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Abstract– The tomato model-space has been
developed and it is called a big leaf-big fruit model
because no distinction is made between leaf or
fruit number. this model is formed by the mass
balances: the non-structural biomass (nutrients)
and the structural biomass of fruits and leaves. An
optimal control for the carbon dioxide enrichment
in a tomato greenhouse gives benefits, because it is
possible get a saving for energy consumption and
get more tomato production. The optimal control
theory is applied to the integrated system crop-
greenhouse, which is based in four variables state:
the consumption of nutrients, the fruits and leaves
growth and the carbon dioxide concentration, also
it is necessary select a cost functional. This work
contributes with the control law deduced from
optimal control theory and it reduces the cost
for CO2 enrichment. The parameters used for the
simulations are taken from the Puebla region, in
order to bring the system closer to reality for it
application. Finally, the simulations was made in
order to know the variables state behaviour, and
the control law deduced is compared with a step
input.

keywords– Greenhouse, carbon dioxide, structu-
ral biomass of leaves, structural biomass of fruit,
optimal control, functional, state space.

1. INTRODUCTION

In the last two decades researchers have done many
efforts to develop advanced climate control systems
in greenhouses [1,2,3,9,12]. They have proposed dif-
ferent optimal control methods although it has not
been applied in the practice because this methods
are difficult for the application [12].

The growth in a crop is based in different variables,
all of them are very important, but in this research
the variable that has our interest is the carbon
dioxide. The carbon dioxide enrichment is practised
in the crops of greenhouse in order to increase the
yield and the benefit. There are studies that show
the CO2 enrichment improves the net photosynthe-
sis in the plants, it makes the total weight, height,
and the number of leaves and branches increase [9].

Other research has demonstrated the CO2 enrich-
ment makes physic-chemical changes in the crop,
like color and firmness [8].

Optimization problems with two or more objectives
are very common in engineering and many other
disciplines, the process of optimizing a collection of
objectives function is called multi-objective optimi-
zation and it is difficult because de large number of
conditions and variables involved in the system [4],
in this case specific the optimization problem has
two objectives, first, decrease the energy consum-
ption for carbon dioxide enrichment and second,
increase the tomato production. Process optimiza-
tion is designated for the best answer of all that are
available in the system design. The search process
can be accomplished in two ways: deterministic and
stochastic search algorithms [6]. Optimal strategies
for CO2 enrichment can be deduced experimen-
tally or analytically. Experimentation is not able
to produce a valid result for all condition set. The
analysis as a tool gives us a mathematical idea for
an optimal strategy, because it considers the all
variables set involved in the system, this method
is based on ventilation, photosynthesis, dry mat-
ter and production rate models. The method used
for calculate the optimal enrichment level is valid
for different models which describe the production
rate, dry matter, photosynthesis and ventilation.

There are develops about optimal strategies for
the CO2 enrichment [12], which are supported in
reduction of expenses for energy consumption, re-
duction of CO2 consumption and increase in the
production, which results in a higher net gain for
the crop. Figure (1) shows three different types of
control for the crop, the first one is a traditional
method of the farmer, the second one and the last
one are optimal controllers, note the two last have a
better impact for energy save, production and total
gain.

One of the main objectives is to contribute with the
optimal control problem, and its implementation
in real time. Having control over CO2 we have
an extra advantage talking about production. The
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tomato crop has been chosen because it is one of
the most important crop in our country and is the
second farm product consumed on the world. To
achieve the objective, we part from the tomato and
greenhouse mathematical set model considering
the variable of plant and fruit dry weight, the
availability of nutrients and the quantity of carbon
dioxide.

Figure 1. Energy and CO2 consumption, total pro-
duction and gain with different control strate-
gies.

