
 

 

  
Abstract— Planners, designers, scientists, government agencies, 

and concerned citizens are interested in reliable and predictable 
methods to reconstruct soil resources disturbed by surface mining.  
In our study, we developed a predictive model to assess neo-soil 
reconstruction for Chippewa County, Wisconsin, USA, an area being 
mined for silica sand in glass production.  We were developing a 
model to predict plant growth based upon soil characteristics for 
corn (Zea mays L.), corn silage, oats (Avena sativa L. (1753)), alfalfa 
hay (Medicago sativa L.), red clover hay (Trifolium pretense L.), 
Kentucky bluegrass (Poa pratensis L.), soybeans (Glycine max 
(L.)Merr.), northern white cedar (Thuja occidentalis L.), lilac 
(Syringa vulgaris L.), American cranberry bush (Viburnum trilobum 
Marshall), amur maple (Acer ginnala Maxim.), gray dogwood 
(Cornus recemosa Lam.), Siberian peashrub (Caragana arborescens 
Lam.), white spruce (Picea glauca (Moench) Voss), eastern white 
pine (Pinus strobus L.), red maple (Acer rubrum L.), red pine (Pinus 
resinosa Sol. Ex Aiton), jack pine (Pinus banksianna Lamb.), 
nannyberry viburnum (Vibrunum lentago L.), and white ash 
(Fraxinus americana L.), all plants and crops commonly grown in 
the county.   Our results indicated that potentially four dimensions of 
plant growth could produce a predictive model, explaining 87.24% 
of the variance; however, only the first dimensions produced a viable 
model explaining 41.08% of the variance.  This first dimension 
predicted plant growth across all plant types, containing all positive 
eigenvector coefficients.  The regression model employed the 
variables: soil reaction, percent organic matter, percent slope, 
hydraulic conductivity, topographic position, percent rock fragments, 
and percent clay, each with a p-value less than 0.05.  The equation 
explained 77.55% of the variance in the first dimension and was 
significant at a value less than p<0.0001).  This equation can be 
relied upon to predict vegetation plant growth correctly 9999 times 
in 10,000 attempts.  Such equations reduce the need for costly 
reference areas and the need to grow vegetation on the reclaimed 
land to assess soil reconstruction which can take up to 10 years to 
determine.   

We repeated a similar study for three agricultural counties in 
Georgia, USA: Bleckley, Dodge, and Telfair counties.  Mining in 
this area is primarily comprised of local sand and gravel mines.  A 
prediction model was developed based upon plant growth for twelve 
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vegetation types: corn (Zea mays L.), soybeans (Glycine max 
(L.)Merr.), wheat (Triticum aestivum L.), cotton (Gossypium 
hirsutum L.), tobacco (Nicotiana tabacum L.), peanuts (Arachis 
hypogaea L.), Bermuda grass (Cynodon dactylon (L.) Pers.), slash 
pine (Pinus elliottii Engelm.), longleaf pine (Pinus palustris Mill.), 
loblolly pine (Pinus taeda) L., sweetgum (Liguidamabar styraciflua 
L.) and tulip tree (Liriodendron tulipifera L.). An equation derived 
from the first dimension explained almost 80% of the variance with 
ten regressors plus an intercept as significant (p<0.05).  For this first 
dimension, sweetgum did not covary with the other plant materials in 
the study. 
 

Keywords— design, disturbed land, environmental stewardship, 
landscape planning, landscape architecture, landscape engineering.  

I. INTRODUCTION 
INERAL resources are an important resource for 
national economic development. The search for these 
resources has led to the disturbance of forests, 

farmlands, pasture land and the soil resources residing upon 
the landscape.  Several natural resources can be disturbed to 
obtain another natural resource.  The proliferation of surface 
disturbed lands and the resulting environmental impacts have 
generated an increased interest in reclaiming these disturbed 
lands and restoring these environments into useful landscapes. 

