
 

 

  

Abstract— To realize sustainable real-world fishery management, 

this paper attempts to increase the predictability the fishery needs 

under uncertainties of model and measurements. Practically, a data 

assimilation method of the extended Kalman filter is employed to 

estimate parameters of the bioeconomic model integrated with a 

computable general equilibrium model. Different from previous 

studies of a single bioeconomic model, the integrated model extends 

the state variable of fish catches to describe the trading of fish products 

as well as the production process of fishing. This enables the 

observation model to deal with not only fish catches but also the value 

of production. Assimilating time series data on Japanese clam fishery 

into the integrated model, the selection problem of observation 

variables is investigated to increase predictability. As a result, this 

study demonstrates that the identification of model parameters by the 

extended Kalman filter can be stably performed. An analysis of 

predictability shows that the most suitable observation model consists 

of both the fish catches and value of production.  

 

Keywords— Bioeconomic model, Data assimilation, Extended 

Kalman filter, Parameter estimation, Sustainable fishery management.  

I. INTRODUCTION 

HE difficulty of performing sustainable fishery 

management is a major concern in world resource 

management. One of the main obstacles is believed to be the 

depletion of aquatic resources, which is caused by deterioration 

in ocean water quality, the existence of predators and 

pathogenic organisms, and the improper management of fishing 

activity for economic incentives (e.g., overexploitation).  

    However, the estimation of fish stock and catches is the basis 

of fishery management. To precisely estimate the stock and 

catches is considerably difficult because of the uncertainty of 

measurements, modeling, and policy implications. Clark [1] 

suggested that many fisheries have failed to prevent overfishing 

because of a lack of economic incentives, even when fish stock 

management was considered to apply sound science. Worm et 

al. [2] indicated that human-dominated marine ecosystems have 

accelerated the loss of species populations with largely 

unknown consequences. The Food and Agriculture 

Organization of the UN (FAO) [3] has found that 

overexploitation and resource depletion in world fisheries are 
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increasing; in 2008, the share of fisheries considered 

overexploited was 30 %, and 80 % of world fisheries lacked 

abundant aquatic resources. 

    In such a situation, the deterministic bioeconomic model has 

been well developed toward sustainable fishery management 

(Gordon [4], Schaefer [5]). For example, an early empirical 

study predicted the population of Pacific Halibut and California 

sardine by a single species model (Schaefer [6]). Flaaten [7] 

developed a deterministic bioeconomic model of multi-species 

to analyze maximum sustainable yields of capelin and cod in the 

Barents Sea.  

    However, with the number of fishery collapses in the world 

expected to increase, fishery management requires a more 

robust model that accounts for uncertainties. Roughgarden and 

Smith [8] illustrated that the ecologically recommended stock 

size was much larger than the economic optimal stock size 

under the uncertainty of a marine ecosystem. Therefore, 

ignoring the uncertainty could lead to excessive exploitation. 

Given difficult situation for obtaining sufficient ecological 

measurements due to the uncertainty of ecosystems (e.g., 

multi-species predator–prey relationships), we must rationally 

determine poorly known parameters of a bioeconomic model in 

some way. 

    In addition, a long-term fishery management model should 

consider the uncertainty created by economic fluctuations in 

consumer preferences, life quality, and the global market as well 

as ecological fluctuations responsible for fish growth rates.  

    To address the issues mentioned above, more suitable is the 

employment of a stochastic model, which is an approach to deal 

with the uncertainty of bioeconomics. For example, there is a 

data assimilation method in which measurements (observation 

values) with randomness are incorporated into the equation of a 

dynamic model with certain state variables. Then, the state 

variables are estimated through a filtering process. Fishery 

economics increasingly applies the following data assimilations 

approaches; a variational assimilation (Lowson et al. [9] and 

Ussif et al. [10]) and a sequential assimilation including the 

extended Kalman filter (Berck and Grace [11], Meyer and 

Millar [12], Peterman et al. [13], Dorner et al. [14], and 

Kvamsdal and Sandal. [15]). In addition, there is a circuit 

analysis that uses the block-diagram on a state-space system 

(Keller [16]). 

     However, all of these studies are limited to a single industry 

problem with the observed variable of fish catches or fish stock. 

