4] 

has investigated coupled heat and mass transfer by mixed 

convection from an isothermal vertical plate in a porous 

medium. Hsieh et al. [5] have presented non-similar solutions 

for combined convection in porous media. All of the above 

references considered Newtonian fluids. 

     A number of industrially important fluids such as molten 

plastics, polymers, pulps, foods and slurries and fossil fuels 

which may saturate underground beds display non-Newtonian 

fluid behavior. Non-Newtonian fluids exhibit a non-linear 

relationship between shear stress and shear rate. Chen and 

Chen [6] have presented similarity solutions for free 

convection of non-Newtonian fluids over vertical surfaces in 

porous media. Mehta and Rao [7] have investigated buoyancy-

induced flow of non-Newtonian fluids over a non-isothermal 

horizontal plate embedded in a porous medium. Also, Mehta 

and Rao [8] have analyzed buoyancy-induced flow of non-

Newtonian fluids in a porous medium past a vertical plate with 

non-uniform surface heat flux. In a series of papers, Gorla and 

co-workers [9-14] have studied mixed convection in non-

Newtonian fluids along horizontal and vertical plates in porous 

media under various thermal boundary conditions. Jumah and 

Mujumdar [15] have considered free convection heat and mass 

transfer of non-Newtonian power-law fluids with yield stress 

from a vertical flat plate in saturated porous media. Recently, 

Chamkha and Al-Humoud [16] studied mixed convection heat 

and mass transfer of non-Newtonian fluids from a permeable 

surface embedded in a porous medium under uniform surface 

temperature and concentration species. 

      The effects of fluid wall suction or injection the flow 

and heat transfer characteristics along vertical semi-infinite 

plates have been investigated by several authors (Cheng [17], 

Lai and Kulacki [18,19], Minkowycz et al. [20] and Hooper et 

al. [21]).  Some of these studies have reported similarity 

solutions (Cheng [17] and Lai and Kulacki [18,19]) while 

others have obtained non-similar solutions (Minkowycz, et al. 

[20] and Hooper et al. [21]). Lai and Kulacki [18,19] have 

reported similarity solutions for mixed convection flow over 
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horizontal and inclined plates embedded in fluid-saturated 

porous media in the presence of surface mass flux.  On the 

other hand, Minkowycz et al. [20] have discussed the effect of 

surface mass transfer on buoyancy-induced Darcian flow 

adjacent to a horizontal surface using non-similarity solutions. 

Also, Hooper et al. [21] have considered the problem of non-

similar mixed convection flow along an isothermal vertical 

plate in porous media with uniform surface suction or injection 

and introduced a single parameter for the entire regime of free-

forced-mixed convection. Their non-similar variable 

represented the effect of suction or injection at the wall. 

      The objective of this paper is to consider double-diffusive 

mixed convection for a non-Newtonian power-law fluid flow 

past a permeable vertical surface embedded in a fluid-saturated 

porous medium in the presence of suction or injection and heat 

generation or absorption effects under uniform heat and mass 

fluxes.   

II. PROBLEM FORMULATION 

Consider steady mixed convective flow of a non-Newtonian 

power-law fluid past a permeable semi-infinite vertical surface 

embedded in a porous medium with constant heat and mass 

fluxes. The power-law model of Ostwald-de-Waele which is 

adequate for many non-Newtonian fluids is considered in the 

present work. Uniform suction or injection with speed vo is 

imposed at the surface boundary.  The porous medium is 

assumed to be uniform, isotropic and in local thermal 

equilibrium with the fluid. All fluid properties are assumed to 

be constant. Under the Boussinesq and boundary-layer 

approximations, the governing equations for this problem can 

be written as 
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where x and y denote the vertical and horizontal directions, 

respectively.  u, v, T and c are the x- and y-components of 

velocity, temperature and concentration,  respectively. ρ, µ, n, 

cp, Q0 and D are the fluid density, consistency index for 

viscosity, power-law fluid viscosity index, specific heat at 

constant pressure, heat generation or absorption coefficient 

and mass diffusion coefficient, respectively. K and αe are the 

porous medium modified permeability and effective thermal 

diffusivity, respectively. βT, βc, U∞, T∞ and c∞ are the thermal 

expansion coefficient, concentration expansion coefficient and 

the free stream velocity, temperature and concentration, 

respectively. 