Portions of the research contained in this article were first 
presented in a conference held in Kuala Lumpur, Malaysia, 
April 2015 at the 13th International Conference on 
Environment, Ecosystems, and Development (EED) [1].  This 
article represents an extended version of this presentation with 
additional investigations concerning the topic. 

According to the mine reclamation legislation in USA and 
China, ecological rehabilitation that can help to restore the 
land productivity is viewed as a very important way to reclaim 
mined lands [2, 3, 4]. The successful establishment of 
vegetation on reclaimed soils (neo-sols) is often an indicator 
of environmental quality reclamation and important for 
wildlife, recreation, housing, and other land-uses [4, 5, 6, 7, 8, 
9, 10, 11, 12, 13]. 

In the post-mining reclamation process, the soil has been a 
key element that limits vegetation establishment. It has been 
established that the pH, fertility, density, and microbial 
activity are major attributes to post-mined soils. Sheoran 
found that when the pH value of soil is reduced below 5.5, 
plant growth is hindered due to phosphorus fixation, reduced 
population of N-fixing bacteria, and metal toxicities such as 
manganese or aluminum [14]. Reconstructed soils have vastly 
reduced hydraulic conductivity due to increased macropore 
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space and bulk density and macronutrients such as N, P and K 
which are commonly found to be deficient in these types of 
soils [15, 16, 17]. So it is suggested that 3-4 feet of non-
compacted media are needed to maintain available water 
contents adequate to support plant growth [14]. Moreover, 
microbial activity has been found to decrease with increased 
depth and compaction of soils [18, 19]. Without enough 
microorganisms, soils will be deficient of nutrients necessary 
to support vegetation growth [20]. As a result, reclamation 
specialists are concerned about the ability and degree to which 
reconstructed soils are able to support the plant growth.  

There have been four general ecological models developed 
which predict post-mining soil productivity by vegetative 
growth of agricultural crops, rangeland plants and woody 
plants [21, 22]. One is a heuristic method known as the 
“reconstructing nature” approach. It is required that A, B and 
C soil horizons be stripped and stockpiled separately so that 
these horizons may be reapplied in the correct order during 
post-mining land reclamation [20]. Although supposedly to 
keep the original soil attributes, any mining activities still 
affect the soil. Dancer and Jansen as well as McSweeney et al. 
found that mixtures of B and C horizons showed greater 
vegetative growth compared to B horizon material alone [23, 
24]. Stripping and reapplication of A horizon material is very 
important in reconstructing the prime farmland, but mandates 
of topsoil depths depend on the characteristics of the soil 
material and the crops to be planted [25]. So the 
characteristics of post-mined soils often are vastly different 
from the pre-mining ones.  Restoring vegetation productivity 
levels based on attempted similar structure of pre-mining soil 
(not same soil conditions) is difficult. And the poor 
performance of this approach does not always provide a 
reliable source for predicting vegetative productivity.  

The second model is a statistical model known as the 
“reference site” approach whereby the soil from an 
undisturbed site is required to be compared with a site near 
mined lands. Once no statistical difference between the site 
around the mined lands and the undisturbed lands have been 
achieved (meaning nearly or comparable vegetation yields in 
both areas), the land reclamation is deemed acceptable. It was 
found that post-mining soils have the potential to support 
forest vegetation based on the investigation of 25 reforestation 
sites in the Appalachian region of the eastern United States. 
As a result of the necessity for analyzing and comparing 
multiple differing sites over an extended period of time, Doll 
and Wollenhaupt describe this model is as an unreliable and 
expensive means of evaluating reclamation success [26]. 
Burley also notes that it does not give a quantified prediction 
of vegetative productivity potential and has the limitation of 
requiring extensive and costly field data collection [3]. 