In these cases, because of a lack of price variables, it cannot be 

understood how the fisheries are influenced by other industry 

and consumer demands under global economic fluctuations that 

Use of data assimilation in an integrated model 

of the economics of marine ecosystem 

Shoichi Kiyama 

T

Issue 2, Volume 7, 2013 55

INTERNATIONAL JOURNAL of ENERGY and ENVIRONMENT



 

 

then contribute to their collapse. Therefore, a consideration of 

both multi-industries and multi-regions becomes increasingly 

important for a more accurate prediction of real-world fisheries 

management. 

    In the context of a society subjected to fishery collapse, this 

study attempted to estimate a bioeconomic model parameter 

with the aid of the extended Kalman filter (Kalman [17] and 

Jazwinski [18]), a sequential assimilation method. This has the 

potential to predict real-world fisheries catches and production 

value under the uncertain environment of an aquatic ecosystem 

and economic market and helps to explain the mechanism of 

fishery collapse. For this reason, this study set out to introduce 

the value of production into observation equations. A 

bioeconomic model endogenously deals with two factors likely 

to cause fishery collapse: feeding damage by predators and the 

abandonment of fishery management. The bioeconomic model 

is incorporated into a dynamic computable general equilibrium 

(CGE) model (i.e., a two-country model [19]). 

    This paper provides details of the model development and 

interpretation of results based on a previous work (Kiyama [20]). 

This paper is organized as follows. Section 2 outlines the 

integration of a two-country model and a bioeconomic model. 

Then, to estimate model parameters by the iterated extended 

Kalman filter, necessary procedures are described. Noting a 

case of fishery collapse, section 3 demonstrates the parameter 

estimation and examines a proper definition of the observation 

equation. The predictability of models estimated by the 

extended Kalman filter is discussed.  

II. MATERIALS AND METHODS 

A. Two-country Model 

    A two-country model was assumed with two regions (k = 1, 2), 

two industries of a certain fishery (j = 1), and the rest of the 

industry (j = 2). Following is the formulation of the fishery 

economics used in the estimation of the model parameters. Fig. 

1 represents a CGE model structure relevant to the regional 

fishery industry. We considered two processes in the fishery 

industry; the inputs of necessary factors for fish catches (the 

harvest process) and the distribution of caught fishes (the 

trading process).  

     The input process for the fish catches is described as follows. 

In a region k, a fishery inputs a resource stock XM k, labor E k,1, 

and capital Kk,1, and then produces the goods of a 

resource–labor–capital bundle Y k,1. In addition, inputs of Y k,1 

and intermediate goods XX k, j provide the domestic output (i.e., 

the fish catches Z k,1
 (1)

). 

( ) ( )
tktktk
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k

k

k
k XMKE
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where ayk,1 is the input coefficient of Y k,1, q k,1 is the catchability 

coefficient representing a technology level of the production 

efficiency in fishing. The parameter σk,1 is the Cobb–Douglas 

power of labor (Schaefer [5]). The technology level was 

assumed to be time-dependent.  
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Fig. 1 Model structure of fishery production. 

 

 

where q0k,1 is the initial technology level and kqk,1 is a parameter 

of the rate of change in the technology level. Equation (2) 

describes the cumulative effect of shifts in the production 

function (1) over time (Clark [21], Anderson [22] and 

Hannesson [23]). For example, a greater qk,1 describes that the 

industry has a technology to increase production with a certain 

amount of inputs. The industry improves or degenerates the 

technology for production when the sign of the parameter kqk,1 

is a negative or positive in (2). 

     Next, the following trading in fish catches was considered. 

The fish caught in a region are transformed to domestic goods 

Dk,1 and exported goods EIk,1 and EOk,1 to maximize the profit 

from trading. As a result, the following relation between the 

domestic goods and catches Z k,1
 (2)

 is given (see Appendix A). 

1,1
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where φk,1 is the coefficient of the elasticity of transformation, 

δdk,1 denotes the share parameter of domestic goods, θ k,1 

represents a scale parameter, pd is the domestic price, and pz is 

the producer’s fish price. The scale parameter is defined as a 

time function. 

( ) 1,

1,01,
kkf

kk tt
−= ϑϑ  1≥t        (4) 

where θ0k,1 is the initial value of θ k,1 and kfk,1 is a parameter. 