      The modified permeability of the porous medium K for 

flows of non-Newtonian power-law fluids is given by: 
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where ε and d is the porosity and the particle diameter of the 

packed-bed porous medium. 

     The boundary conditions suggested by the physics of the 

problem are given by 
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where vo, qw and mw are the constant wall normal velocity, 

uniform wall heat flux and the uniform wall mass flux, 

respectively.  

     It is convenient to transform the governing equations into 

a non-similar dimensionless form which can be suitable for 

solution as an initial-value problem. This can be done by 

introducing the stream function such that 
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where Pex=U∞x/αe and Rax=(x/αe)[ρgβTqwK/(κµ)]
1/n

 are the 

local Peclet and modified Rayleigh numbers, respectively and κ is the porous medium effective thermal conductivity. 

      Substituting Eqs. (9) and (10) into Eqs. (1) through (5) 

produces the following non-similar equations: 
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are the Lewis number, concentration to thermal buoyancy 

ratio, dimensionless heat generation or absorption coefficient 

( 0<φ  corresponds to heat absorption and  0>φ  

corresponds to heat generation) and the mixed convection 

parameter, respectively.  It should be noted that χ = 0 (Pex = 0) 

corresponds to pure free convection while χ = 1 (Rax = 0) 

corresponds to pure forced convection.  The entire regime of 

mixed convection corresponds to values of χ between 0 and 1. 

      Of special significance for this problem are the local 

Nusselt and Sherwood numbers. These physical quantities can 

be defined as 
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III. NUMERICAL METHOD AND VALIDATION 

Equations (11) through (14) represent an initial-value 

problem with ξ playing the role of time.  This non-linear 

problem can not be solved in closed form and, therefore, a 

numerical solution is necessary to describe the physics of the 

problem. The implicit, tri-diagonal finite-difference method 

similar to that discussed by Blottner [24] has proven to be 

adequate and sufficiently accurate for the solution of this kind 

of problems.  Therefore, it is adopted in the present work. 

     All first-order derivatives with respect to ξ are replaced 

by two-point backward-difference formulae when marching in 

the positive ξ direction and by two-point forward-difference 

formulae when marching in the negative ξ direction.  Then, all 

second-order differential equations in η are discretized using 

three-point central difference quotients. This discretization 

process produces a tri-diagonal set of algebraic equations at 

each line of constant ξ which is readily solved by the well 

known Thomas algorithm (see Blottner [24]).  During the 

solution, iteration is employed to deal with the non-linearities 

of the governing differential equations.  The problem is  

solved line by line starting with line ξ=0 where similarity 

equations are solved to obtain the initial profiles of velocity, 

temperature and concentration and marching forward (or 

backward) in ξ until the desired line of  constant ξ is reached.  

Variable step sizes in the η direction with ∆η1 = 0.001 and a 

growth factor G = 1.04 such that ∆ηn = G∆ηn-1 and constant 

step sizes in the ξ direction with ∆ξ = 0.01 are employed.  

These step sizes are arrived at after many numerical 

experimentations performed to assess grid independence. The 

convergence criterion employed in the present work is based 

on the difference between the current and the previous 

iterations.  When this difference reached 10
-5

 for all points in 

the η directions, the solution was assumed converged and the 

iteration process was terminated. 

     Tables 1 and 2 present a comparison of -θ'(ξ,0) at 

selected values of ξ and χ between the results of the present 

work and those reported earlier by Hooper et al. [21] for n=1 

and N=0 for the case of uniform wall temperature since no 

appropriate results were found for the case of uniform heat 

flux. It is clear from this comparison that a good agreement 

between the results exists.  This lends confidence in the 

correctness of the numerical results to be reported 

subsequently.  It should be noted that in Table 2, the value of -

θ'(ξ,0) at ξ = -2 and χ =1 seems to be in error or a typo as this 

value cannot be 1.0502.   

