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Abstract— Wind Speed simulation and modeling is essential in 

the field of wind power estimation and a useful tool in air pollution 
management and control applications. This study is focused on the 
simulation of the hourly wind speed sequences of a single station. 
Under this framework, the Weibull distribution and the 
autoregressive-moving average ARMA models are employed. The 
Weibull distribution is fitted to the monthly frequency wind speed 
distributions. For each month of the year a single ARMA model is 
trained according to the Box – Jenkins methodology. The ARMA 
models are assessed for their ability to reproduce successfully the 
main statistical figures of the observed time series. The goodness of 
fit tests along with the limited percentage error on the observed mean 
wind speed and standard deviation imply the usefulness of the 
simulation scheme in generating synthetic wind speed time series for 
the site under study. ARMA models are found superior in simulating 
the frequency distributions of wind speed.     
 

Keywords—ARMA models, Time series, Wind speed, Weibull 
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I. INTRODUCTION 
HE increasingly rising interest in estimating wind power 
and wind energy potential at a given site, highlights the 

importance of the statistical simulation of wind speed 
observations. Early simulations were limited to the 
distribution fitting of a theoretical probability function like 
Weibull, Rayleigh or Lognormal to the observed frequency 
distributions of wind speed [1]-[16]. A detailed review of the 
probability functions used in wind energy analysis is 
presented in [17]. Wind speed has a highly auto-correlated 
nature and the Box-Jenkins methodology [18] is suitable for 
simulating and forecasting wind speed observations in a 
specific site [19]-[23] and is  proposed and used operationally 
for simulation and short-term wind speed and power 
forecasting in wind farms [24]-[27]. In this work, for each 
month, the Weibull distribution is fitted to the observed 

frequencies of the wind speed and subsequently a stochastic 
ARMA model is trained to generate synthetic time series for 
each month.  The linear ARMA models give comparable 
results with artificial intelligence statistical methods like the 
neural networks [28]-[31], and are chosen in this study to 
assess the ability of statistical models to simulate wind speed 
data solely based on the autocorrelation of the time series.  
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II. EXPERIMENTAL DATA 
The study is focused at the metropolitan Athens in Greece and 
a ten yearly, from January 1993 to December 2002, hourly 
averaged wind speed time series at the National Observatory 
of Athens (NOA) is used. The meteorological station of NOA 
(Fig. 1) is situated in the center of the Athens basin, 9.5km 
away from the Saronic shoreline, surrounded by mountains in 
North and East. The wind field in metropolitan Athens is 
influenced by complex sea-land breeze circulation cells and 
by katabatic flows from the surrounding mountains.  
 

 
Fig. 1 Area of study and location of NOA meteorological 

station 
 

Wind speed measurements are obtained from a three-cup 
rotor anemometer, with threshold level 0.2m/s, which is 
placed at 10m above ground. Wind speed observations are 
recorded every 10 seconds, averaged initially over ten minutes 
and then over one hour, to generate the hourly averaged wind 
speed time series. 

The main monthly statistical features of the time series 
(mean wind speed, median, variance, kurtosis and skewness) 
are presented in Table 1. It is observed that the mean monthly 

T 

Issue 4, Volume 3, 2009 151

INTERNATIONAL JOURNAL of ENERGY and ENVIRONMENT



wind speed exhibits two maxima, one in July, which is 
attributed to the etesian winds and one during the cold period 
of the year. The mean monthly wind speed frequency 
distributions have common distribution patterns and they are 
right-skewed.  
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Several methods are proposed to determine the shape and 
scale parameters of the Weibull distribution function [32]-
[34]. In this study the linear regression methodology is 
adopted and the parameter values of the fitted Weibull 
distributions are presented in Table 2. The values of k are 
close to 1, ranging from 1.2380 to 1.4238. This fact implies 
the high variability of the wind field at metropolitan Athens. 
The goodness of fit of the Weibull distribution to the 
frequency distributions of the observed data is assessed by the 
correlation coefficient (R2) and the Root Mean Square Error 
(RMSE). The observed and the theoretical values of the mean 
wind speed and variance are compared by calculating their 
relative % errors (Table 2). The high correlation coefficient 
values, ranging from 0.866 to 0.922, along with the low 
RMSE and % errors, verify that the Weibull distribution fits 
the data reasonably well.  