2. GENERAL FORMULATION OF THE
OPTIMAL CONTROL PROBLEM

Optimal control problems appeared as essential
tools in modern control theory, several authors have
proposed different basic mathematical formulations
of fixed time problems [5]. The optimal control of
any system has to be based on three concepts:
the dynamic model of the system, a functional
and the system restrictions. In matrix notation the
equation of state is represented as follow:

ẋ = f (x(t), u(t), t) . (1)

Where x(t) is the states vector, u(t) is the control
signal and t is the time. A criterion is required to
help to evaluate the performance of the system,
normally, the functional is defined by:

J = φ
(
x(tf ), tf

)
+

tf∫
t0

L (x(t), u(t), t) dt, (2)

where t0 and tf are the initial and final time, φ
and L are scalar functions, tf can be fixed or free.
Starting at the initial state x(t0) = x0 and applying
the control signal u(t) for t ∈ [t0, tf ], it makes that
system follows some trajectory of states, then the
cost functional assigns a unique real number for
each trajectory of the system. The function (2) is
called form o Bolza [5], it has the final conditions
for all state variables and the integral part which
has the control input.

The fundamental problem of optimal control is
determinate an admissible control u∗ which makes
that equation (1) follows one admissible trajectory
x∗ that minimize the value of the functional showed

in the equation (2). Then, u∗ is named optimal
control and x∗ is an optimal trajectory.

Necessary conditions for a solution.

Restrictions (1) are added to the functional (2)
with a Lagrange multipliers vector time variant
Ψ(t), the functional is rewritten as follow:

J = φ(x(tf )) +

tf∫
t0

[L(x(t), u(t), t)

−ΨT f(x(t), u(t), t)− ẋ]dt,

(3)

Then, the Hamiltonian scalar function is defined,
which depends on the variable state vector, the
control signal and the new vector Ψ(t)

H(x(t), u(t),Ψ(t), t) =

= L(x(t), u(t), t) + Ψ(t)f(x(t), u(t), t) (4)

An infinitesimal variation in u(t) is considerate and
it is denominated like δu(t), this variation produces
a change in the functional. If x(t0) is specified
then δx(t0) also is specified. This variation can be
calculated as follow:

δJ = ΨT (t0)δx(t0) +
tf∫
t0

[∂H∂u δu]dt

We choose the multiplier Ψ(t), from this, the auxi-
liary system equations is formed:

Ψ̇T = −∂H
∂x

= −∂L
∂x
−ΨT ∂f

∂x
(5)

And the final conditions can be obtained as follow:

ΨT (tf ) =
∂φ

∂x
(tf ) (6)

For a stationary solution it is required that the
functional with an arbitrary variation must be
equal to zero, δJ = 0. This is true when:

∂H

∂u
=
∂L

∂u
+ ΨT ∂f

∂u
= 0 (7)

Note from the Hamiltonian function (7) it is possi-
ble get the control form. The control form depends
on the variable Ψ4 in each time instant. Then to
find the vector function of control u(t) that produce
a stationary value of the functional we must solve
the following differential equation system:{

ẋ(t) = f (x(t), u(t), t) ,

Ψ̇(t) = −
∂HT

∂x
,

(8)

The boundary conditions for this differential equa-
tions are separated, it means, some of them are
defined in t = t0 and the others in t = tf . This
is a problem with boundary values of two points.
Note the equations that describe the states x(t)
and the auxiliary states ψ(t) in the equation (8)
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are coupled, for this reason u(t) depends on ψ(t)
through the stationary condition and the auxiliary
states depend on x(t) and u(t). And the first system
in (8) has the initial conditions of he system while
the last system in (8) has the final condition of the
system.

3. MATHEMATICAL MODEL OF THE CROP

The model in space states of the tomato crop
has three principles states (Van Straten et al.,
2011)[13]:

Nonstructural Biomass (Nutrients).
Leaves Structural Biomass.
Fruits Structural Biomass.

The basic mass balances are as follow.