The third model is an experience model known as the 
“sufficiency” approach. In this model the soil productivity is 
evaluated by the defined criteria and either accepted as 
sufficient or rejected based upon a series of expert tables and 
charts [20]. The tree heights were predicted as three point 
values representing conditions that are good, fair or poor for 
vegetative growth based upon soil data published by the 
Natural Resource Conservation Service [26, 27, 28]. Neill as 

well as Doll and Wollenhaupt later used most of the soil 
factors and plant measurements (such as height) for the 
regression analysis [27, 29]. In this model, however, the 
interactions of soil attributes are not considered, as well as the 
interactions of vegetation types [28]. Furthermore, vegetation 
variables and soil types are restricted to a limited number [4]. 

The final model is a statistical model known as the 
“regression analysis” approach. This model requires a data set 
derived from productivity of various species across all soil 
types averaged over a ten-year period to develop a reliable 
statistical productivity equation [3]. A substantial county-
based soil attributes and vegetation productivity dataset has 
been compiled by the Natural Resources Conservation Service 
(NRCS) since the mid-1900s. This data has been utilized by 
multiple studies to alleviate the costs associated with vast data 
collection required for statistical regression analysis [3, 4, 20, 
21, 30, 31). The first equation based on this method was 
explored to investigate vegetative productivity on a site in 
Minnesota, additional equations were then developed such as 
those in Clay County of Minnesota, Florida and North Dakota 
[4, 32, 33, 34]. This regression model is considered 
scientifically accurate [20]. 

The aim of this study is to examine the relationship 
between plant productivity and soil properties, based on 
whether the quantitative equation to be developed would 
predict plant growth and identify the significant soil attributes 
predicting the productivity of plants. The result presents a 
soil-based vegetation productivity model for surface mined 
lands of Chippewa County in Wisconsin (USA presented at a 
WSEAS conference in Kuala Lumpur, Malaysia) and 
extended new material for Bleckely, Dodge, and Telfair 
counties in Georgia [1].   

II. STUDY AREA AND METHODOLOGY  

A. Chippewa County, Wisconsin  
Chippewa County is in west-central Wisconsin and is 

comprised of an ancient mountain range in the northeast—that 
has since eroded and disappeared—and a central plain in the 
southwest.  The central plain is underlain with sandstone 
(silica sand – silicone dioxide – SiO2) that is close to the 
surface of the earth that is suitable for use in oil and gas 
recovery operations.  This silica sand is found in Cambrian 
(Jordan, Wonewoc, and Mt. Simon formations) and 
Ordovician (St. Peter Formation) rocks.  Silica mining in 
Chippewa County has concentrated upon primarily Jordan 
sandstone and Wonewoc sandstone [35].  This landscape is 
experiencing land disturbance for the removal of silica sand 
for use in these oil and gas recovery operations.  The surface 
soils are primarily composed of well-drained loams, silts, and 
sands [36].  Approximately 30 percent of the land remains in 
forested patches and in woodlots and plantations with a 
mixture of a cropland and a dairy land matrix across the hilly 
and rolling landscape, with dairy farming as the dominant 
agricultural enterprise [36].  The woodlots produce pulp for 
paper products, poles for fences, and timber. 
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B. Bleckley, Dodge, and Telfair Counties, Georgia 
The three counties studied in Georgia area are primarily in 

the costal plain, relatively near the Atlantic Ocean, ranging 
from just above 30 meters to about 300 meters above the 
ocean [37].  The soils are composed of marine sediments.  
The three counties rely upon farming and woodlots for 
income, along with some light industry.  

C. Statistical Analysis 
The soil characteristics examined in this investigation 

include: topographic position, % slope, % rock fragments, % 
clay, bulk density, hydraulic conductivity, available water 
holding capacity, soil reaction, and % organic matter (Table 
1).  Data for this county have been collected by the former 
Soil Conservation Service [36, 37]. To construct an 
independent variable, the soil parameters (such as bulk 
density) are averaged with a weighted formula from the 
surface downward, where the top foot contributes 40% of the 

total value, the second foot contributes 30%, the third foot 
contributes 20% and the fourth foot contributes 10%, as 
implicated by Burley and Thomsen [29]. 

