
 

 

  
Abstract— There are three methods for analyzing flow and pres-

sure distribution in looped water supply networks (the loop method, 
the node method, the element method) taking into consideration 
hydraulic parameters chosen as unknown. For all these methods, the 
nonlinear system of equations can be solved by iterative procedures 
(Hardy–Cross, Newton–Raphson, linear theory). În the case of exten-
ding or rehability distribution networks the unknown parameters 
being the piezometric heads at nodes, the node method for network 
analysis is prefered. In this paper is formulated a generalized classic 
model for the nodal analysis of complex looped systems with non-
standard network components and the solvability of new problems, 
alongside the determination of pressure state in the system. Also, this 
paper shows a different approach to this problem by using the 
method of variational formulations for the development of an 
improved model based on the unconditional optimization procedures. 
This mo-del has the advantage that it uses a specialized optimization 
algorithm which minimizes directly an objective multivariable 
function without constraints, implemented in a computer program. 
The paper com-pares proposed models to the classic Hardy–Cross 
method, and shows the good performance of these models. Based on 
these models a study regarding implications of pipe network longtime 
operation on energy consumption is performed. 

 
Keywords— Water distribution, Looped networks, Hydraulic 

analysis, Node method, Classic and variational formulation, Compu-
tational models. 

I. INTRODUCTION 

ATER supply of large urban and industrial centers is 
made by distribution networks sized bigger and bigger, 

being necessary that, in order to ensure greater uniformity and 
stability of pressure lines with favorable economic and energy 
effects, to be achieved in a more complex structure (looped 
networks, several supply sources, booster pumps, inner poten-
tial elements etc.). Also, network extension design or redesign 
of networks for energy optimization of their operation lead to 
complicating the general scheme of the system and thus 
increase the difficulties of calculation it. 

Formulation of appropriate mathematical models, which 
allow the determination of discharge and pressure distribution 
in looped networks with nonstandard components is essential 
both for accurate and efficient resolution of design stage, and 
network analysis in different operating modes (normal or 
emergency regime). These cases occur especially in the design 
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of network expansions or the redesign of any networks for 
operational and energy optimization.  

There are three methods for analyzing flow and pressure 
distribution in looped water supply networks (the loop method, 
the node method, the element method) taking into conside-
ration hydraulic parameters chosen as unknown. For all these 
methods the nonlinear system of equations can be solved by 
iterative procedures: Hardy–Cross method [1], [4], [11], [14], 
Newton–Raphson method [8], [13], [21] and linear theory 
method [16], [18]. 

Urban water distribution network has a known configu-
ration, resulted of its design, and service pressures set accor-
ding to adopted construction types. In time, to an existing 
network, could be added consumers and potential elements 
that alter the original pressure distribution and, therefore is 
necessary an analysis to find solutions to ensure service pres-
sures in all consumer nodes. 

Using a sufficient number of simulations may be fixed 
piezometric head (heads) of supply nod (nodes) and other ne-
cessary measures for service pressure ensures and also energy 
optimization of network. For that purpose, is efficient use of 
nodal analysis, in which the unknowns are generally piezo-
metric heads. 

Although in the node method the equations number is 
greater than in the loop method, density of nonzero elements 
of the node equations matrix is less than that of the loop 
equations [24]. Nodal equations system is easier to be formu-
lated, forming a “rare” matrix of coefficients. 

In this paper is formulated a generalized classic model for 
the nodal analysis of complex looped systems with nonstan-
dard network components and the solvability of new problems, 
alongside the determination of pressure state in the system, on 
which base was elaborated a computer program. Also, this 
paper shows a different approach to this problem by using the 
method of variational formulations for the development of an 
improved model based on the unconditional optimization 
procedures. This model has the advantage that it uses a 
specialized optimization algorithm which minimizes directly 
an objective multivariable function without constraints, im-
plemented in a computer program. Based on these models a 
study regarding implications of pipe network longtime ope-
ration on energy consumption is performed.  

II. BASIS OF HYDRAULIC ANALYSIS 

In the case of a complex topology for a looped network, 
with reservoirs and pumps at the nodes, the total number of 
independent loops (closed–loops, possibly containing bosster 
pmps installed in the pipes, and pseudoloops) M is given by 
the following formula: 
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        RPNNTM +−=         (1) 

in which: T is the number of pipes in network; N – number of 
nodes; NRP – number of pressure generating facilities, equal to 
the number of nodes with know hydraulic grade. 