Equation (4) denotes the influence of trading on regional fish 

catches over time. However, the CGE model requires that the 

catches variables, Z k,1
 (1)

 and Z k,1
 (2)

 , must be equal. 
( ) ( )

1,
2

1,
1

1, kkk ZZZ ≡=         (5)  

B. Fisheries Bioeconomics 

    The conventional bioeconomic model described by the 

following dynamics of resource stock was used. 

        ( ) ( )( )kkkkk XMZXMFdtdXM
1

1,−=  

( ) ( )kkkk XMHXMGX −+       (6) 
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where Fk is the natural growth rate of a fish, GXk is the 

incremental rate of fish stocks by a seedling release, and Hk 

denotes the reduction rate of fish stocks by feeding damage.  

      The multi-species bioeconomic model has been developed 

by Flaaten [7], Clark [21], Hannesson [24], Hsu et al. [25], and 

Suwandechochai et al. [26]. On the basis of the previous model, 

this study utilizes a predator–prey model with the 

Michaelis–Menten-type function. In addition, this study 

considered a situation of no data about the predator’s biology 

because of a lack of predator data in many cases. To simplify the 

predator stock dynamics, the accumulated predator weight was 

assumed to be equivalent to the weight of the predator mixed 

with the released seedling. The corresponding formulation is 

written as follows. 
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where b  and c are parameters to describe the natural 

growth rates of a species, Ke is the carrying capacity (Gordon 

[4]), Ak is a fishing area, pmk is the percentage of predators 

mixed in with the seedlings, SEk is the amount of seedlings 

released, Vxs is the capture rate, Kxs is the half saturation 

constant, and SSx is the weight of the predators. 

C. State-space System 

    For a nonlinear stochastic system, the following state-space 

system was considered.  

( ) ( ) ttt ttdtd ωGxfx += ,
  

               (11) 

( ) ttt t νννν+= ,xhy                        (12) 

where xt is a system state vector, t is a time, f denotes a vector of 

system’s dynamics without error sources, G: ∂f /∂x, ωωωω ~ N(0, Rt) 

is a white Gaussian vector with zero mean and covariance 

matrix R, y is an observation vector, h is a vector of 

measurement functions without error sources, and νννν ~ N(0, Qt) 

is a white Gaussian vector with zero mean and covariance 

matrix Q. 

     In the bioeconomic model, (11) was associated with the 

dynamics of fish resource stock in (6). A state vector consisting 

of regional fish stocks, a predator stock, and seven model 

parameters was defined as follows. 

 ( ,,,,,, 2111121 kqkqKSSXMXM e=x  

)T
mxs kfkfpV 21111 ,,,       (13) 

    This study assumed that a predator-prey relation was 

established in a region (k = 1). In this case, components of the 

system’s dynamics vector f are written as follows. 

   iiiii GXHZFFf +−−= * , 2,1=i , i.e., 

( )111111111 ,,,,,, kfpVkqKSSXMff mxse= , 

( )2121222 ,,, kfkqKXMff e= , 

( )1313 mpfSSf ==  , 

0=if ,  10,4=i          (14) 

     Different from the conventional model, it was considered 

that the variable Zk,1
(1)

 in (6) was replaced by the following 

extended  catches Z
*
k,1 with a weighting factor α. 

( ) 1,
)2(

1,
)1(
1,

*
1, 1 kkkk ZZZZ =−+= αα , 10 ≤≤ α       (15) 

Thus, the parameter kf is introduced in the system on contact 

with Zk,1
(2)

, and kf can be estimated. 

    In addition, this study considered that a vector of observation 

equation consisted of regional values of production, PV
(obs)

 and 

regional catches Z
(obs)

; 
( ) ( ) ( ) ( )( )Tobsobsobsobs ZZPVPV 1,21,11,21,1 ,,,=y . 

The regional catches were assumed to be the extended catch 

variables Z
*

k,1. Therefore, the measurement function vector h 

can be written as follows. 

( ) ( )( )Tzz ZZZZpZZp
*

1,2
*
1,1

)1(
1,2

)2(
1,21,2

)1(
1,1

)2(
1,11,1

,,,=h    (16) 

where the fish price can be calculated from (3). 

D. Iterative Extended Kalman Filter 

    This study employed the iterated extended Kalman filter 

(IEKF) to identify bioeconomic parameters. The following 

calculation algorithm was used for the estimation of 

bioeconomic parameters (Jazwinski [18]). 

 

 1. Consider the last filtered state estimate in a time step k,  

  ( )kkx̂ . 