 
Table 1.  Main effect independent variables and units of 
measurement from the U.S. Soil Conservation Service. 

 
The dependent variables in Chippewa County are derived  
 

from vegetation yields.  The vegetation examined includes: 
(Zea mays L.), corn silage, oats (Avena sativa L. (1753), 
alfalfa hay (Medicago sativa L.), red clover hay (Trifolium 
pretense L.), Kentucky bluegrass (Poa pratensis L.), soybeans 
(Glycine max (L.)Merr.), northern white cedar (Thuja 
occidentalis L.), lilac (Syringa vulgaris L.), American 
cranberry bush (Viburnum trilobum Marshall), amur maple 
(Acer ginnala Maxim.), gray dogwood (Cornus recemosa 
Lam.), Siberian peashrub (Caragana arborescens Lam.), 
white spruce (Picea glauca (Moench) Voss), eastern white 
pine (Pinus strobus L.), red maple (Acer rubrum L.), red pine 
(Pinus resinosa Sol. Ex Aiton), jack pine (Pinus banksianna 

Lamb.), nannyberry viburnum (Vibrunum lentago L.), and 
white ash (Fraxinus americana L.). 

The dependent variables for the three counties in Georgia 
are also derived from plant yields.  The vegetation studied for 
the three counties in Georgia include: corn (Zea mays L.), 
soybeans (Glycine max (L.)Merr.), wheat (Triticum aestivum 
L.), cotton (Gossypium hirsutum L.), tobacco (Nicotiana 
tabacum L.), peanuts (Arachis hypogaea L.), Bermuda grass 
(Cynodon dactylon (L.) Pers.), slash pine (Pinus elliottii 
Engelm.), longleaf pine (Pinus palustris Mill.), loblolly pine 
(Pinus taeda) L., sweetgum (Liguidamabar styraciflua L.) and 
tulip tree (Liriodendron tulipifera L.). 

In both study locations, the plant types are employed to 
predict vegetation productivity. However, the term, 
“vegetation productivity”, is a relatively weakly developed 
construct. In many respects vegetation productivity has been 
operationally expressed as vegetation yield, e.g. bushels per 
acre of harvested seed or feet of new apical terminal shoot 
growth per year. It represents a certain anthropocentric 
perspective concerning plant growth. A plant physiologist may 
suggest that an abundance of seeds per acre does not 
necessarily mean that a vegetation type is internally healthy 
and an ecological conditional constructs for vegetation 
productivity. Nevertheless, existing measures of vegetation 
yield and new plant growth are assumed as reasonable 
indicators of productivity in this article, and the major study 
focus lies in the relationships between existing productivity 
measures and soil parameters.  The method examines 
covariance in vegetation productivity as supported by the 
findings of others such as Burley and Thomsen, and Burley 
and Bauer [31, 34]. This is an important issue. If all 
vegetation types do not covary in productivity, then the 
investigator must develop a large number of individually 
tailored vegetation productivity equations and the reclamation 
specialist may reclaim a landscape suitable for one crop but 
not for another, thereby excluding future production options 
for the farmer. If plants do covary, a universal vegetation 
productivity equation may be possible for the study site.  The 
procedures for this statistical method are described in detail by 
several authors [29, 38, 39].  Once the linear combination of 
productivity values has been established and computed (the 
dependent variable), then the independent variables including 
main effects, squared terms, and first order interaction terms 
are regressed to find the equation that explains the largest 
variance as well as identifies all significant proposed 
regressors.  Main effect regressors, squared terms, and first 
order interaction terms comprise the independent variables. 

