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Abstract—Ever-increasing energy consumption and growing
penetration of renewable energy sources stimulate the devel-
opment of new power grid models and architectures. Since
the decentralization of power grids raises the unreliability of
power supply, it is crucial to switch to a production-oriented
consumption in order to provide the stability of the grid. In
this work, we describe a multi-supplier power grid model with
day-ahead time span planning. We formulate and study a set of
consumer cost minimization problems under flow distribution
constraints. Finally, we consider an example illustrating the
applicability of this model.

Index Terms—power grid, load flow, demand management

I. INTRODUCTION

Traditionally, power grids have a central structure with
a clear hierarchy. There are few power plants that produce
and supply energy to a large area using transmission and
distribution networks, and these power plants respond to a
changing demand of consumers. However, due to the fast
renewable energy development of recent decades, this situation
is starting to change. New power grid architectures need to
be created and studied in order to integrate smaller local
renewable generators into the power grid while maintaining
sustainability of the system.

One of the main challenges is providing balance between
production and consumption in the network, especially taking
into account the uncontrollable weather-dependent nature of
main renewable energy sources (i.e., solar and wind energy). A
possible solution is switching to production-oriented consump-
tion, when consumers respond to changes in available gener-
ation capacities rather than producers to changing demands.
This concept, also known as demand response management,
includes different measures, but the goal is the same: to mo-
tivate consumers to change their strategies and to coordinate
consumption with generators. Another issue is to maintain the
transmission network and to avoid overloads in its links. This
generally non-trivial problem becomes even more complicated
for a decentralized system in the presence of multiple energy
producers.

In this paper, we formulate and consider a multi-supplier
power grid model, where consumers need to conclude bilateral
contracts with suppliers over a day-ahead period of time
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divided in several time slots (e.g., 24 hours). The distribution
of flows in the network deserves special attention, since it
is crucial for preventing overloads and other disturbances in
transmission lines. We describe consumers’ costs as functions
of their contract profiles, formulate a competitive game of
consumers, and discuss possible schemes of demand response
management for this model.

The topic of demand response was intensively studied in
recent years. Demand management using pricing mechanisms
for systems with a single generator and several competitive
consumers are formulated in [10], [14]. Work [14] considers
two-level piecewise linear cost functions, whereas in [10]
functions are quadratic. Models with multiple generators and
storage systems with quadratic costs are studied in [2], [3],
where equilibria are found using variational inequalities. The
ideas of cooperative game theory and coalition formation can
also be applied for demand management (e.g., [1], [9]).

However, these works do not consider the flow distribution
in the transmission network that depends on the topology of
the network, whereas fulfilling lines capacities constraints is
necessary for stability of the power grid. Some authors study
networks with simple topologies: a set of parallel links [7],
a network with a star-shaped structure [12], a network with
a link for each producer-consumer pair [6]. In this work,
we formulate a model with a general network topology and
discuss challenges arising in this setting.

Flow distribution in electrical networks outside game theo-
retic scope is a well-studied topic, starting in the nineteenth
century with formulation of Kirchhoff’s current laws. The
problem of finding flow distribution was first formulated as a
mathematical program in the middle of the twentieth century
[4], [5]. It is known that methods of transportation cannot be
applied to power flow distribution, since there are some critical
differences between information and electricity, e.g., flows
in electric networks cannot be routed directly [8]. However,
one can note that Kirchhoff’s laws and conditions of user
equilibrium in the non-atomic routing setting are similar, and
respective optimization problems take similar forms (see, e.g.,
Ch.2.6.3 in [11]).

The remainder of this work has the following structure.
Section 2 describes the multi-supplier power grid model and
the flow distribution in the transmission network. Section 3
formulates consumer cost minimization game and discusses
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the existence of equilibria. An example of demand response
technics for the model is considered in Section 4, following
by simulation results for a specific network. Finally, Section
5 concludes the paper and discusses future work.