 

Table 1. Values of -θ'(ξ,0) at selected values of ξ and χ for 

n=1 and N=0. (Present work) 

χ ξ=-2.0 ξ=0.0 ξ=1.0 ξ=2.0 

0.0 1.99894 0.44401 0.14240 0.03408 

0.2 1.99762 0.37339 0.09140 0.01431 

0.4 1.99757 0.35071 0.06997 0.00754 

0.5 1.99824 0.36045 0.07097 0.00725 

0.6 2.00066 0.38338 0.08029 0.00884 

0.8 2.01485 0.46044 0.12471 0.02055 

1.0 2.04971 0.56433 0.19979 0.05036 
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Table 2. Values of -θ'(ξ,0) at selected values of ξ and χ for 

n=1 and N=0. (Hooper et al. [21]) 

χ ξ=-2.0 ξ=0.0 ξ=1.0 ξ=2.0 

0.0 2.0015 0.4437 0.1417 0.0335 

0.2 2.0003 0.3732 0.0907 0.0139 

0.4 2.0005 0.3504 0.0693 0.0072 

0.5 2.0016 0.3603 0.0704 0.0069 

0.6 2.0042 0.3832 0.0797 0.0085 

0.8 2.0185 0.4602 0.1242 0.0201 

1.0 1.0502 0.5642 0.1996 0.0502 

 

IV. RESULTS AND DISCUSSION 

Figures 1 through 3 display representative velocity, 

temperature and concentration (f', θ and C) profiles for two 

values of the transformed suction or injection parameter ξ and 

three distinct values of the buoyancy ratio N and power-law 

fluid index n=0.5 (shear thinning or pseudo-plastic fluid), 

respectively. Unlike the case of constant wall temperature and 

concentration (see Chamkha and Al-Humoud [16]) , increases 

in the value of N cause less induced flow close to the plate 

surface and more flow away from the wall. This behavior in 

the flow velocity takes place with increases in the fluid 

temperature and species concentration as seen from Figs. 2 and 

3. Also, as ξ increases, all of the velocity, temperature and 

concentration along with their boundary layers are predicted to 

increase. 

     Figures 4 through 9 illustrate the influence of the 

buoyancy ratio N and the transformed suction or injection 

parameter ξ in the full range of the mixed convection 

parameter 0 < χ < 1 on the local Nusselt number [ )0,(/1 ξθ ] 

and the local Sherwood number [ )0,(C/1 ξ ] for power-law 

fluid viscosity indices n=0.5 (shear-thinning or pseudo-plastic 

fluid), n=1.0 (Newtonian fluid) and n=1.5 (shear-thickening or 

dilatant fluid), respectively. As mentioned before, in general, 

for uniform surface heat and mass fluxes, increases in the 

value of N have the tendency to cause less induced flow close 

to the surface and more flow far down stream. This behavior in 

the flow velocity is accompanied by increases in the fluid 

temperature and concentration species as well as increases in 

the thermal and concentration boundary layers as N increases 

from   -1 to 0.5. This causes the inverse of the wall 

temperature and concentration values to decrease yielding 

reductions in both the local Nusselt and Sherwood numbers. 

This is true for all values of the power-law fluid index n. Also, 

it is noted that as the transformed suction or injection 

parameter ξ increases for fixed values of N and χ≠1, all of the 

velocity, temperature and concentration species increase. As a 

result of increasing the value of ξ, the local Nusselt and 

Sherwood numbers decrease. From the definition of χ, it is 

seen that increases in the value of the parameter 

Rax
n/(2n+1)

/Pex
(n+1)/(2n+1)

 causes the mixed convection parameter 

χ to decrease. Thus, small values of Rax
n/(2n+1)

/Pex
(n+1)/(2n+1)

 

correspond to values of χ close to unity which indicate almost 

pure forced convection regime. On the other hand, high values 

of Rax
n/(2n+1)

/Pex
(n+1)/(2n+1)

 correspond to values of χ close to 

zero which indicate almost pure free convection regime. 

Furthermore, moderate values of Rax
n/(2n+1)

/Pex
(n+1)/(2n+1) 

represent values of χ  between 0 and 1 which correspond to the 

mixed convection regime. For the forced convection limit (χ = 

1) it is clear from Eq. (11) that the velocity in the boundary 

layer f' is uniform irregardless of the value of n provided that 

Pex=1 as set in the figures. However, for smaller values of χ at 

a fixed value of N and n=1.0, the fluid velocity close to the 

wall increases for values of χ < 0.5 due to the buoyancy effect 

which becomes larger for χ = 0 (free convection limit). This 

decrease and increase in the fluid velocity f' as χ is decreased 

from unity to zero is accompanied by a respective increase and 

a decrease in both the wall fluid temperature and 

concentration. As a result, the local Nusselt and Sherwood 

numbers tend to decrease and then increase as χ is increased 

from 0 to 1. 