Each open–loop (pseudoloop) makes the connection bet-
ween a node with a known piezometric head (reservoir) or 
with a determined relation discharge – piezometric head 
(pump station), and another node with a known piezometric 
head or a determined relation discharge – piezometric head. 

In classical analysis of looped networks, fundamental equa-
tions of the computational model express: 
− discharge continuity at nodes: 

    ∑
≠
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−==+
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i
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in which: Qij is the discharge through pipe ij , with the sign (+) 
when entering node j and (–) when leaving it; qj – consumption 
discharge (demand) at node j with the sign (+) for node inflow 
and (–) for node outflow. 
– energy conservation in loops: 
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in which: hij is the head loss of the pipe ij ; εij – orientation of 
flow through the pipe, having the values (+1) or (–1) as the 
water flow sense is the same or opposite to the path sense of 
the loop m, and (0) value if ij∉m; fm – pressure head intro-
duced by the potential elements of the loop m, given by the 
relations: 
• simple closed–loops: 
           0=mf          (4) 

• closed–loops containing bosster pmps installed in the pipes: 
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• open–loops with pumps and/or reservoirs at nodes: 

         EIm ZZf −=         (6) 

where: ZI, ZE are piezometric heads at pressure devices at the 
entrance or exit from the loop; Hp,ij – the pumping head of the 
booster pump integrated on the pipe ij , for the discharge Qij, 
approximated by parabolic interpolation on the pump curve 
given by points: 

      CQBQAH ijijijp ++= 2
,       (7) 

the coefficients A, B, C can be determined from three points of 
operating data [22]. 

The head loss is given by the Darcy–Weisbach equation: 

        2
2 λ
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in which: g is the gravitational acceleration; λij – friction factor 
of pipe ij which can be calculated using the Colebrook–White 

formula or the explicit equation proposed in [3] for the tran-
sitory turbulence flow; Dij, Lij – diameter and the length of 
pipe ij; r  – exponent having the value 5.0. 

Equation (8) is difficult to use in the case of pipe networks 
and therefore it is convenient to write it in the following 
general form: 

          β
ijijij QRh =          (9) 

where Rij is the hydraulic resistance of pipe ij, having the 
succeeding expression: 

         r
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The variation of hydraulic parameters λ∗ and β has been 
determined for different pipe materials and water temperatures 
θ (Fig. 1), using a computer program. 

Specific consumption of energy for water distribution wsd, in 
kWh/m3, is obtained by referring the hydraulic power dissi-
pated in pipes to the sum of node discharges: 

 
Fig. 1 Variation diagram of hydraulic parameters λ∗ and β 
a−reinforced concret and cast iron; b−steel; c − PE-HD; d − PVC. 
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where '
jq is the outflow at the node j. 
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III.  PRINCIPLE OF NODE METHOD 

In case that is required analysis of pressure state in a distri-
bution network or network contains several potential elements 
and fittings is suitable the use of piezometric heads as un-
known, i.e. the nodal equations. 

Equation (9) can be written as follows: 

     
1β−

=Π+−= ijijijijjiij QQRZZh     (12) 

or: 

( ) β
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in which: Zi and Zj are the piezometric heads at nodes i and j;  
Πij – active pressure introduced by the intermediate pump on 
the pipe ij . 

Substituting equation (13) in equation (2) one gets a system 
of N–NRP equations at nodes with N–NRP unknown: 
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By solving linear algebric equation system (14) are deter-
mined piezometric heads in N–NRP nodes, because in other NRP 
nodes piezometric heads must be known (at least NRP = 1), and 
then, with equations (12) and (13) are calculated head losses 
and discharges in the pipes. The node method principle con-
sists in asumption a set of initial piezometric heads in nodes as 
knowns, which are corrected successively until residue of 
discharge in nodes fj becomes as small as possible. That is why 
this principle is named “discharges equalization principle” [1]. 
To achieve this objective, is suitable use of Newton–Raphson 
numerical algorithm, with some precautions to avoid singular 
points, taking into account ease of construction and imple-
mentation in a computer program of it. 