II. MODEL DESCRIPTION

This section describes the structure of a power grid and
discusses the power flow distribution in the grid. We also
formulate a (generally non-linear) optimization problem for
finding a power flow vector.

A. Network

A network is represented by a directed graph (V,A), where
V is a set of nodes and A is a set of arcs. Let us enumerate
nodes in V in the following manner: VQ = {1, . . . ,m} is a
set of m energy consumers, VP = {m + 1, . . . ,m + n} is a
set of n producers, and VO = {m + n + 1, . . . , |V |} is a set
of all other nodes.

In this work, we consider a day-ahead planning period
divided into H intervals. Each consumer concludes bilateral
energy purchase contracts with several producers for each time
interval. By ehij we denote an amount of energy to be delivered
from producer j ∈ VP to consumer i ∈ VQ during the time
interval h ∈ H = {1, 2, . . . ,H}. We also use the following
notation:

ehi = (ehi(m+1), . . . , e
h
i(m+n))

T (1)

for a vector of i’s contracts at a time interval h, and

Ei = (e1
i , . . . , e

H
i ) (2)

for a matrix of all i’s contracts.
Consumers need to meet their energy demands, both total

for the whole day and minimal for each time interval h ∈ H.
We denote the total demand of consumer i by Di ≥ 0, and the
minimal demand of the same consumer for a time interval h by
dmini (h) ≥ 0. Therefore, we can write the demand constraints
for Ei:

1Tn · ehi ≥ dmini (h),

1Tn ·Ei · 1H = Di,
(3)

where 1k = (1, 1, . . . , 1)T ∈ Rk.
Let us define energy balance bhk in a node k ∈ V for a time

interval h ∈ H:

bhk = −1Tn · ehk , k ∈ VQ,

bhk =
m∑
i=1

ehik, k ∈ VP ,

bhk = 0, k ∈ VO.

(4)

This value reflects the amount of energy injected or withdrawn
in a node during a specific time interval. It is negative for
consumers and non-negative for producers, while we assume
all other intermediate nodes to have zero energy balance.

Now we describe the flow distribution in the power grid for
given energy balances.

B. Flow Distribution

Energy flows in a power grid are distributed according to
Kirchhoff’s laws, and we can find this distribution for a given
set of energy balances and knowing parameters of grid links.

By fhkl ≥ 0 we denote a flow in arc (k, l) ∈ A at time
interval h, and set fh = {fhkl, (k, l) ∈ A} is a flow profile of
all links at time h. We also define the following two subsets
of V

W in
k = {l ∈ V |(l, k) ∈ A},

W out
k = {l ∈ V |(k, l) ∈ A},

and the first Kirchhoff’s law can be written as follows:∑
l∈W out

k

fhkl −
∑
l∈W in

k

fhlk = bhk , ∀k ∈ V. (5)

Let Θkl(f
h
kl) be a voltage function for an arc (k, l) ∈ A, and

by πk(h) denote an electric potential in a node k ∈ V at time
interval h. The second Kirchhoff’s law takes the following
form:

πk(h)− πl(h) = Θkl(f
h
kl), ∀(k, l) ∈ A. (6)

The flow profile fh can be found as a solution of a non-linear
optimization problem (as in [11])

minimize
fh

∑
(k,l)∈A

∫ fh
kl

0

Θkl(s)ds, (7)

subject to
∑

l∈W out
k

fhkl −
∑
l∈W in

k

fhlk = bhk ,∀k ∈ V (8)

fhkl ≥ 0, ∀(k, l) ∈ A. (9)

Since a set of contract vectors Eh = {eh1 , . . . , ehm} defines
the energy balances {bhk , k ∈ V } which are parameters of
the constraint set (8), we denote the solution of minimization
problem (7)-(9) by fh(Eh). This mapping is generally non-
linear, and contract changes of a single consumer affect the
flow distribution in the whole grid.

III. GAME OF CONSUMERS

This section formulates and studies a consumer game as
a model of interactions in the grid. First, we describe cost
functions of consumers and formulate a game as a set of
coupled cost minimization problems. In the second part of
the section, the existence of Nash equilibria for the described
game is discussed.