Assimilates:

dWB

dt
= P−GV −θV GV −GF−θFGF−RB,V −RB,F ,

(9)
Leaves:

dWV

dt
= GV −RV,V −HL, (10)

Fruits:
dWF

dt
= GF −RF,F −HF , (11)

where:

- Production of assimilates by photosynthesis (P ).
- Conversion of assimilates to vegetative biomass
by growth (GV ).
- Use of assimilates as energy to drive vegetative
growth (θVGV ).
- Conversion of assimilates to generative (fruit)
biomass by growth (GF ).
- Use of assimilates as energy to drive generative
(fruit) growth (θFGF ).
- Drain of assimilates for maintenance of vegetative
parts (RB,V ).
- Drain of assimilates for maintenance of generative
parts (RB,F ). - Use of biomass for maintenance
there is lack of assimilates (RV,V ).
- Leaf picking rate (HL).
- Use of biomass for maintenance when there is a
lack of assimilates (RF,F ).
- Fruit harvest rate (HF ).

All biomass and rates are expressed in dry weight
per unit greenhouse projected area.

3.1 Biomass balance of nutrients

Nutrients are being produced by photosynthesis.
The gross canopy photosynthesis rate in dry matter
per unit area is P. Nutrients are converted to leaf
and fruits, this is known as growth. Leaf and fruits
have a demand for nutrients, which will be honored
if there are sufficient nutrients available. We denote
WB like total nutrients in the plant, it is expressed
like dry weight per area unit, the biomass balance
equation of nutrients is the follow:

dWB

dt
= P − h{·}

(
(1 + θV )

z
GdemL + (1 + θF )GdemF

)
−

−h{·}
(
RL

z
+RF

)
.

(12)

The biomass balance equation of nutrients (12)
can take two values depending on the nutrients
abundance h{·} where the first expression is taken
when h{·} = 1 (abundance of nutrients) and
the second one is taken when h{·} = 0 (lack of
nutrients).

dWB

dt
=


P −

(1 + θV )

z
GdemL − (1 + θF )GdemF −

−
RL

z
−RF ,

P,

(13)

where

RF .- Respiration needs of fruits
θV .- Additional amount of assimilates needs for one
unit of structural vegetative parts.
Gdem
L .- Unit area growth demand of leaves.

θF .- Additional amount of assimilates needs for one
unit of structural fruit parts.
Gdem
F .- Unit area growth demand of fruit.

z.- Total vegetative parts.
h{·}.- Nutrients abundance.

3.2 Biomass balance of leaves

The leaf growth is equal to the amount of nutrients
converted to structural leaf biomass in the plant
and it is given by h{·}GdemL . The model does not
incorporate an extra state for stem and roots, but
the factor z assumes that each increment in leaf will
be accompanied by an increment in stem and roots.
If there are no sufficient assimilates (nutrients),
growth stops, normally the assimilates are used for
the maintenance, but in lack of nutrients, mainte-
nance in the model goes at the expense of structural
parts (leaves and fruit). The biomass balance of
leaves is expressed like:

dWL

dt
= h{·}GdemL − (1− h{·})RL −HL, (14)

Depending on the abundance of nutrients h{·}, the
biomass leaf balance equation (14) can take two
values:

dWL

dt
=

{
GdemL −HL, si h{·} = 1,

−RL −HL, si h{·} = 0.
(15)

where

HL is the leaf picking rate.

The term GdemL depends principally on the pivotal
temperature, cultivation temperature level and the
reference temperature.

3.3 Biomass balance of fruit

Similarly to the biomass of leaf case, the growth of
fruits in the plant from the nutrients is given by
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h{·}GdemF . The term GdemF depends principally on
the pivotal temperature, cultivation temperature
level and the reference temperature.

dWF

dt
= h{·}GdemF − (1− h{·})RF −HF , (16)

Finally, the equation (16) of biomass balance of
fruits can take two different values depending on
nutrient abundance h{·} where HF is the fruit
harvest rate.

dWF

dt
=

{
GdemF −HF , si h{·} = 1,

−RF −HF , si h{·} = 0.
(17)

4. GREENHOUSE MATHEMATICAL MODEL

4.1 Balance of CO2 energy in the greenhouse

The balance of carbon dioxide energy within green-
house is given by the equation [13]:

Vg

Ag

dCCO2

dt
= −ηCO2/dwP + ηCO2/dwR−

−ϕventCO2,g o
+ uCO2 ,

(18)

Then each term is described.