 2. Predict the system’s state at the next time step k+1, 

      ( ) ( ) ( )( ) dttktkkkk
k

k∫
++=+ 1

,ˆˆ1ˆ xfxx . 

 3. Compute the predicted error covariance, 

  ( ) ( )( ) ( )kkkkkkkk PxP ˆ;,11 +=+ ΦΦΦΦ  

        ( )( ) ( )1ˆ;,1 +++× kkkkkT QxΦΦΦΦ , 

  ( )( ) ( )( )kkkkkk xGx
⌢

∆+=+ ΙΙΙΙΦΦΦΦ ˆ;,1 ,  

  ∆ : Time interval. 

 4. Store ( )kk 1ˆ +x  as an iterator 1η and begin the iteration. 

 5. Update the iterator iη by the gain filter K. 

  
( ) ( )ii kkk ηηηηηηηη ;11ˆ1 +++=+ Kx

 
        ( ) ( ) ( )[ ]ii kkk ηηηηηηηη ;11,1 +−+−+× Mhy , 

  ( ) ( ) ( )i
T

i kkkk ηηηηηηηη ;11;1 ++=+ MPK  

    ( ) ( ) ( )[ i
T

i kkkk ηηηηηηηη ;11;1 +++× MPM  

    ( )] 1
1

−++ kR , 

  ( ) ( ) ηηηηηηηηηηηη ∂+∂=+ 1,;1 kk ii hM  

 6. The iteration terminates with no significant difference 

   between consecutive iterates.  Otherwise, return to step 

   5.  The last iterator becomes the system estimate at the  

  next time  step k+1, ( ) 111ˆ +=++ ikk ηηηηx . 

 7. Compute the new error covariance. 

  ( ) ( ) ( )[ ]ll kkkk ηηηηηηηη ;1;111 ++−=++ MKIP  

    ( ) ( ) ( )[ ]Tll kkkk ηηηηηηηη ;1;11 ++−+× MKIP  

     ( ) ( ) ( )T
ll kkk ηηηηηηηη ;11;1 ++++ KRK  

Issue 2, Volume 7, 2013 57

INTERNATIONAL JOURNAL of ENERGY and ENVIRONMENT



 

 

     The details of the matrix used in this study are described in 

Appendix B. The IEKF was used for the bioeconomic model 

part after solving the general equilibrium equations of the 

two-country model. Then, the parameters and stocks updated by 

the IKEF scheme were used to solve the aquatic resource stocks 

and general equilibrium equations in the subsequent step. This 

calculation procedure continued to the final time step. The 

resultant parameters were used to investigate the model 

predictability.  

E. Data 

Two regions were defined as Maizuru City in Kyoto 

Prefecture, Japan (k = 1) and the rest of Kyoto Prefecture (k = 2). 

Annual time series data of the 1980–2006 regional clam catches 

and their values of production were assimilated into the stock 

dynamics of the aquatic species model containing trading 

parameters of the two-country model. The data is provided by 

the Kyoto Prefectural Agriculture, Forestry and Fisheries 

Technology Center [27], [28].  

According to the results, the recent clam catches in Maizuru 

City have been very small and there is no prospect to recover the 

clam catches. This situation was found after the clam fishery 

released clam seedlings in Maizuru Bay. The seedlings may be a 

cause of the clam fishery depression. Therefore, the model 

considered the increase of clam stocks by seedlings in (8) and 

the decrease of clam stocks by feeding damage in (9). In the rest 

of the city in Kyoto Prefecture, however, the model excluded 

these effects on stock change because the clam catches stayed at 

a low level with a certain fluctuation band but showed signs of 

recovery. 

F. Initial Condition 

   The data assimilation requires the initial values of model 

parameters. The initial values of parameters and initial clam 

stocks are determined by minimizing the square of the sum of 

the errors between the estimated and observed catches. Other 

parameters of the two-country model are determined to satisfy 

the initial equilibrium condition shown by the 1980 regional 

social accounting matrix. All values of the parameters are 

shown in reference [19]. 

    To build a suitable system for the parameter estimation, three 

combinations of measurements were considered: (Case 1) 

regional catches and regional values of production; (Case 2) 

regional values of production; and (Case 3) regional catches. 

The corresponding measurement function h is as follows. 