A. Consumer Cost Minimization

Each consumer tries to minimize their total costs over time
span H. These costs consist of two parts: generation costs
and transmission costs. Generation costs can be assigned pro-
portionally to the contracts between respective agents, while
it is non-trivial to define the shares for use of transmission
network.

More specifically, let αhj (bhj ) denote a generation cost of
a unit of energy at node j ∈ VP during time interval h. It
is a function of total energy bhj to be generated at node j
according to contracts with consumers Eh. Hence, generation
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cost of consumer i during interval h can be determined in the
following way:

Ghi (Eh) =
m+n∑
j=m+1

ehij · αhj (bhj ). (10)

Transmission costs depend on the flow distribution fh(Eh).
We define transmission cost for an arc (k, l) ∈ A as a function
βhkl(f

h
kl) of the amount of flow using this arc. We call a set

of functions ∆ = {δi,hkl (Eh)} a cost sharing rule, if it fulfills
the following conditions:

δi,hkl (Eh) ≥ 0, ∀(k, l) ∈ A, i ∈ VQ, h ∈ H,
m∑
i=1

δi,hkl (Eh) = 1, ∀(k, l) ∈ A, h ∈ H.
(11)

For a given cost sharing rule ∆ the transmission cost of
consumer i at interval h takes the form:

Thi (Eh) =
∑

(k,l)∈A

δi,hkl (Eh) · βhkl(fhkl(Eh)). (12)

Hence, the total cost of consumer i is

Ci(E) =
H∑
h=1

(
Ghi (Eh) + Thi (Eh)

)
, (13)

where E = {E1, . . . ,EH} is a total profile of all consumer
contracts over the whole time span H, and where the calcu-
lation of each transmission cost Thi (Eh) requires solution of
problem (7)-(9) for a respective time interval h.

We now formulate the game of consumers:

minimize
Ei

Ci(E), 1 ≤ i ≤ m, (14)

subject to 1Tn ·Ei · 1H = Di, ∀i ∈ VQ, (15)

1Tn · ehi ≥ dmini (h), ∀i ∈ VQ,∀h ∈ H, (16)

ehij ≥ 0, ∀i ∈ VQ,∀j ∈ VP ,∀h ∈ H. (17)

In this game, contract matrix Ei is a strategy of consumer i.
We denote by Σi a set of all i’s feasible strategies, i.e., a set
of all matrices {Ei} fulfilling the conditions (15)–(17).

B. Existence of Nash Equilibria

The idea of Nash equilibrium proved to be the most ap-
propriate solution concept for competitive games. A set of
agents’ strategies is in Nash equilibrium, if none of agents may
reduce their total cost by unilaterally changing their strategy.
In our model, a total profile E∗ is in Nash equilibrium, if the
following conditions are fulfilled:

Ci(E
∗) ≤ Ci(Ei,E

∗
−i),∀Ei ∈ Σi, (18)

where {Ei,E
∗
−i} is a total profile that differs from E∗ only

in component Ei.
The existence of Nash equilibria in a consumer game

strong-ly depends on the form of cost functions {αhj (·)},
{βhkl(·)} and the cost sharing rule ∆. Moreover, arguments
of {βhkl(·)} are flows in the corresponding arcs, which are
in turn components of a solution of non-linear optimization

problem (7)-(9). Hence, establishing the fact of equilibrium’s
existence is a non-trivial task.

Theorem 1: Assume that a network contains no cycles,
functions {αhj (·)} are convex and increasing, functions
{βhkl(·)} are convex, and transmission costs are shared ac-
cording to rule (7)–(9). Then game (14)–(17) has a Nash
equilibrium contract profile E∗.
Proof. According to ( [13]), an equilibrium exists for any
n-person game with concave payoff functions. Since we
consider cost functions rather than payoff functions, the same
statement is true for games with convex cost functions. There-
fore, we need to check whether a cost function Ci(E) =
Ci(E1, . . . ,Em) is convex in Ei for each consumer i ∈ VQ.