III. RESULTS 

A. Chippewa County, Wisconsin  
The first four eigenvalues were found to be potentially 
suitable for constructing a vegetation productivity equation 
(Figure 1 and Table 2).  The first eigenvalue contained an “all 
vegetation” eigenvector where each of the dependent variables 
had positive coefficients (Table 3) and contained 
approximately 41 percent of the variance, although red clover 
hay contained a weak positive value as an eigenvector 

Sym Factor Unit of Measurement 
FR % Rock Fragments Proportion by weight of  

particles >7.62 cm 
CL % Clay Proportion by weight 
BD Bulk Density Moist Bulk Density  

Grams/cm3 
HC Hydraulic  

Conductivity 
Inches/hour  
(1 inch = 2.54 cm) 

PH Soil Reaction pH level 
OM % Organic Matter Proportion by weight 
AW Available Water  

Holding Capacity 
Inches/inches, cm/cm 

TP Topographic  
Position 

Scale 1 to 5 Where 
1 = Low (Bottomland) 
2.5 = Mid-slope 
5 = High (Ridge Lines) 

SL % Slope (Rise/Run)*100 
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coefficient.  The second eigenvalue was predominantly a red 
clover hay, northern white cedar, red maple, nannyberry 
viburnum, and white ash eigenvector and possessed 30 percent 
of the variance.  The third eigenvalue represented red clover 
hay, American cranberry bush, red pine, white pine and 
nannyberry viburnum with strong positive eigenvector 
coefficients.  The third eigenvalue contained almost 10 

percent of the variance.  The fourth eigenvalue was a red 
clover   hay,  soybean,   Siberian   pea shrub, and   nannyberry 
viburnum dominated variables, expressing over 6 percent of 
the variance.   

 
 
 

 

 
Figure 1. Principal component analysis eigenvalues for Chippewa County, Wisconsin. 

 
Table 2.  The first four principal component eigenvalues of the covariance matrix for Chippewa County, Wisconsin. 

 Principal 
Component 

Eigenvalue Difference Proportion Cumulative 

PC1 8.21695143 2.18464775 0.4108 0.4108 
PC2 6.03230367 4.07910207 0.3016 0.7125 
PC3 1.95320161 0.70795730 0.0977 0.8101 
PC4 1.24524430 0.57946824 0.0623 0.8724 

 
Table 3.   Eigenvalues for Chippewa County, Wisconsin. 

  PC1 PC2 PC3 PC4 
Corn 0.318902 0.039567 -.182856 0.202773 
Corn silage 0.314024 0.038024 -.204029 0.215192 
Oat 0.312032 0.055332 -.128419 0.189263 
Alfalfa hay 0.238873 -.167054 -.343210 -.139657 
Red clover hay 0.039849 0.297970 0.286752 0.397815 
Kentucky bluegrass 0.259982 0.110449 -.278627 0.146321 
Soybean 0.254792 0.073772 -.094920 0.289860 
Northern white cedar 0.152437 0.281283 -.199512 -.140987 
Lilac 0.313590 -.066306 0.196818 -.123397 
American cranberry bush 0.238138 -.019002 0.445114 -.046757 
Amur maple 0.206151 -.264098 -.109440 -.058187 
Gray dogwood 0.234787 -.242320 -.003719 -.287729 
Siberian Peashrub 0.116215 -.301648 0.113141 0.269697 
White spruce 0.128658 0.321160 0.017535 -.331215 
Eastern white pine 0.306372 -.071458 0.196250 -.081788 
Rep maple 0.129096 0.350855 0.038891 -.235718 
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  PC1 PC2 PC3 PC4 
Red pine 0.266541 -.082561 0.316504 -.238407 
Jack pine 0.089419 -.322388 0.307509 0.105366 
Nannyberry viburnum 0.047567 0.323648 0.278601 0.309848 
White ash 0.115631 0.330770 0.087359 -.247918 

 
Table 4.   Best model found for the Stepwise Maximum R-squared Improvement for Principal Component 1, R-Square=0.7755, C 
(p)= 45.2000, Pr<.0001, Chippewa Counties.