 

0 1 2 3 4 50.00.51.01.52.02.5
N=-1, 0, 0.5 ξ=1.0N=-1, 0, 0.5 Le=5.0n=0.5Pex=1.0

φ=0.0
χ=0.5

ξ=0Fig. 1. Velocity profiles for different values of ξ (n=0.5)
f'

η

0 1 2 3 4 5 60.00.51.01.52.02.53.03.54.04.5
N=-1, 0, 0.5 ξ=1.0N=-1, 0, 0.5 Le=5.0n=0.5Pex=1.0

φ=0.0
χ=0.5

ξ=0Fig. 2. temperature profiles for different values of ξ (n=0.5)
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0 1 2 3 40.00.51.01.52.02.53.03.54.04.5
ξ=1.0N=-1, 0, 0.5

Le=5.0n=0.5Pex=1.0
φ=0.0
χ=0.5

ξ=0Fig. 3. Concentration profiles for different values of ξ (n=0.5)
C

η
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ξ=-0.2

Le=5.0n=0.5Pex=1.0
φ=0.0

N=0.5N=0
ξ=1.0ξ=0.5ξ=0

Fig. 4. Effects of N and χ on local Nusselt number for n=0.5 and different ξ values
N=-1.0

1/θ(ξ,0)
χ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.00.51.01.52.02.53.03.5
ξ=-0.2Le=5.0n=0.5Pex=1.0
φ=0.0N=0.5N=0

ξ=1.0ξ=0.5ξ=0
Fig. 5. Effects of N and χ on local Sherwood number for n=0.5 and different ξ values

N=-1.01/C(ξ,0)
χ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.00.20.40.60.81.01.2
Le=5.0n=1.0Pex=1.0
φ=0.0

N=0.5N=0
ξ=-0.2
ξ=1.0ξ=0.5ξ=0

Fig. 6. Effects of N and χ on local Nusselt number for n=1.0 and different ξ values
N=-1.0

1/θ(ξ,0)
χ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.00.40.81.21.62.02.42.83.2 Le=5.0n=1.0Pex=1.0
φ=0.0N=0.5N=0 ξ=-0.2

ξ=1.0ξ=0.5ξ=0
Fig. 7. Effects of N and χ on local Sherwood number for n=1.0 and different ξ values

N=-1.01/C(ξ,0)
χ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.00.20.40.60.81.01.2
Le=5.0n=1.5Pex=1.0
φ=0.0

N=0.5N=0 ξ=-0.2
ξ=1.0ξ=0.5ξ=0

Fig. 8. Effects of N and χ on local Nusselt number for n=1.5 and different ξ values
N=-1.0

1/θ(ξ,0)
χ
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.00.40.81.21.62.02.42.83.2 Le=5.0n=1.5Pex=1.0
φ=0.0N=0.5N=0 ξ=-0.2

ξ=1.0ξ=0.5ξ=0
Fig. 9. Effects of N and χ on local Sherwood number for n=1.5 and different ξ values

N=-1.01/C(ξ,0)
χ

 

Furthermore, by comparison of Figs. 4-9, one can conclude 

that the local Nusselt and Sherwood numbers decrease as the 

power-law fluid index n increases. It is also observed that 

while the local Nusselt and Sherwood numbers change in the 

whole range of free and mixed convection regime, they remain 

constant for the forced-convection regime. This is obvious 

since for χ=1 and fixed values of Le, the equations are the 

same and do not depend on n and N. All of the above trends 

are clearly displayed in Figs. 4-9. 