∗ Carbon dioxide taken from the greenhouse air
for plant photosynthesis:

ηCO2/dwP,

∗ Carbon dioxide returned to the greenhouse air
for plant respiration:

ηCO2/dwR,

The term
Vg

Ag
is the reason of the volume of green-

house per unit of area.
R is the total respiration plant per unit of time.

∗ Lost of carbon dioxide mass by ventilation:

ϕventCO2,g o
= uV (CCO2

− CCO2 o),

where: uV ventilation flow rate per unit of area.
CCO2

(kgm−3), is the carbon dioxide concentration
within greenhouse.
CCO2,o (kgm−3), is the carbon dioxide concentra-
tion on the outside greenhouse.

∗ Carbon dioxide supply:

uCO2
= uV pCO2

ϕmaxCO2,in g,

where: uV pCO2
, is the opening supply valve.

ϕmaxCO2,in g

(
kg[CO2]m−2[gh]s−1

)
, is the maximum

flow rate of carbon dioxide.

In this greenhouse model, the position of the carbon
dioxide supply valve is the control input. For this
reason, the valve relates directly to the actuator
that is present on a physic way in the greenhouse.

5. INTEGRATED MODEL
CROP-GREENHOUSE

From previous description of greenhouse and crop
models is possible get a complete system formed
by three crop equations and greenhouse equation.
This new equation system describes the complete
system behaviour and it is important to note that
all of the equations are related principally by the
P element and the state variables of the crop. It is
important to say that the three equations related
to the crop taken with the assumption that there is
an abundance of nutrients (h{·} = 1). The general
system is as follows.

ẆL(t) = GdemL −HL,

ẆF (t) = GdemF −HF ,

ẆB(t) = P− 1+θv
z GdemL +(1+θF )GdemF − RL

z +RF ,
˙3CCO2

(t) = −ηCO2/dwP++ηCO2/dwR−ϕventCOg−0
+

uCO2,

6. SYNTHESIS OF OPTIMAL CONTROL

We consider the system formed by the state equa-
tions (13, 15, 17, 18), the first three of them are
relative to the crop and the last one is relative
to the greenhouse. We suppose there is nutrients
abundance for the three equations relative to the
crop. The terms for the equation systems (19) and
(22) have been substituted using the equation table
of the mathematical model (table 1) and the values
have been substituted using the table of physical
parameters (table 2).


ẆL(t) = 2,2996× 10−6 WL(t),

ẆF (t) = 4,3925× 10−6 WF (t),

ẆB(t) = P (t)− 5,39× 10−6WL(t)− 5,92× 10−6WF (t),
˙3CCO2 (t) = 1,0266(R(t)− P (t)) + 0,155× 10−10u

vp
CO2

,

(19)

P and R are as show following:

P (t) =
3,7192× 10−11 W 2,511

L (t)

1,6353× 10−9 + 4,0439× 10−5 W 2,511
L (t)

,

R(t) = 1,5942×10−6WF (t)+0,4856×10−6WL(t)+1,668×10−7.

It is important to note that the terms P(t) and
R(t) have involved two of the three state variables
of the crop and they are time depending functions,
so the entire system is connected and it can be
solved simultaneously.

We consider the following functional, which has the
same form shown above (3).