Variable Parameter 
Estimate 

Standard 
Error 

Type II SS F 
Value 

Pr > F 

Intercept -34.28235 4.29147 131.48112 63.82 <.0001 
PH 14.58722 1.91859 119.10137 57.81 <.0001 
OM -4.82003 0.69414 99.34312 48.22 <.0001 
SL2 -0.00350 0.00104 23.09439 11.21 0.0011 
HC2 -0.05921 0.01823 21.73264 10.55 0.0015 
PH2 -1.43219 0.20285 102.70370 49.85 <.0001 
OM2 0.00684 0.00121 66.44916 32.25 <.0001 
TPOM 0.13369 0.05758 11.10535 5.39 0.0221 
FROM -0.06490 0.01150 65.56963 31.83 <.0001 
CLHC -0.07706 0.01566 49.88431 24.21 <.0001 
CLPH 0.03219 0.00882 27.45429 13.33 0.0004 
HCPH 0.15241 0.05744 14.50787 7.04 0.0091 
HCOM 0.11088 0.02459 41.88888 20.33 <.0001 
PHOM 0.57254 0.10909 56.74852 27.54 <.0001 

 
 
PLANT=-34.282+(14.587*PH)-(4.820*OM) -(0.004*SL*SL)-(0.060*HC*HC)-(1.432*PH*PH)          (1) 

+(0.007*OM*OM) +(0.134*TP*OM)-(0.064*FR*OM)-(0.078*CL*HC)+(0.032*HC*PH) 
+(0.111*HC*OM)+(0.573*PH*OM) 
 
 
 

 
Table 5.  The first four principal component eigenvalues of the covariance matrix for Bleckley, Dodge, and Telfair counties, 
Georgia. 

 Principal 
Component 

Eigenvalue Difference Proportion Cumulative 

PC1 5.81806124 3.70101101 0.4475 0.4475 
PC2 2.11705023 0.63253201 0.1629 0.6104 
PC3 1.48451821 0.41053494 0.1142 0.7246 
PC4 1.07398327 0.44439684 0.0826 0.8072 

 
 
 
 
 
Table 6.   Eigenvalues for Bleckley, Dodge, and Telfair counties, Georgia. 

  PC1 PC2 PC3 PC4 
Corn 0.389438 0.105036 0.017584        -.064550 
Soybean 0.348573 0.131835       -.038227        -.109504 
Wheat 0.327918 0.172740       -.114985        -.201263 
Cotton 0.227541 0.373955       -.208808          0.181372 
Tobacco 0.255438 0.111276       -.102825 0.378435 
Peanut 0.319184      -.227009 0.095034           -.337632 
Bermuda Grass 0.376884 0.053334       -.052953           -.046792 
Slash Pine cedar 0.193740      -.437774 0.430393 0.080282 
Longleaf Pine  0.216512      -.521046 0.085997 0.219430 
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  PC1 PC2 PC3 PC4 
Sweetgum       -.088794 0.456834 0.434150 0.188830 
Tulip Tree 0.001796 0.231120 0.608152           -.478560 

 
 
PLANT=-6.642-(0.0065*CL2)-(0.0244*HC2) -(0.386*TP*FR)+(0.384*TP*PH)-(0.050*SL*FR)          (2) 

+(0.043*FR*CL* +(0.119*FR*HC)+(0.270*FR*OM)+(0.050*CL*PH)-(0.050CL*OM) 
 
 
Table 7.   Best model found for the Stepwise Maximum R-squared Improvement for Principal Component 1, R-Square=0.7992, C 
(p)= 149.72, Pr<.0001 for Bleckley, Dodge, and Telfair counties Georgia.