 

0 1 2 3 4 5 60.00.51.01.52.02.53.03.5
φ=-1, 0, 1.0 ξ=0.5φ=-1, 0, 1.0 Le=5.0n=0.5Pex=1.0

χ=0.5
ξ=-0.5Fig. 10. temperature profiles for different values of φ and ξ (n=0.5)

θ

η

0 1 2 3 4 5 6 70.00.51.01.52.02.53.03.54.04.5
φ=-1, 0, 1.0 ξ=0.5φ=-1, 0, 1.0 Le=5.0n=1.0Pex=1.0

χ=0.5
ξ=-0.5Fig. 11. temperature profiles for different values of φ and ξ (n=1.0)

θ

η

0 1 2 3 4 5 6 7 80.00.51.01.52.02.53.03.54.04.55.05.5
φ=-1, 0, 1.0 ξ=0.5φ=-1, 0, 1.0 Le=5.0n=1.5Pex=1.0

χ=0.5
ξ=-0.5Fig. 12. temperature profiles for different values of φ and ξ (n=1.5)

θ

η

     Figures 10 through 12 present the effects of the heat 

generation or absorption coefficient φ on the temperature 

profiles at different values of ξ for n=0.5, n=1.0 and n=1.5, 

respectively. The presence of a heat generation source in the 

flow represented by positive values of φ enhances the thermal 

state of the fluid causing its temperature to increase. On the 

contrary, the presence of a heat absorption sink in the flow 

represented by negative values of φ reduces the fluid 

temperature. This is true irregardless of the value of n as 

clearly seen from Figs. 10-12. Also, it should be noted that for 

the case of n=0.5 and ξ=0.5 in Fig. 10, while increasing φ 

increases the temperature close to the surface, it causes it to 

decrease far downstream as it meets the free stream conditions. 
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Fig. 13. Variation of local Nusselt number with ξ for different values of n and φ

φ=-1.0

1
/θ

(ξ
,0

)

ξ

     The effect of the heat generation or absorption coefficient φ 

on the local Nusselt number for different values of n (0.5, 1.0, 

1.5) in the range -1 < ξ < 1 is displayed in Fig. 13. As 

mentioned above, in general, the presence of a heat generation 

effects in the flow causes the fluid temperature to increase. 

This, in turn, increases the thermal buoyancy effect which 

produces higher induced flow. On the contrary, the presence of 

a heat absorption effects in the flow reduces the fluid 

temperature which, in turn, decreases the induced flow due to 

thermal buoyancy effects. Thus, the wall temperature increases 

as φ increases causing the local Nusselt number which is 

inversely proportional to θ(ξ,0) to decrease for all values of ξ 

except ξ=0 since φ does not appear in Eq. (12) at ξ=0. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.00.51.01.52.02.53.03.54.0
ξ=0 ξ=-0.1ξ=0ξ=-0.1ξ=-0.1

n=0.5N=0.5Pex=1.0
φ=0.0 Le=10Le=5.0

ξ=0.5
ξ=0

Fig. 14. Effects of Le and χ on local Sherwood number for n=0.5 and different ξ values
Le=1.01/C(ξ,0)

χ

     Figure 14 depicts the influence of the Lewis number Le on 

the local Sherwood number in the whole mixed convection 

range 0 < χ  < 1 for different values of ξ. Increasing the value 

of the Lewis number results in decreasing the concentration 

species at the wall. This causes the local Sherwood number to 

increase as seen in Fig. 14. 

V. CONCLUSIONS 

This work considered double-diffusive mixed convective 

flow of a non-Newtonian power-law fluid along a vertical 

permeable surface embedded in a porous medium under 

uniform heat and mass fluxes.  A single parameter for the 

entire range of free-forced-mixed convection regime was 

employed. The obtained non-similar differential equations 

were solved numerically by an efficient implicit finite-

difference method. The results focused on the effects of the 

buoyancy ratio, power-law fluid index, mixed convection 

parameter, suction or injection parameters, heat generation or 

absorption coefficient and the Lewis number on the local 

Nusselt and Sherwood numbers. It was found that as the 

buoyancy ratio was increased, both the local Nusselt and 

Sherwood numbers decreased in the whole range of free and 

mixed convection regime while they remained constant for the 

forced-convection regime for all power-law fluid index values. 

However, they decreased and then increased forming dips as 

the mixed-convection parameter was increased from the free-

convection limit to the forced-convection limit. Also, the local 

Nusselt and Sherwood numbers decreased with increasing 

values of the suction or injection parameter. Furthermore, it 

was concluded that in general, the local Nusselt and Sherwood 

numbers decreased as the power-law fluid index was 

increased. Furthermore, it was found that increasing the heat 

generation or absorption parameter decreased the local Nusselt 

number and increasing the Lewis number produced increases 

in the local Sherwood number. 
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