J =
1

2
[W 2

L(tf) +W 2
F (tf) +W 2

B(tf) + C2
CO2

(tf)+

+

tf∫
t0

[W 2
L(t) +W 2

F (t)+

+W 2
B(t) + C2

CO2
(t) + (u

vp
CO2

)2(t)]dt]

(20)
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Table 1. Greenhouse and crop mathematical model equations

Term Description

P = Pmax
(

IPAR

IPAR+KI

)(
CCO2

CCO2
+KC

)
fm{·} Production of assimilates by photosynthesis.

R = h{·}
(
θV
z
GdemL + θFG

dem
F

)
+ RL

z
+RF Total amount breathed plant per unit of time.

IPAR = fPAR/IτrIo The PAR light intensity at the crop level.

fm{·} =
(WL/pm)m

1+(WL/pm)m
Maturity factor.

GdemL = fL/F (T )krefGF fTG(T )fD{·}WL Growth leaves demand.

GdemF = krefGF fTG(T )fD{·}WF Growth fruits demand.

fL/F (T ) = fref
L/F

e
v2(T−Tref

L/F
)

Temperature-dependent ratio.

fTG(T ) = Q
T−Tref

G
/10

10R Temperature dependent with a Q10G relation.

fTR(T ) = Q
T−Tref

R
10R Function of temperature with a Q10G relation.

fD{·} =
cf1−cf2D

cf1−cf2
Correction factor for the fruit growth rate.

RL = krefRL fTR(T )WL Respiration demand of the leaves.

RF = krefRF fTR(T )WF Respiration demand of the fruits.

HL = kHLWL Leaf picking rate.

HF = kHFWF Harvest rate.

KHL = CyLKH Coefficient of harvest.

KHF = CyFKH Coefficient of harvest.

KH = Cd1 + Cd2ln(T/Cd3)− Cd3− Cd4eD Harvest rate.

uV =

(
pV 1u

Aplsd
V

1+pV 2u
Aplsd
V

+ pV 3 + pV 4u
Apwsd

V

)
v + pV 5 Ventilation flow rate.

The first term of performance index involves the
three first variables at the end time, they are
related to the final production and the nutrients,
and the integral contains the control input in order
to avoid the risk for big control inputs. The idea
is minimize the functional (20), related with the
equations system (19).

6.1 Method solution description

The Hamiltonian scalar function is obtained con-
sidering the relation (4) with the Lagrange multi-
pliers and the functional (20).

H(x,u,Ψ, t)) =

=
1

2
[W 2

L(t) +W 2
F (t) +W 2

B(t) + C2
CO2

(t) + (u
vp
CO2

)2(t)]+

+ 2,2996× 10−6WL(t)Ψ1(t) + 4,3925× 10−6WF (t)Ψ2(t)+

+
[
P − 5,39× 10−6WL(t)− 5,92× 10−6WF (t)

]
Ψ3(t)+

+
1

3

[
1,0266(R− P ) + 0,1554× 10−10u

vp
CO2

]
Ψ4(t). (21)

The system of auxiliary variables is formed using
the expression (5), it has the following form:

Ψ̇1 = WL + 2,2996× 10−6 Ψ1 +
∂P

∂WL
Ψ3−

−5,39× 10−6Ψ3 +
1

3

∂(R− P )

∂WL
Ψ4(1,0266)

Ψ̇2 = WF + 4,3925× 10−6 Ψ2−

−5,92× 10−6 Ψ3 +
1

3

∂R

∂WF
Ψ4(1,0266),

Ψ̇3 = WB ,

Ψ̇4 = CCO2 ,

(22)

The stationary condition give us the following
control form, which was obtained from equation (7)
and depends on fourth appended state:

u
vp
CO2

= −1

3
0,1554× 10−10Ψ4(t). (23)

It is necessary to solve the equation systems (19)
and (22), in this way we can know the Ψ4 value
and finally we will get the control form. The system
(19) has initial condition and the system (22) has
final conditions. The systems are coupled, because
the control form (23) has been substituted. To
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Table 2. Physic Parameters.