Variable Parameter 
Estimate 

Standard 
Error 

Type II SS F 
Value 

Pr > F 

Intercept -6.64202 1.23193 32.89326 29.07 <.0001 
CL2 -0.00649 0.00160 18.52978 16.38 0.0003 
HC2 -0.02436 0.01021 6.43816 5.69 0.0225 
TPFR -0.38574 0.09677 17.98026 15.89 0.0003 
TPPH  0.38351 0.05935 47.24869 41.76 <.0001 
SLFR -0.05035 0.01023 27.43126 24.24 <.0001 
FRCL  0.04342 0.00965 22.90187 20.24 <.0001 
FRHC  0.11800 0.03374 13.84310 12.23 0.0013 
FROM  0.27011 0.09335 9.47350 8.37 0.0064 
CLPH  0.04989 0.01902 7.78339 6.88 0.0127 
CLOM -0.05027 0.01561 11.73255 10.37 0.0027 

 
 
Only the first eigenvector produced a suitable equation (an 

equation with an r-squared over 50%).  The results of the 
regression analysis are presented in Table 4.  The equation 
predicted 77.55 percent of the variance for the first 
eigenvector, and contained 13 regressors and the intercept as 
significant (p<0.05).  The plant production equation based on 
the soil properties is expressed in Equation 1. 

B. Bleckely, Dodge, and Telfair Counties, Georgia 
Similar to Chippewa County Wisconsin, the first four 

eigenvalues     were    found  to   be   potentially   suitable  for  
constructing a vegetation productivity equation (Table 5).  In 
addition, the first eigenvalue for the Georgia three county area 
did not contain an “all vegetation” eigenvector where each of 
the dependent variables had positive coefficients (Table 6) 
and contained approximately 44.75 percent of the variance. 
Sweetgum did not covary with the other vegetation.  The 
second eigenvalue was predominantly a sweetgum and cotton 
dimension explaining over 16% of the variance. The third and 
fourth dimensions represent various combinations of 
vegetation aggregations.  In our study we focused upon the 
first dimension. 

The first dimension for the Georgia data produced an 
equation with an r-squared value of almost 80% and ten 
regressors plus an intercept as significant (p<0.05).  The plant 
production equation based on the soil properties is expressed 
in Equation 2 as derived from Table 7. 

IV. DISCUSSION AND CONCLUSION 
The results suggest that it is possible to construct an “all 

vegetation” model to predict plant growth in both Chippewa 
County, Wisconsin and within the study area in Georgia 

relative to the composition of the soil.  However, the 
Wisconsin model does not explain most of the variance in the 
complete data set, with about 60 percent remaining 
unexplained.  Attempts to construct equations with the 
remaining 60 percent of the variance were unsuccessful.  All 
vegetation equations developed for Michigan, North Dakota 
and Minnesota explained great proportions of the overall 
variance within the data set. 

In the Wisconsin study area, red clover hay did not 
strongly covary with the other dependent variables in the 
study.  The plant is a cool season short-lived perennial legume 
and not native to Wisconsin, although it has naturalized in the 
area.  The plant is used for forage and hay.  Investigators may 
wish to consider construction of a red clover specific equation 
such as the plant specific equation for sugarbeets (Beta 
vulgaris L.) developed by Burley [40]. 

For Wisconsin, bulk density and available water holding 
capacity were not present in the final equation (Equation 1).  
In other studies, such as in North Dakota (soils with lower 
bulk densities were often preferred as well as those soils with 
higher water holding capacity [22].  Two environmental 
conditions may account for the insignificance of these 
variables.  First, in a cool temperate climate with adequate 
rainfall, retaining and holding moisture may not be an issue 
for vegetation.  Second, with the predominance of loose, well-
drained soils containing relatively little clay that remain un-
compacted, the impact of densely compacted soils inhibiting 
plant growth may not be persistent in the subject county. 