 

IV.  NODAL ANALYSIS MODEL IN THE CLASSIC FORMULATION 

Nodal analysis model calls the following basic data: net-
work topology, lengths, diameters and roughness of pipes, 
elevation heads and concentrated discharges for each node; 
active pressure on pipes; piezometric heads in one or several 
nodes of network (critical points, pressure generating faci-
lities). 

• Numerically solving of the nonlinear algebric equation 
system generated by equation (14) is performed with Newton–
Raphson algorithm in following main steps: 

 a) establishment of an initial approximation (k = 0) of 

piezometric heads ( )0Z  = { 1
0( )Z  2

0( )Z  ... NZ( )0 }, which are 

made in equation (14), admitting for relation (13) a linear 
form:  
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 b) determination of the correction vector ∆Z = {δZ1 δZ2 ... 
δZN} at some iteration (k+1) is made solving the following 
linear algebric equation system: 
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in which partial derivatives are obtained from (14).  
Because must be imposed NRP piezometric heads as refe-

rence, system (14) is solved for N–NRP unknown; 

c) change of the unknowns vector Z according to the 
equation: 

       )1()()1( θ ++ ∆+= kkk ZZZ       (17) 

in which weight factor θ ∈ (0, 1], and the correction vector 
from iteration (k +1) is the term ∆Z(k+1); 

d) steps b and c are performed iteratively until is achieved 
calculation accuracy ε established by condition: 

   ,),...,1(ε)(
RP

k
j NNjf −=≤−   (18) 

or the maximum number of iterations allowed. 
After the determination of piezometric heads Zj, could be 

easy calculated also discharges in pipes with relation (13), also 
other hydraulic parameters characteristic for network (avai-
lable pressure, velocities etc.) 

• Although node equations are easily generated, they are 
accompanied by some calculation difficulties such occurrence 
oscillations around the solution [13] and existence of singular 
points (Zi+Πij ≅  Zj) of the Jacobian, resulted from pipes with 
small head losses. 

To eliminate difficulties due to instability in singular points, 
proceed to a cubic spline–type regularization for function 
having form sgn(Zi–Zj+Πij)|Zi–Zj+Πij|

x, replacing functions 
fj(Zi–Zj) expressed by (14) with functions: 
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in which x = 1/β and ω is chosen conveniently (10–4...10–5). 
Partial derivatives are obtained from (19) as follows: 
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• After examination of the relation (14) is observed that 
fulfilment of discharge continuity at nodes could be accom-
plished admitting as variables not only piezometric heads Zj, 
but also hydraulic resistances Rij and concentrated discharges 
in nodes qj, conditioned that the sum of all those unknown to 
be N–NRP, so the use of the model could be extended to new 
problems solving. 

Notting the unknowns piezometric heads with 

{ }wZZZ ...1= , hydraulic resistances with { }prij RRR ...=  and 

concentrated discharges at nodes with { }nj qqq ...= , and star-

ting from initial vector { })0()0()0()0()0()0(
1

)0( ......... njprijw qqRRZZX =  

could be determined corrections for each iteration from linear 
system: 
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in which partial derivatives on Rij and qj have expressions: 
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Algebric equation system (22) has no solution for those 
combinations of unknown that lead to the existence of lines or 
columns in the matrix of system with all the terms null. There-
fore the choice of these combinations must respect some rules: 

– for each node must exist at least one of following un-
known: concentrated discharge at node, piezometric head for 
that node or any adjacent node, hydraulic resistance of any 
pipe that meet in the node; 

– a node that has concentrated discharge unknown shall be 
connected to at least one other node with known discharge;  

– a pipe with hydraulic resistance unknown must not have 
more than one unknown at the nodes that define it (either 
piezometric head or used discharge in the node).  

Using Newton–Raphson algorithm for solving system of 
linear equations (19) has following advantages: 

– Jacobian matrix contains at most N+2T non–zero elements 
[24], which gives the property to be "rare"; 

– in most cases this matrix is symmetric, irreducible and 
weakly dominant diagonal, which ensures the existence of in-
verse matrix; 

– moreover the matrix inverse is a positive matrix, property 
that gives qualities of numerical stability in solving linear alge-
bric system (22) for each iteration. 

Based on this nodal analysis model a computer program 
ANOREC [23] was developed in the Fortran programming 
language for IBM–PC compatible microsystems. 