Variable Value Description

z 0,6081 Fraction leaf of total vegetative mass
θv 0,23 Surplus assimilate requirement factor per unit fruit increment.
θF 0,2 Surplus assimilate requirement factor per unit vegetative increment.
ph 2,7× 10−3 Parameter of switching function, [m2 kg−1]
pm 1,8× 10−2 Parameter in maturity factor, [kg m−2]
m 2,511 Parameter in maturity factor
pmax 2,2× 10−6 Maximum gross canopy photosynthesis rate, [kg m−2 s−1]
K1 577 Monod constant for PAR, [W m−2]
Kc 0.211 Monod constant for CO2, [kg m−3]
fPAR/I 0.475 PAR fraction of global radiation

τr 0.7 Transmittance of the roof

krefGF 3,8× 10−6 Reference fruit growth rate coefficient, [s−1]

T refGF 20 Reference temperature, [0C]
Q10G 1.6 Temperature function parameter growth

fref
L/F

1.38 Reference leaf-fruit partitioning factor

v2 -0.168 Parámetro de partición de fruta-hoja, [K−1]

T ref
L/F

19 Fruit-leaf partitioning reference temperature, [0C]

krefRL 2,9× 10−7 Maintenance respiration coefficient leaf, [s−1]
Q10R 2 Temperature function parameter respiration

T refR 25 Reference temperature for respiration, [0C]

krefRF 1,2× 10−7 Maintenance respiration coefficient leaf, [s−1]
η 0,7 Absorbed in relation to the total energy of the net radiation heat received.
Cd1 2,13x10−7 Parameter in development rate function, s−1

Cd2 2,47x10−7 Parameter in development rate function, s−1

Cd4 7,50x10−11 Parameter in development rate function, s−1

CyL 1,636 Parameter in harvest function (fruit)
CyF 0,4805 Parameter in harvest function (leaf)
CCO2,0 1,6637

CCO2/dw
1,4667 Ratio CO2 per unit dry weight, Kg[CO2]Kg−1[dw]

CCO2,ing
2,10x−6 Ratio CO2 per unit dry weight, Kg[CO2]m−2[gh]s−1

Vg

Ag
3 Volume per unit greenhouse area

pv1 7,17x10−5 Parameter.
pv2 0,0156 Parameter.
pv3 2,71x10−5 Parameter.
pv4 6,32x10−5 Parameter.
pv5 7,40x10−5 Parameter.

solve the complete system like a system with initial
conditions, the auxiliary equations are considerate
in reverse time, then the behaviour of the auxiliary
variables is returned to the direct time. When we
solve the appended equation system in reverse time
the system becomes in a system with initial condi-
tions. It is important to note that the equation (23)
depends on fourth state but this state depends on
the other three states. Using MatLab tools we solve
the equation systems (19) and (22), then we can get
the state Ψ4 in reverse time and finally return it to
the direct time.

7. SIMULATION AND RESULTS

The MatLab tools were used to elaborate the pro-
gram that solve the differential equations system.
The simulation period is for two weeks. The simu-
lations was made using a step function like control
input and then the simulation was made using
the control law deduced in this paper in order to
compare the results of a simple control against the
optimal control. Below all the results obtained are
described.

7.1 Analysis with a step input.

It is important to say that the above control was
performed using synthesized constant parameters,
the first simulation is about constant temperature
control and solar radiation. Further on the simula-
tions are presented taking into account these varia-
bles parameters. A step control signal is introduced
to the system (19), the behaviour is described in the
figure 2. The graphic shows how nutrients decrease
with the time, and fruits and leaves grow with the
time. The Figure 3 shows the CO2 behaviour.

Dry matter of fruits grows more than dry matter of
leaves, which is very acceptable, also the behaviour
of nutrients is acceptable because the crop uses
the nutrients while it is growing. However, it is
important to note the carbon dioxide is very high,
the CO2 concentration increase until 9000 ppm, it
means so much consumption energy which means
the cost for CO2 enrichment will be expensive for
the farmer.
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Figure 2. Behaviour of fruits, nutrients and leaves
dry matter with an step input.