 
Table 1 Monthly wind speed descriptive statistics 

Month Mean Median Variance Kurtosis Skewness
Jan 3.318 2.60 5.756 1.477 1.269 
Feb 3.537 2.80 6.431 0.854 1.140 
Mar 3.781 3.20 6.714 1.662 1.206 
Apr 3.026 2.50 3.914 0.681 0.972 
May 3.323 2.90 4.906 0.808 0.986 
Jun 3.595 3.20 5.261 0.791 0.899 
Jul 3.743 3.40 5.862 0.401 0.846 

Aug 3.672 3.20 5.564 -0.254 0.723 
Sep 3.127 2.50 4.465 1.000 1.117 
Oct 3.141. 2.40 5.476 1.347 1.317 
Nov 3,338 2.50 6.321 1.518 1.320 
Dec 3.401 2.70 6.106 1.540 1.257 

III. WEIBULL DISTRIBUTION MODELING 
Initially the Weibull distribution is fitted to the frequency 

distributions of the wind speed observations. The Weibull 
distribution family of curves is a special case of Pearson Type 
III distributions and is formulated by the probability density 
function f(u): 
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IV. AUTOREGRESSIVE MOVING AVERAGE ARMA(P,Q) 
MODELING 

Autoregressive – Moving Average ARMA(p,q) models are 
a group of linear stochastic models which are classified in 
three categories. The purely autoregressive AR(p) models, the 
moving average MA(q) models and the mixed ARMA(p,q) 
models, which are a combination of the autoregressive and 
moving average processes. At a particular time, the value of 
the time series in an ARMA(p,q) process is generated by the 
equation: 
 

qtqt

ttptpttt xxxx

−−

−−−−

−−−

−−+++++=

εθεθ

εθεφφϕδ

......

......

22

112211        (4) 
            where k is the dimensionless shape factor, c the scale 
parameter in m/sec and u the wind speed in m/sec. The mean 
wind speed and the variance σ2, in terms of k and c may be 
calculated using the gamma function Γ, from the following 
expressions: 
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where δ, φ1,φ2, …, φp, θ1,θ2,…, θq are the parameters of the 
mixed ARMA(p,q) model. A three phase methodology 
framework is proposed by Box and Jenkins [18], which 
constitutes the identification of a possible ARMA(p,q) model, 
its parameter estimation phase and its diagnostic checking 
procedure. 

 
Table 2: Goodness of fit and Weibull distribution parameters 

Month k c (m/s) R2 RMSE % error on u  % error on σ2 
January 1.2681 3.0719 0.898 0.00063 14.05% 10.88% 
February 1.3003 3.2763 0.903 0.00055 14.45% 14.37% 
March 1.3228 3.6019 0.922 0.00036 12.32% 4.66% 
April 1.3494 2.7452 0.866 0.00657 16.80% 9.14% 
May 1.3380 3.0039 0.903 0.00067 16.96% 11.55% 
June 1.3965 3.3425 0.914 0.00047 15.22% 7.08% 
July 1.3916 3.4786 0.900 0.00053 15.22% 8.99% 
August 1.4238 3.3406 0.885 0.00066 17.29% 15.86% 
September 1.3488 2.8810 0.882 0.03239 15.49% 12.20% 
October 1.2420 2.8731 0.870 0.00095 14.68% 13.97% 
November 1.2666 3.1240 0.874 0.00076 13.10% 15.85% 
December 1.2380 3.1154 0.901 0.00060 14.49% 8.59% 
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A. Transformation and Standardization  
The application of ARMA models requires the modeled 

data to be stationary and normally distributed. As it is already 
proved, wind speed is distributed according to the Weibull 
distribution. Furthermore, wind speed time series are non-
stationary, exhibiting seasonal and diurnal variations (Fig. 2). 

  

 
Fig. 2 Diurnal patterns of the hourly mean wind speed and 

standard deviation for March (a) and October (b) 
 

Wind speed time series can be transformed to a normally 
distributed variable by raising each observation to an 
appropriate index x. The most efficient method determining 
the index x, is the skewness method [35], which evaluates the 
symmetry of the distribution, by using the formula: 
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The method requires iterative calculation and the selected 
value of index x results to a symmetric distribution (i.e. Sk = 
0). By the end of this step, the observed time series WS have 
been transformed to a normally distributed transformed 
variable WS'. 