V. NODAL ANALYSIS MODEL IN VARIATIONAL FORMULATION 

If instead of classical equations (14) are used relations (3), 
(13) and a performance function that express energy consum-
ption in network, nodal analysis of looped water distribution 
networks may be made with an unconditional optimization 
model. 

Thus, in variational formulation of nodal analysis of looped 
networks, determination of piezometric heads Zj is performed 
on the criterion of minimizing energy consumption in network 
per time unit (power), expressed analytical by objective func-
tion:  
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subject to constraints (3) of energy conservation in loops. 
After substituting the equation (13) in (25) and after the 

integrals have been calculated the constraints can be elimi-
nated and the problem can be simplified to the finding of the 
minimum of a function with N–NRP variables (Zi, Zj) without 
constraints: 
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Using the extremum requirements ∂Fe/∂Zj = 0 (j = 1,..., N–
NRP) one gets the system of node equations (14). 

Variational formulation reduces considerably the magnitude 
of the problem, reaching out from a system with N–NRP 
independent nonlinear equations with N–NRP unknowns and M 
constraints to only one function with N–NRP unknowns, 
without constraints. This formulation becomes advantageous 
using a specific algorithm for direct minimization of function 
(26), such as conjugate gradient algorithm recommended in the 
literature [17], [24], [28]. Permissible error in calculation ε is 
considered equal to 10–5. 

Having determined the piezometric head at nodes, the avai-
lable pressure head Hj at nodes is calculated using equation: 
        jjj ZTZH −=         (27) 

in which ZTj is the elevation head at node j. 
Then the discharges Qij through pipes are determined with 

functional equation (13) and also other hydraulic parameters of 
the network. 

Based on nodal analysis model in variational formulation a 
computer program ANOREV [23] was developed in Fortran 
programming language for IBM–PC compatible microsystems. 
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VI.  APPLICATIONS 

A. Determination of Discharge and Pressure Distribution in 
a Looped Network 

The looped distribution network with the topology from 
Figure 2 is considered. It is made of cast iron and is supplied 
with a discharge of 050 m3/s.  

 
Fig. 2 Scheme of analyzed distribution network 

The following data are known: pipe length Lij, in m, pipe 
diameter Dij, in m, elevation head ZTj, in m, industrial concen-
trated discharges in nodes qj, in m3/s, piezometric head at the 
“critical node” Z1 = 124 m, and the exponent β = 1.936. 

It is required to determine the pumping head, discharges and 
pressures distribution using the classic HARDY–CROSS proce-
dure and the two nodal analysis models (ANOREC, ANOREV) 
developed above. Results of the numerical solution performed 
by means of an IBM computer, referring to the hydraulic 
characteristics of the pipes and nodes are presented in Tables I 
and II. 

Table I shows the discharges and head losses through pipes 
established by using the three mentioned models of compu-
tation (the iterative tolerance imposed is 10–5). It can be seen 
that the results are very close. The difference between the 
discharges obtained with HARDY–CROSS and these given by 
ANOREC vary between 0.01 % (pipe 9–8) to 1.8 % (pipe 8–
11), and the difference between discharges obtained with 
HARDY–CROSS and ANOREV varies from 0 % (pipe 7–6) to 
2.8 % (pipe 9–8). Specific consumption of energy for water 
distribution is 0.00705 kWh/m3 for all three computational 
models used. 

Table II presents the values for the piezometric head Zj and 
the residual pressure head Hj at nodes determined by using the 
classic procedure and the two new models of computation. The 
piezometric head at the node 13 has the following values: 
131.435 m, 131.356 m and 131.363 m which give a residual 
pressure head of 29.435 m, 29.356 m and 29.363 m that is suf-
ficient for the supply water to the consumers. The divergence 
of piezometric line on network contour is 0.216 m for 
HARDY–CROSS, 0.001 m for ANOREV and only 0.0 m for 
ANOREC. 

B. Implication of Pipes Longtime Operation on Energy 
Consumption for Water Pumping 

Presented computational models, together with those existing 
in literature, mostly solved the problem of distribution net-
works analysis or design, computers removes the calculation 
difficulties created by complexity and different network ope-
rating assumptions, remaining that specialists focus their ef-
forts to establish accurate basic data, which conditiones the 
precision of results.  