    Case 1: ( ) ( )( )Tzz ZZZZpZZp *
1,2

*
1,1

)1(
1,2

)2(
1,21,2

)1(
1,1

)2(
1,11,1

,,,=h ,  

         5.0=α . 

    Case 2: ( ) ( )( )Tzz ZZpZZp
)1(
1,2

)2(
1,21,2

)1(
1,1

)2(
1,11,1

,=h , 1=α . 

    Case 3: 
( ) ( )( )TZZ 1

1,2
1
1,1 ,=h , 1=α . 

Case 1 estimates the parameter kf. Case 3 corresponds to the 

data assimilation of the traditional bioeconomic model. On the 

basis of the error in the statistics, a regional measurement error 

was given as the average error for the analytical period (Table 1). 

Table 2 shows the initial measurements of y and their 

covariance matrix Q, that are calculated on the basis of the 

measurement errors listed in Table 1. 

     The initial state estimate error was assumed to be 10% at a 

maximum. The initial value of the state estimate and the 

covariance are listed in Table 3. Case 1 adds to consider two 

state estimates kf11 and kf21. The covariance matrix of system 

noise R was assumed to be one hundredth of the matrix P. 

 

 
Table 1. Definition of observation variables. 

Case 1 Case 2 Case 3

Observation

variables

(uncertainity %)

Z 11(3), Z 21(5),

PV 11(3), PV 21(5)
PV 11(3), PV 21(5) Z 11(3), Z 21(5)

 
 

 
Table 2. Initial values of observation and covariance. 

Observation Unit y Q

PV 11 Million JPN 43.83 1.728

PV 21 Million JPN 30.17 2.276

Z 11 t 199 35.6

Z 21 t 137 46.9  
 

 
Table 3. Initial value of state estimate and covariance. 

State variable Unit x (1|1) P (1|1)

XM 1 t 771.6 5953.7

XM 2 t 15432 23815

SS 1 t 0 0.4402

Ke kt/km
2 19.67 0.24

Vxs y
-1 40.46 16.37

p m 1 - 0.107 0.000115

kq 11 - 0.3 0.0009

kq 21 - 0.3 0.0009

kf 11 - -0.02 0.000004

kf 21 - -0.02 0.000004  
 

III. RESULTS 

A. Parameter estimation  

 Fig. 2 shows estimated values of the parameters for the whole 

time period. Case 1 adds

 

95% confidence intervals (CI). The 

estimation of the two parameters, Vxs and pm1, begins in the year 

after the clam seedlings are released; that is, in 1996.

     It is observed that the parameter estimation is influenced by 

the definition of the observation equation. For example, the 

estimated carrying capacity of the clam Ke varies from 19.3 

kt/km
2
 to 21.7 kt/km

2
. The previous field survey [27] shows that 

a proper habitat density is 4.0–24.0 kt/km
2
. From the 

comparison showing that the estimated carrying capacity is 

close to the upper habitat density, the model estimation is 

reasonable. For all state estimates, the average ratio of the final 

covariance value to the initial covariance value is 0.24 in Case 1, 

0.38 in Case 2, and 0.55 in Case 3. A smaller ratio represents the 

estimation with less uncertainty. As a result, Case 1 may be the 

most probable estimation. However, it is found that all case 

parameters converge at certain values from 2000. Therefore, it  
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can be said that all cases can estimate the parameters over the 

whole time period and predictions of all cases are available. 

    Figs. 3(a) and (b) illustrate the regional clam stock trend 

during the parameter identification. Case 1 shows that the 

estimated resource stock changes with a peak magnitude in 

1991–1993. However, in the subsequent period, the estimated 

value stabilizes with a considerably small variance. Other cases 

show a smaller peak magnitude of the clam stock and a stable 

transition. In Fig. 3(c), Case 1 shows that the value of the  
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Fig. 3 Aquatic species stock during parameter identification 

 

 

variance of the predator stock is approximately constant 

because the observation model excludes the predator stock. In 

fact, this study has no observation data on the predator's stock. 

Therefore, improving the error of this is not covered in this 

study. However, in all cases, the final fish stocks of the clam and 

the predator approaches a certain value. 

B. Predictability 

 To investigate predictability of the IEKF, the prediction of all 

cases was performed with the parameter values estimated over 

the whole time period. Fig. 4 compares the actual data 

(observations) with the predicted regional clam catches Z11 and 

Z21 and the value of production PV11and PV21 

     However, the base line was defined to investigate the effect 

of the data assimilation. The base line denotes the prediction 

with the model parameter without the data assimilation. Thus, 

the values of parameters were equal to the initial values of 

parameters before the data assimilation, x(1|1) in Table 1. 