Seasonal non-stationarity is adequately removed by 
choosing a monthly scale for the stochastic modeling and 
standardization is required to remove diurnal non-stationarity 
[36] The standardization is performed to the WS’ using the 
formulas [37]: 
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where ( )mhWS ,'  the expected mean value of hour h for the 

month m of WS’ and ( )mh,2σ ′ the variance of hour h for the 
month m, given by the formulas: 
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The observed hourly wind speed data have been transformed 
and standardized to a dimensionless and normally distributed 
variable. The normality check of WS'* is illustrated in Fig. 3. 
  

 
Fig 3 Normality check for the transformed and standardized 

wind speed for March (a) and October (b) 

B. Identification Phase 
The order of the autoregressive process p and the order q of 

the moving average process, are estimated during the 
identification phase. The analysis of the autocorrelation (ACF) 
and the partial autocorrelation (PACF) functions give an 
initial estimation of the stochastic process that generated the 
observed data. For a pure autoregressive model AR(p), the 
ACF gradually decreases to zero, while the PACF is zero after 
p lags. For a pure moving average process MA(q), the ACF is 
zero after q lags and the PACF is decreases geometrically 
after q lags. For a mixed process ARMA(p,q) the ACF 
decreases exponentially after lag p and is zero after q lags.  

For each month, the correlograms (ACF and PACF) of 
WS'* have the same features, exhibiting a slow exponential 
decrease (Fig. 4). Furthermore, after the second or third lag, 
the partial autocorrelation functions are close to zero, 
implying that the data may be modeled by a low order 
ARMA(p,q) process.  
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Fig. 4 Autocorrelation and partial autocorrelation functions 

for the transformed and standardized variable for March (a&b) 
and October (c&d) 

 
For the selection of the appropriate class of the ARMA 

models the Bayesian Information Criterion (BIC) is employed. 
The BIC criterion considers the principle of parsimony, which 
is essential according to the Box – Jenkins methodology, and 
responds to the following expression: 
 

( ) ( ) (DMYTDMYBIC e lnln 2 += σ )  (9) 
 
where D the number of observations in a day, M the number 
of days in a given month, Y the number of years of the 
observations, σe

2 the variance of the residuals and T the total 
number of the parameters estimated, equal to the order of the 
ARMA model T=p+q. The BIC criterion is employed to the 
suggested group of models from the visual analysis of the 
correlograms. The selected model during the identification 
phase is the one that minimizes the BIC criterion. An 
ARMA(2,1) model is proposed for each month except April, 
October and November where an ARMA(2,2) is selected. . 
  

C. Parameter Estimation Phase 
Once the provisional values of p and q have been identified,  

the model coefficients δ, φi and θi along with the variance of 
the residuals σe

2 can be estimated. Table 3 illustrates the 
proposed model and the estimated values of the parameters. 
The stationarity and the invertibility of each model, based on 
these parameters, are checked. For an ARMA(2,1) model, the 
following conditions must be fulfilled respectively [18]: 
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The stationarity and the invertibility of an ARMA(2,2) model 
are ensured when the estimated parameters satisfy the 
following conditions: 
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All proposed models were found to be stationary and 

invertible.  

D. Diagnostic Checking Phase 
The objective of the diagnostic checking phase is to reveal 

any lack of fit of the proposed models and diagnose its cause. 
If the fitted model is adequate then the autocorrelations of the 
residuals should be uncorrelated and normally distributed and 
thus their autocorrelations coefficients rk(ε) have to be random 
and close to zero. ‘Portmanteau Lack-of-Fit’ test, assesses 
weather a group of autocorrelations of a time series are 
random. For this study the first 15 autocorrelations of the 
residuals are used and the Box-Pierce statistic is calculated: 
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where N is the number of observations, K the number of the 
first studied autocorrelations and rk(ε) the residuals 
autocorrelations. 