 

Table I. The discharges and head losses trough pipes 

Computational model 
HARDY–CROSS ANOREC ANOREV 

Pipe 
i − j 

Q [m3/s] h [m] Q [m3/s] h [m] Q [m3/s] h [m]  
0 1 2 3 4 5 6 

2−1 0.01210 3.955 0.01219 3.754 0.01204 3.915 
3−2 0.03618 0.895 0.03616 0.915 0.03605 0.889 
4−3 0.06957 1.217 0.06902 1.251 0.06916 1.203 

13−4 0.11413 1.369 0.11358 1.437 0.11371 1.356 
6−5 0.03770 1.443 0.03762 1.428 0.03776 1.447 
7−6 0.08206 0.907 0.08174 0.938 0.08206 0.907 

8−7 0.13518 0.521 0.13496 0.559 0.13531 0.521 
9−8 0.17542 0.261 0.17544 0.288 0.18034 0.276 
13−9 0.25264 1.064 0.25318 1.172 0.25266 1.065 

11−10 0.01589 2.495 0.01614 2.469 0.01610 2.558 
12−11 0.04797 2.156 0.04798 2.206 0.04806 2.163 
13−12 0.09503 1.122 0.09504 1.192 0.09501 1.122 
5−1 0.01655 3.124 0.01647 2.972 0.01661 3.147 
7−2 0.02618 1.578 0.02628 1.584 0.02625 1.587 
9−3 0.02549 1.461 0.02603 1.516 0.02579 1.495 
6−10 0.01673 3.120 0.01649 2.291 0.01661 3.075 
8−11 0.01329 1.951 0.01353 1.938 0.01327 1.945 
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Table II . The piezometric head and the available pressure head at nodes 

Computational model 
HARDY–CROSS ANOREC ANOREV 

Node 
j 

Zj [m] Hj [m] Zj [m] Hj [m] Zj [m] Hj [m] 
0 1 2 3 4 5 6 

1 124.000 24.000 124.000 24.000 124.000 24.000 
2 127.955 27.455 127.754 27.254 127.915 27.415 
3 128.850 27.850 128.6681 27.668 128.804 27.804 
4 130.066 29.066 129.920 28.920 130.007 29.007 
5 127.124 26.624 126.972 26.472 127.147 26.647 
6 128.566 28.566 128.399 28.399 128.594 28.594 
7 129.533 28.533 129.338 28.338 129.502 28.502 
8 130.053 28.553 129.896 28.396 130.023 28.523 
9 130.371 28.371 130.184 28.184 130.299 28.299 
10 125.446 25.446 125.490 25.490 125.520 25.520 
11 128.157 27.157 127.958 26.958 128.078 27.078 
12 130.313 28.813 130.165 28.665 130.241 28.741 
13 131.435 29.435 131.356 29.356 131.363 29.363 

 
Special attention should be paid to sufficiently accurate 

assessment of pipe roughness influencing the calculation of 
head losses, because they have a significant influence on 
energy consumption and over optimal network solution in a 
water supply system. 

In distribution network design are considered new, clean 
and properly mounted pipes and their absolute roughness is 
adopted according to the pipe material. 

Many measurements made by different researchers [7], [15] 
show an increase in pipe roughness due to corrosion, deposi-
tions of material and aging which has the consequence of their 
reduced capacity of transport up to 50%. To achieve discharge 
established in design calculation must be increased the hydra-
ulic slope and thus proportional pumping energy. 

Also, residues of iron and minerals deposited in pipes and 
their corrosion products lead to changes in water quality from 
network. 

For water pipes, taking into account properties of the water 
in connection with the formation of deposits in pipes, 
Kamerstein [15] propose division into five groups of natural 
waters, which correspond to the same number of average 
growth rates of roughness, each of them determining the 
reduction percentage of pipe transport capacity. 

Reduction of the transported flow by pipe with its operating 
duration can be expressed by the equation:  

      ( )0
0

)0( τ01,01
m

ijij nQQ −=       (28) 

in which: )0(
ijQ is calculated transport capacity of pipe; τ – 

operating duration, in years; n0, m0 – addiction parameters of 
physic–chemical properties of water, having the most likely 
mean values given in Table III. 