     For the predicted clam catches Z11 and Z21, Case 3 (the 

observation equation with the catches) performs the best 

prediction to minimize the prediction error. The base line 

considerably overestimates the catches. In addition, Cases 1 and 

2 overestimate the catches. However, both the cases draw the 

catches trend close to the actual catches. In particular, Case 1 

significantly reduces the prediction error, considering the clam 

catches as an observation variable. Therefore, the use of 

parameter values estimated by the extended Kalman filter has an 
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advantage in model predictability. 

     For the predicted value of production PV11 and PV21, Cases 1 

and 2 show comparatively good predictions. In particular, Case 

2 minimizes the prediction error of the value of production by 

considering the value of production as an observation variable. 

On the other hand, Case 3 significantly underestimates the value 

of production due to the exclusion of the value of production 

from the observation equation.  

    From the discussion, it can be said that when an observation 

variable takes into account either the clam catches or the value 

of production, the predictability of another item, i.e., the value 

of production or the catches, worsens.  However, the 

management of fishery resources should seek to precisely grasp 

the ecological and economic quantities. Therefore, it can be said 

that Case 1 provides good prediction. 
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Fig. 4 Predicted catches and value of production. 

  

 

    Finally, a suitable setting of the observation equation for 

increasing the predictability is investigated by a comparison of 

the prediction errors of the three cases. Thus, we considered a 

total prediction error of the three cases, and then divided it by a 

total prediction error of the base line (the case without the data 

assimilation). The resultant ratio represents a change in the 

prediction error associated with the data assimilation. It is clear 

that Case “x” increases predictability when the ratio of that case 

is smaller than 1. 

    Figs. 5 and 6 are comparison charts of the change ratio of the 

prediction error for the clam catches and value of production, 

respectively. 

    In Case 1, all ratios have a smaller value than 1 and have an 

intermediate value between the ratio in Case 2 and the ratio in 

Case 3. On the other hand, in Case 2, the ratio for the catches Z11 

exceeds 1. In Case 3, the ratios for the value of production PV11 

and PV21 are greater than 1. Therefore, it is confirmed that Case 

1 provides the best way to reduce any prediction error.  
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Fig. 5 Change ratio of prediction errors of clam catches. 
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Fig. 6 Change ratio of prediction errors of the value of production. 

 

 

IV. DISCUSSION 

This study analyzes two relationships affecting the 

implementation of real-world sustainable fishery management: 

the estimation of bioeconomic parameters under uncertainty and 

the association between marine ecology and the global market. 

Thus, this study demonstrates that data assimilation provides 

more reliable predictions when bioeconomic parameters are 

identified with observation variables of the fish catch and its 

price. This is realized in a procedure wherein a bioeconomic 

model of multi-species is incorporated into a general 

equilibrium model with multi-regions and multi-industries. 

Increasing predictability is a crucial for a sustainable fishery 

management; however, the deterministic bioeconomic model 

has failed to provide sufficiently accurate forecasting. Few 

studies are available on the data assimilation processes, which 

consider a fish price for the parameter identification. 

For studies of sequential data assimilation, Berck and Grace 
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[11] applied the extended Kalman filter to identify the 

parameters of the Pacific Halibut fishery model. Expanding on 

these results, Kvamsdal and Sandal denoted that the extended 

Kalman filter may be inconvenient when a state-space system 

has strong nonlinearity and discovered the applicability of the 

ensemble Kalman filter [15]. In addition, the Kalman filter 

random-walk model is useful to estimate the parameters of the 

Ricker stock-recruitment model (Peterman et al. [13], Dorner et 

al. [14]). However, this study proves that parameter 

identification by the extended Kalman filter increases 

predictability of the fish catches and price when a bioeconomic 

model is incorporated into a general equilibrium model and the 

corresponding state-space model adds a fish catch variable 

associated with a fish price. 