Table 3 ARMA(p,q) model coefficients 
Month Model Δ φ1 φ2 θ1 θ2 σe

2 

January ARMA(2,1) 0.0179 1.34710 -0.38310 0.61965  0.24775 
February ARMA(2,1) -0.0002 1.43760 -0.46619 0.70069  0.25835 
March ARMA(2,1) 0.0008 1.44046 -0.47070 0.70345  0.27098 
April ARMA(2,2) -0.0054 1.72837 -0.73222 1.04146 -0.08454 0.36771 
May ARMA(2,1) -0.00150 1.54192 -0.56135 0.81950  0.31995 
June ARMA(2,1) -0.0302 1.67530 -0.68082 0.92773  0.31040 
July ARMA(2,1) 0.0120 1.63033 -0.63769 0.90658  0.31479 
August ARMA(2,1) 0.00310 1.60970 -0.61840 0.90007  0.33662 
September ARMA(2,1) -0.00530 1.50437 -0.52133 0.82960  0.34016 
October ARMA(2,2) -0.00172 1.69544 -0.70250 1.00313 -0.10057 0.26526 
November ARMA(2,2) -0.00413 1.64020 -0.65467 0.96817 -0.12613 0.27094 
December ARMA(2,1) 0.00355 1.34329 -0.37881 0.62379  0.25099 

The hypothesis of randomness is accepted when the Q-statistic 
follows the chi-square distribution, with K –(p+q) degrees of 

freedom. The results of the ‘Portmanteau Lack-of-Fit’ test are 
presented in Table 4. 
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Table 4 Q statistic values for each month and x2 critical values 

Month Q – statistic x2 critical value 
January 16,472 27,587 
February 19,426 27,587 
March 18,265 27,587 
April 25,571 26,296 
May 26,226 27,587 
June 27,394 27,587 
July 22,067 27,587 
August 16,085 27,587 
September 26,099 27,587 
October 26,204 26,296 
November 26,114 26,296 
December 17,090 27,587 

 
The computed Q values for each month were found to be 

lower than the critical values of the x2 distribution, indicating 
that the proposed models is accepted at a significance level of 
5%. Some researchers [37],[38] follow an alternative method 
for the diagnosing checking of the models. Their approach is 
based on the study of the autocorrelations of the residuals for 
a given number of lags, stating that if the rk

2(ε) are 
uncorrelated then the 95% of the rk

2(ε) should be within the 
N/2±  boundaries. The first 20 autocorrelations of the 

residuals are calculated for each month and presented in the 
Fig. 5 along N/2± error boundaries.   

 
 

Fig 5 Autocorrelation function of the residuals for March 
(a) and October (b) 

Both diagnostic checking techniques lead to the same 
findings, proving that the proposed models are adequate for 
the simulation of the wind speed. 

V. SIMULATION RESULTS 
In order to check the validity of the ARMA models, the 

synthetic time series are compared with the observed wind 
speeds for each month of the year. In Fig. 8 the time series are 
illustrated for 2002, while in Fig. 6, the observed and the 
synthetic time series are compared with the scatter diagram for 
the complete 10-year study period. The overall correlation 
coefficient is high (R = 0.91) while for high wind speeds, both 
figures illustrate that the models underestimate the observed 
wind speeds. 

 
Fig 6 Comparison of the observed and simulated wind speed 

for the complete time series 
 

The most important statistical feature of a time series is its 
autocorrelation. A statistical model reproduces accurately the 
time series values when the autocorrelation coefficients of the 
observed and simulated time series are similar. In our case, for 
both time series the first 8 autocorrelation coefficients were 
calculated and compared for each month. Fig 7 illustrates the 
comparison for March and October. For all months, a slight 
overestimation for the estimated autocorrelation coefficients is 
observed.  
 

 
Fig 7 Comparison of the observed and simulated 

autocorrelation functions for the first 8 lags for March (a) and 
October (b) 
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Fig 8 Comparison of the observed and simulated time series for 2002 

 
 

 
Fig 9 Observed and simulated frequency distributions for 

March (a) and October (b) 
 
 
 

 

Furthermore, the comparison of the main statistical 
characteristics (Table 5), proves the ability of the ARMA 
models to generate and reproduce accurately the wind speed at 
the National Observatory of Athens. The comparison is based 
on the mean monthly wind speed, its standard deviation and 
on the two first autocorrelation coefficients. The percentage 
errors for each of the above statistical figures are calculated 
from the following expression: 

 

100)((%) ⋅
−

=
Obs

SimObserror  (13) 

 
Limited errors are observed for all statistical figures except for 
the standard deviation. Furthermore, the lower mean monthly 
wind speed percentage errors are observed for the summer 
months and the higher during autumn.  