Function Ci(E) consists of several summands:

Ci(E) =
H∑
h=1

(
Ghi (Eh) + Thi (Eh)

)
.

If we show that each summand in this sum is convex, convexity
of the whole sum will be established as well. First, we study
function Ghi (Eh):

Ghi (Eh) =
m+n∑
j=m+1

ehij · αhj (bhj ). (19)

When we fix the contract profiles of all consumers except
i, function αhj (bhj + λ) remains convex and increasing, and
function in (19) is convex as a product of two non-negative
increasing convex functions.

Second, we rewrite function Thi (Eh) with fixed contract
profiles of all consumers except i applying Proposition 3.1:

Thi (Eh) =
∑

(k,l)∈A

δi,hkl (Eh) · βhkl(fhkl(Eh)). (20)

The argument of βkl(·) in (20) is a linear combination of
{eij , j ∈ VP }, components of consumer i’s contract profile.
Therefore, βikl(E

h) remains convex in Eh
i , as well as Thi (Eh).

The convexity of cost functions in respective arguments is
established, that completes the proof.

IV. EXAMPLE

Consider a network with 7 nodes that is depicted in Figure 1.
There are 3 consumers (red nodes), 3 producers (green nodes)
and one intermediate node. Therefore, VQ = {1, 2, 3}, VP =
{4, 5, 6}, and VO = {7}.

All nodes are located in the same local area except for
node 4 that depicts a conventional energy generator, e.g. a
power plant. Hence, arc (4, 2) is longer than all other arcs,
and transmission costs are higher for this arc.

Since there are no cycles in the network, we only need to
check the first Kirchhoff’s law (5). A flow on each arc is a
linear combination of {ehij}, h = {1, 2, 3, 4}:

f̂h25 = eh34 + eh36 − eh15 − eh25, f̂h53 = eh34 + eh35 + eh36,

f̂h42 = eh14 + eh24 + eh34, f̂h27 = eh14 + eh15 − eh26 − eh36,

f̂h71 = eh14 + eh15 + eh16, f̂h67 = eh16 + eh26 + eh36.

INTERNATIONAL JOURNAL OF ENERGY and ENVIRONMENT Volume 11, 2017

ISSN: 2308-1007 116



Fig. 1. 7-node network with no cycles

The direction of flow in arcs (2, 5) and (2, 7) may differ
depending on the values {ehij}. If f̂h25 < 0, we assign f̂h25 = 0

and f̂h52 = −f̂h25. The same is true for f̂h27.
Let us assume that functions {αhj (·)} and {βhkl(·)} have the

following form:

αhj (x) = λhj · x1+ε + µhj , ∀j ∈ VP ,
βhkl(x) = λhkl · x1+ζ , ∀(k, l) ∈ A, (21)

where all coefficients are non-negative. We are ready now to
solve the problem (14)–(17) with specific values of demands
and coefficients in (21), and evaluate the total cost reduction.
Actually, it is clear that the problem is a computationally
difficult. Indeed, the presence of four time periods makes
us to compare numerous combinations of different contracts.
Thus, we are dealing with combinatorial optimization and the
problem could be NP-hard. In future works we will investigate
these questions carefully.

V. CONCLUSION

In this work, we have introduced new model for multi-
supplier power grid under transmission constraints. Our model
studies daily energy dynamics. The game of consumers was
formulated and the existence result was established given spe-
cific properties of cost functions. There are several directions
to improve and generalize the methods discussed in this work,
and we name only few of them. First, real-world production
and transmission costs, as well as voltage change functions,
should be further studied in order to provide realistic represen-
tation of the network. Secondly, one can investigate a setting
with dynamic network topology. Though power grid structures
are relatively constant, there might be different applications of
this model, e.g. for planning an optimal modification of a grid,
or for maintaining the stability in a case of emergency such
as blackouts.
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