    At least one factor to watch out for is the price of the fishery 

product because the fish price highly influences the incentives 

of fishermen to make a living by fishing activity. A decline in 

price may result in withdrawal from fishing. A resultant 

abandonment of appropriate resource management may 

accelerate the depletion of aquatic resources. Thus, the 

development and collapse in fisheries is greatly influenced by 

pricing in the global market. In such a situation, Flaaten [29] 

developed a multi-species bioeconomic model and theoretically 

demonstrated that fishing in lower valued fish leads to loss. 

Radulescu et al. [30] noted the importance of minimizing 

fisheries’ financial risk and developed the Portfolio theory for 

compatible fishery management. Their study adopted the 

Portfolio theory to consider the uncertainty of multi-species 

ecosystems. However, those studies treated sustainable fishery 

management as a single industry problem and ignored the 

uncertainty of the global market when determining the model 

parameters.  

    Other studies do consider a broader economy market with 

multi-industries and multi-regions for fishery management. 

Heen [31] investigated the employment and income impact on 

the regional economy of multi-species harvesting. Kiyama [19] 

investigated causes of the fishery depression using a 

two-country model. These studies help to understand the 

influence of multi-industries on fisheries development. 

However, these studies use a deterministic model without 

considering the uncertainty of ecosystems and economy over 

time. Therefore, we do not gain a sufficient understanding of 

how the uncertainty of bioeconomics acts on the failure of 

real-world fishery management.  

    In conclusion, it is increasingly important to consider fishery 

management in the framework of a dynamic general equilibrium 

condition with a stochastic process. Thus, this study covers 

important market aspects that previous studies exclude; the 

interaction between fisheries activity and the global market 

under uncertainty, and resultant fish harvests, prices, and labor 

inputs. A methodology of bioeconomic parameter identification 

provided by this study makes it possible to perform a real causal 

analysis of fishery collapse and policy design to rebuild the 

fishery.  

APPENDIX 

A. Trading and fish catches 

 Consider a profit maximization in trading situation in which 

industry firms obtain production goods from home region Z and 

supply to home region D and other regions EI and EO. This 

problem can be written as follows. 

( )ik
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where EI: exports into the region defined by the two-country 

model, EO: exports into rest of the world, p
ei
 and p

eo
: export 

prices, and p
d
: home price. Applying the Armington assumption, 

the output transformation is defined as the constant elasticity of 

the transformation function with the scale parameterϑ and the 

export share parameters eiδ , eoδ , and dδ . 

    The corresponding Lagrange function has a Lagrange 

multiplier λ, i.e., ( )λ ,,,, ,,,, ikikikik ZDEIEOL . A stationary 

point is given when partial derivatives of the Lagrange function 

are zero ( 0, =∂∂ ikEOL , 0, =∂∂ ikEIL , 0, =∂∂ ikDL , 

0, =∂∂ ikZL , and 0=∂∂ λL ). Equation (3) is given, 

eliminating the Lagrange multiplier λ from equations of 

0, =∂∂ ikDL  and 0, =∂∂ ikZL . 

B. Matrix used by the IEKF  

Consider numerical calculations by the iterative extended 

Kalman filter (IEKF). For time step t, the vector f has the 

following components. 
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     The matrix G with a dimension of 1010 ×  consists of partial 

derivatives of the function f by state variable x as follows. 
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and other components are 0=∂∂ ji xf . 

Consider that the equilibrium condition has the relation 

of ( ) ( )2
1

1
1 kk ZZ =  from (15). This permits the replacement of the 

catch ( )1
1kZ  in (5) by ( )2

1kZ . In Case 1, a resultant observation 

vector consists of the following components.  

  ( )( ) ( )1
11

1
11111 ZZph z=  

( )

( ){ }
( ) 11

1111

11

11

1
1

1111
11

511

91111

11
1

11

φ
σσ

φ

φ

θδ 







= −

−

xKE
ay

xq

xd

pD d (B15) 

  ( )( ) ( )1
21

1
21212 ZZph z=  

( )

( ){ }
( ) 21

2121

21

21

2
1

2121
21

621

102121

21
1

21

φ
σσ

φ

φ

θδ 







= −

−

xKE
ay

xq

xd

pD d (B16) 

( ) ( ) ( )2
11

1
113 1 ZZh αα −+=                 (B17) 

( ) ( ) ( )2
21

1
214 1 ZZh αα −+=             (B18) 

The matrix M has a dimension of 104 ×  and its components 

are given as a partial derivative of the observation function 

vector h as follows. 
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and other elements are 0=∂∂ ji xh . 
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