Table III. Values of parameters ω, n0, m0 depending on physic–chemical properties of water 

Group Water properties ω  
[mm/year] 

n0 m0 

0 1 2 3 4 

I 
Poorly mineralized water, non–corrosive. 
Water containing little organic matter and dissolved 
iron. 

0.025   2.3 0.50 

II 
Poorly mineralized water, corrosive. 
Water containing dissolved organic matter and iron less 
than 3 mg/dm3. 

0.070   2.3 0.50 

III 
Corrosive water containing little amount of chlorides 
and sulfates 
Water with iron content of over 32 mg/dm3. 

0.200   6.4 0.50  

IV 

Corrosive water with high content of chlorides and 
sulfates (over 500 ... 700 mg/dm3). 
Untreated water with high content of organic sub-
stances. 

0.510 11.6 0.40 

V 
Highly mineralized water (fixed mineral residue over 
2000 mg/dm3) and corrosive, with high carbonate 
hardness and permanent hardness reduced. 

0.800 18.0 0.35 

 

Absolute roughness variation, depending on the number of 
operating years, could be expressed with equation obtained 
based on determinations by Kamerstein: 

          τω0 +∆=∆         (29) 

in which: ∆0 is initial value of absolute roughness; ω – average 
growth rates of roughness with values from Table III.  
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Because growth rates of roughness in time depend on 
several factors, laboratory carrying out of real rough is very 
difficult, being necessary direct determinations on networks in 
operation for precise appreciation of pipe absolute roughness.  

In the absence of reliable data from tests under realistic con-
ditions, can be performed calculations with values given by 
equation (29). Based on this equation has been determined 

variation of roughness coefficient λ∗ and discharge exponent 
β in function of ω for pipes manufactured by different mate-
rials (reinforced concrete, cast iron, steel, PVC and PE–HD) 
with operating durations of 10, 25, 50 years, for average water 
temperature of 15 oC. The results are represented in the dia-
grams from Figures 3. 

 
Fig. 3 Variation of hydraulic parameters λ∗ and β for pipes 

a−reinforced concret and cast iron; b−steel; c − PVC and PE-HD. 
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The main phenomena occurred in operation, leading to in-
creased pipe roughness are deposits of material (clogging) and 
corrosion or erosion of pipe material. 

Very low or zero velocity of the water for longer periods of 
time facilitate clogging and deposits consolidation in the pre-
sence of carbonate. In addition of mechanical clogging occurs 
and biological clogging.  

The main causes leading to the formation of deposits in pi-
pes are: 

− suspended substances in water, for untreated industrial 
water networks;  

− temporary hardness of water; 
− corrosive action of transported water, that lead to iron 

oxide deposits formation; 
− biological action due to ferruginous bacteria and some 

protozoa. 
Both corrosion and clogging of pipes by increasing roug-

hness increase energy losses, with negative effects on pressure 
and flow distribution in network. In this case, result a prefe-
rential water supply of some points over others. 

Defining pressure distribution stability in network as ratio 
between the minimum pressure (at the maximum consumption 
in critical point) and maximum pressure (for zero con-
sumption):  

         
max

minσ
H

H
H =          (30) 

and taking into account the similitude relations of centrifugal 
pumps, is defined and discharge distribution stability: 

       
max

min

max

minσ
H

H

Q

Q
Q ==        (31) 

For illustration of the above mentioned is considered the 
looped distribution network in Figure 2. For this has been 
calculated using the computer program ANOREV the available 
pressure head at nodes after 10, 25 and 50 years of operation 
with two growth rates of roughness, and also pressure and 
discharge stability. The numerical results are presented in 
Table IV. 

 

Table IV. Available pressure head at nodes, Hj [m] 

ω [mm/year] 
0.00 0.025 0.200 

τ [years] τ [years] 
Node 

j 
Project 

10 25 50 10 25 50 
0 1 2 3 4 5 6 7 
1 24.000 22.859 22.371 20.453 18.202 13.364 7.284 
2 27.455 26.502 26.295 25.485 24.548 22.587 20.213 
3 27.850 26.528 26.374 25.776 25.087 23.651 21.920 
4 29.066 28.855 28.770 28.443 28.069 27.293 26.364 
5 26.624 26.021 25.754 24.719 23.525 21.024 17.986 
6 28.566 28.283 28.122 27.498 26.784 25.312 23.568 
7 28.533 28.224 28.231 27.831 27.375 26.443 25.355 
8 28.553 28.415 28.338 28.043 27.709 27.034 26.248 
9 28.371 28.213 28.151 27.912 27.643 27.099 26.467 
10 25.446 24.731 24.353 22.870 21.133 17.416 12.773 
11 27.157 26.645 26.438 25.631 24.695 22.724 20.315 
12 28.813 28.644 28.576 28.312 28.008 27.379 26.824 
13 29.435 29.435 29.435 29.435 29.435 29.435 29.435 
σH 0.815 0.777 0.760 0.695 0.618 0.454 0.247 