The comparison of the frequency distributions of the 
observed and the synthetic time series (Fig. 9) prove that the 
fit of the ARMA models to actual data is very promising.  
This is important especially for the lower wind speeds, where 
the Weibull distribution is incapable of simulating the 
observed distribution frequencies.   
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Table 5 Comparison of the observed and simulated main statistical figures along with the % errors on the monthly mean, 
standard deviation and the first and second autocorrelation coefficients. 

Month  u  σ2 r1 r2 u error σ2error r1error r2error 

Obs 3.318 5.756 0.916 0.844 January Sim 3.186 4.316 0.940 0.880 3.986 25.010 2.620 4.265 

Obs 3.537 6.431 0.915 0.833 February 
Sim 3.394 4.820 0.935 0.864 

4.042 25.042 2.186 3.721 

Obs 3.781 6.714 0.900 0.815 March 
Sim 3.642 4.967 0.926 0.851 

3.682 26.022 2.889 4.417 

Obs 3.026 3.914 0.872 0.746 April 
Sim 2.913 2.815 0.908 0.791 

3.724 28.081 4.128 6.032 

Obs 3.323 4.906 0.893 0.785 May 
Sim 3.221 3.734 0.920 0.824 

3.049 23.882 3.024 4.968 

Obs 3.595 5.261 0.897 0.782 June 
Sim 3.504 4.134 0.918 0.816 

2.535 21.416 2.341 4.348 

Obs 3.743 5.862 0.899 0.786 July 
Sim 3.647 4.638 0.924 0.826 

2.563 20.883 2.781 5.089 

Obs 3.672 5.564 0.892 0.777 August 
Sim 3.567 4.348 0.920 0.820 

2.844 21.850 3.139 5.534 

Obs 3.127 4.465 0.900 0.798 September 
Sim 3.006 3.297 0.930 0.844 

3.863 26.150 3.333 5.764 

Obs 3.141 5.476 0.920 0.845 October 
Sim 2.997 4.130 0.946 0.880 

4.580 24.582 2.826 4.142 

Obs 3.338 6.321 0.918 0.846 November 
Sim 3.180 4.601 0.946 0.883 

4.753 27.209 3.050 4.374 

Obs 3.401 6.106 0.917 0.843 December 
Sim 3.257 4.542 0.941 0.880 

4.234 25.617 2.617 4.389 

VI. CONCLUSION 
In this study a theoretical distribution function and a 

stochastic modeling approach are employed for the simulation 
of the hourly wind speed observations at a single station in 
metropolitan Athens. Weibull distribution, which is the most 
frequently used distribution in wind speed statistical analysis, 
is found to model satisfactory the observed relative frequency 
distributions of wind speed for each month. Although high 
correlation coefficient values and low RMSE errors are found 
for each month, the Weibull distribution does not model 
effectively the low wind speeds and does not take into account 
the autocorrelation feature of wind. 

The analysis of the statistical characteristics of the time 
series, based on the autocorrelation and the partial 
autocorrelation functions, imply that the simulation should be 
based on a low order ARMA process. The Box – Jenkins 
methodology is employed and the time series are transformed 
and standardized, generating a dimensionless and normal 
distributed variable. A different ARMA model is trained for 
each month and an ARMA(2,1) is proposed for each month 
except April, October and November where an ARMA(2,2) is 
selected. The comparison of the observed and simulated time 
series proves the ability of the model to generate the wind 
speed at the NOA station. The synthetic time series follow 
closely the observed wind speed. The comparison is based on 
the monthly mean wind speed and standard deviation and  
 
 

their relative errors. Furthermore the synthetic time series are 
proved to reproduce accurately the autocorrelation 
dependence, which is the most important feature in wind 
speed time series. A slight overestimation of no statistical 
significance is observed for the first eight autocorrelation 
coefficients.  

The fit of the ARMA model to the frequency distributions 
of the observed data is superior compared to Weibull models, 
especially for low wind speeds. ARMA models are found 
capable in generating synthetic time series with identical 
statistical characteristics with the measured data.  

These stochastic models may be used as a weather wind 
speed generators of one month sequences that represent the 
actual statistical characteristics of the 10 years time series of 
wind speed data for each month. The simulation can be 
especially useful in generating missing wind speed data for 
the National Observatory of Athens and in air pollution 
modeling and control. Furthermore, such a simulation is 
important in energy conversion studies in wind energy 
applications.  
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