Figure 3. Carbon dioxide behaviour with an step
input.

7.2 Analysis of the synthesized control.

Simulation considering the control law determinate
in this paper is presented bellow, also, for this
results the temperature and solar radiation are
constant parameters.
The figure 4 shows like dry matter of fruits, leaves
and nutrients is a similar case where the ramp was
simulated for the system. It is important to note
the fact that in the simulation with the control law
obtained in this research, the carbon dioxide was
significantly reduced, note that CO2 concentration
decreases to zero and then increases until 400-450
ppm, this is very acceptable because he amount
of CO2 required for the crop is about 400. And it
could give benefits to the farmers (Figure 5).

The figure 6 shows the behaviour of the auxiliary
variable Ψ4, note the variable was solve in reverse
time and in the figure 6 the variable is represented
in real time. The behaviour is important because
the control expression depends on it for each time
instant.

Figure 4. Fruits, leaves and nutrients dry matter
behaviour with control law deduced. u

vp
CO2

.

Figure 5. Carbon dioxide behaviour with control
law deduced. u

vp
CO2

.

Figure 6. Behaviour of auxiliary variable Ψ4.

In agreement with expression (23), the behaviour
in each instant time of the appended state variable
Ψ4(t) must be multiplied by the value (−1

30,1554×
10−10), this gives us the control behaviour.
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7.3 Analysis with temperature and solar radiation
variables.

In previous cases, the system has constant para-
meters which made it easier to solve the complete
system, but in real life some of these parameters
are not constant, as they are natural effects such as
temperature and solar radiation. For the following
simulations we consider these parameters as varia-
bles functions over time, the synthesized control
was the same, but now we have new simulation
results. Figures 7 and 8 shows the temperature and
solar radiation inside the greenhouse.

Figure 7. Variable temperature in greenhouse.

Figure 8. Variable solar radiation in greenhouse.

7.4 Analysis with a step input.

Also for the next simulation we use a different con-
trol input, in this case the input was an unit step.
Now, we can get a new result for the simulation
with variable parameters that allow us to be closest
of the reality. The Figure 9 shows the behaviour of
three crop state variables. Note the result is similar
to the case where there was constant parameters.

The Figure 10 shows the carbon dioxide behaviour,
note the CO2 concentration increase until 9000
ppm, this is very high and it means so much

Figure 9. Behaviour of fruits, leaves and nutrients
dry matter with an input step and variables
temperature and radiation.

consumption energy just like the case where the
temperature and radiation were constant.

Figure 10. Behaviour of CO2 concentration with
variables temperature and radiation and a step
like input control.

7.5 Analysis with the synthesized control.

For the next simulation, we get results using the
variable parameters, but now we simulated the
control law deduced in this paper. Figure 11 shows
the results. Note the behaviour of three crop state
variables are similar to the previous cases.

In this case, the carbon dioxide behaviour is diffe-
rent, in Figure 12 we can note that CO2 concentra-
tion decreases just like the case were temperature
and radiation were not variables.

8. CONCLUSION

The tomato and greenhouse model was analysed
and we obtained the synthesized control law that
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Figure 11. Behaviour of fruits, leaves and nutrients
dry matter with the control deduced and va-
riables temperature and radiation.

Figure 12. Behaviour of CO2 concentration with
variables temperature and radiation and the
control input deduced.

give benefits to the farmers, because it is possible
to having the same growth for the dry matter of
fruits, but the consumption of carbon dioxide is
reduced significantly. Two important results was
obtained, the first one was we checked the control
law is correct because increase the production and
reduce the energy consumption, the second result
is we knew the behaviour of the system with real
parameters and we noted the control law has the
same results. On the other hand, the next short-
term work is the design and construction of the
electronic system which will control the carbon
dioxide and its application in a greenhouse.
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