σQ 0.903 0.881 0.872 0.834 0.786 0.674 0.497 
wsd 

[kWh/m3] 
0.0071 0.0082 0.0086 0.0103 0.0123 0.0165 0.0216 

Pumping energy 
increase [%] 

3.9 5.5 12.0 19.7 36.1 56.7 

 
After operating time of 10 years, with a growth rate of 

roughness of 0.025 mm/year, is obtained a relative little 
growth of hydraulic slope, from 4.1 % (pipe 9–8) to 17.3% 
(pipe 2–1), but after a operating time of 50 years and a growth 
rate of roughness of 0.2 mm/year, hydraulic slopes increase 
very much, reaching 175% (pipe 9–8) until 259% (pipe 5–1). 

Pressure distribution stability decreases with 4.7...69.7%, 
and discharge distribution stability worsens with 2.4...45%. 

In order to maintain transport capacity of pipes, in case of 
analyzed network, is needed increased pumping head and thus 
pumping electricity consumption from 3.9% (ω = 0.025 
mm/year, τ = 10 years) to 56.7% (ω = 0.2 mm/year, τ = 50 

years), and accordingly increase the specific energy for water 
distribution in network from 15.6% to 206%. 

Effect of pipe roughness increase in time on pressure dis-
tribution consists in the more pronounced increase in hydraulic 
slopes than those expected from design, higher the network 
operating time is, with the following implications: 

− significant reduction of discharge for consumption points, 
leading to difficulties in water use and often to necessity of 
over equiping of pump stations and also to wrong design of 
extensions or rehabilitations of networks where the pipes have 
already operating duration; 

Issue 3, Volume 5, 2011 459

INTERNATIONAL JOURNAL of ENERGY and ENVIRONMENT



 

 

− increase of pressure in network for achievment of same 
transported flow, having as consequences a greater energy 
consumption and disturb of optimal calculation; 

− generation of an additional water loss in network, which 
could be as greater as the number of damages increase, to the 
end of material lifetime.  

If for new pipes, the absolute roughness could be considered 
unchanged for a period of 10…12 years, after this operating 
period it is absolute necessary to consider change of roughness 
stage for inner pipe wall.  

VI.  CONCLUSIONS 

The three analysis methods of looped networks (loop me-
thod, nodal method, element method) are theoretically equi-
valent. The mathematical model for all is based on conser-
vation equations of discharges in nodes and energy in loops 
and on functional equation head loss – discharge in component 
elements of the network. 

In case in which unknowns of a network are nodal piezo-
metric heads, concentrated consumption in nodes and/or 
hydraulic resistances the nodal method is preferred as hydra-
ulic analysis mean. 

By the possibility to introduce as unknown consumptions at 
nodes and hydraulic resistances of some pipes, nodal analysis 
model ANOREC offers greater elasticity compared to loop ana-
lysis and extend its use for new problems. Such problems 
could be: study of existing network for establishing the possi-
bilities of connection of new consumers or identifying hydra-
ulic resistance, determination of pressure stage in network in 
order of ensure service pressure. 

The mathematical model expressed by the objective func-
tions (26) constitutes a new way of hydraulic analysis of com-
plex looped networks based on unconditioned optimization 
techniques. This model replaces the solving of the nonlinear 
system of equations (2), (3), (9) with the direct minimization 
of a multivariable function, without constraints that express the 
energy consumption across the network.  

The computer program ANOREV includes this particular 
aspect and contain the conjugate gradient algorithm, which 
give it efficiency especially in operational analysis of complex 
distribution networks. This new method is computationally 
more efficient and consequently helps the designer to get the 
best design of water distribution systems with fewer efforts. 
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