The equation does suggest several general properties for 
the county that influence plant growth.  The first is the 
importance of raising the soil reaction in the soil.  The county 
does have locations with low soil reaction and the equation 
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suggests that managing and rebuilding soils with a higher soil 
reaction will improve plant growth.  The equation also 
suggests that as the soil reaction increases, the vegetation will 
improve with an increase in organic matter.  In addition, the 
equation suggests that as topographic position and hydraulic 
conductivity increase, soils with additional organic matter will 
be more productive.  However, the squared term for soil 
reaction indicated that there is a maximum benefit to creating 
soils with higher soil reaction and, if the soil reaction is too 
high, the productivity begins to trend downward.  The 
complexity of the equation suggests that with the number of 
various interaction terms, the overall composition of the soil is 
important to consider, thus managing any one variable can be 
difficult.  Burley provides insight into how to develop a 
management plan and assess the landscape when applying 
these types of equations in disturbed environments [41]. 

The Georgia study area included the examination of 
sweetgum’s soil preferences compared to eleven other plant 
types.  Sweetgum did not appear to covary with the other 
vegetation and was strongly represented in the second 
dimension.  Hightshoe notes that sweetgum is tolerant of 
floods and may have a slightly different environmental 
preference then the other eleven plants [42].  For example the 
tuplip tree (part of the group of eleven plants) is highly 
intolerant of flooding conditions [42].  Burley and Bauer had 
also discovered a cluster of plants when employing this 
methodology, with a similar preference for conditions more 
wet than a typical mesic environment [34].  Dimension three 
suggested that tulip tree may have a unique preference in the 
group of plants studied.  Dimension four suggests that tobacco 
may have some unique requirements too.  However, attempts 
to derived equations for the second, third, and fourth 
dimensions yielded weak equations with little explanatory 
power. 

The pine trees in the Georgia study did not yield a strong 
xeric dimension.  In contrast Coor discovered a strong xeric 
preference in northern Michigan for the pines in his study area 
[20].  Instead the pines of Georgia favored a strong mesic 
affiliation. 

The results of both studies revealed a set of mesic seeking 
plants, similar to other studies in North Dakota, Minnesota, 
Michigan, and Florida [21, 22, 32, 33, 34].  This mesic 
seeking preference has not been widely studied by 
investigators and has only been identified in the last 30 years 
with a slow response to understand the underlying reasons for 
this preference [32].  The preference is only a part of the 
ecological puzzle, as the vegetation reported in this and other 
investigations controls competition between plants and 
supplements the growing plants with adequate water and 
nutrient levels.  Scholars such a J.T. Curtis provide a more 
clear picture of the relationships between plants under 
competition [43]. 

As with other equations, the set of final regressors were 
only mildly similar between the two study areas.  This may 
indicate that the influence of the soil regressors influencing 
plant growth may fluctuate across the eastern United States.  If 
the set of regressors were more uniform, a universal mesic 
preference equation for all of the study areas may be relatively 

simple to construct.  However, at this stage, it appears that the 
geographical position of the study areas (longitude and 
latitude) may be important regressors in the effort to develop a 
universal equation to predict neo-sol contribution to plant 
growth. 

Opportunities exist to develop equations in many more 
study areas across the United States.  The Natural Resources 
Conservation Service (NRCS) has complied many ‘county-
wide’ databases that have never been analyzed.  Only the raw 
data has been published, comprising of basic soil parameters, 
descriptions, general suitability, and maps.  These data sets 
remain dormant awaiting investigators to explore the 
predicative nature of the soil variables to various land-uses 
and plant growth.  Burley and Gray describe an example 
where the numerical relationship between site development 
and vegetation growth can be studied and examined with 
NRCS data sets [44].  Their study was in North Dakota. 

In conclusion, it is possible to construct a predictive 
equation to assess soil variables for reconstructing disturbed 
landscapes in Chippewa County, Wisconsin and for three 
counties in Georgia.  However, the equations presented in this 
research article suggests that the current prediction explains 
less than 50 percent of the total variance.  Additional effort 
may be necessary to develop more reliable predictions in 
reclaiming the landscape. Opportunities to develop similar 
equations exist in many regions of the United States.  The 
long-term goal may become to develop potential universal 
equations for large regions of the United States.  Nations may 
wish to consider developing similar studies and databases for 
their part of the world. 
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