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Abstract—Groundwater level (GWL) time series are highly 
non-stationary, noisy, multi-scale, and complexity due to varieties 
of natural and anthropogenic factors which are closely related to 
the GWL fluctuation. The direct forecasting of GWL with noisy 
and multi-scale data is usually subject to large errors. This paper, 
for first time, was applied wavelet de-noising in a combined model 
(WDCM) forecasting of GWL. The seasonal autoregressive 
integrated moving average model (SARIMA) and neural networks 
(ANNs) were used as combined model in WDCM. Firstly, the 
original data of GWL were decomposed into an approximate part 
associated with seasonal component (linear pattern) and some 
detailed part associated with random component (nonlinear 
pattern) via a wavelet transform. The SARIMA established by the 
seasonal signal and the multilayer perceptron neural network 
(MLP) using the random signal to forecast. Finally, the GWL was 
forecasted by combining the prediction values of SARIMA and 
MLP. To evaluate the performance of the proposed approach, a 
comparison was done with the SARIMA, MLP, and W-SARIMA 
and W-MLP combined model, which were established using the 
de-noising data. The results were shown that the proposed model 
can effectively improve the forecasting accuracy. 

Keywords—Groundwater level; Wavelet Transform; Hybrid 
Model; MLP; SARIMA 

I. INTRODUCTION  

Groundwater level (GWL) forecasting is an essential 
subject in water resources management. The GWL data is 
essentially dynamic, complex, nonparametric, and chaotic in 
nature. In fact, many natural and anthropogenic factors affect 
the GWL data, such as the precipitation, temperature, 
evaporation, groundwater exploitation and river flow. This 
influence implies that accurate GWL forecasting is 
difficult.in fact, the groundwater time series consists of three 
principal components (autoregressive, seasonality and 
stochastic) and the performance of the time series models are 
related to these components. GWL can be predicted using 
data driven and knowledge- driven models. The performance 
of data driven models is based on identifying relations 
between input and output variables of a system without the 
need for experimental apparatus and complex hydro-physical 
models based on physical principles and mathematical 
equations [20]. Required inputs of data driven models in 

groundwater are the hydrological and meteorological 
variables which are closely related to the GWL fluctuation. 
Generally, data driven methods can be divided into two 
categories contain statistical models and artificial 
intelligence (AI) models. 

Based on factors influence the groundwater, time series 
models such as the Holt-winters (HW) model, the 
autoregressive moving average (ARMA) model, the 
Autoregressive integrated moving average model (ARIMA), 
and the seasonal autoregressive integrated moving average 
(SARIMA) model have been applied[9]. For instance, [3] 
predicted the chloride content for short-term in the mineral 
waters of the Ustron Health Resort using SARIMA and HW 
models. The results of analyses indicated that the good 
performance of the HW model highlights its utility compared 
with complicated physically based numerical models. [25] 
used three time series analysis methods, HW, integrated time 
series (ITS), and SSARIMA to simulate the groundwater 
level in a coastal aquifer in China. The comparisons of three 
models show revealed that the HW model is more accurate in 
predicting the GWL than SARIMA and ITS models. 

 It should be notice that the chaotic and stochastic 
characteristics of GWL time series need more complex 
functions for capturing the nonlinear relations, but most of 
these models are based on the assumption that a linear 
correlation structure exists among time series values. 
However, the statistical models generally are not perfect in 
forecasting. To overcome this limitation, many AI 
approaches have been proposed to address this problem. 
These AI approaches, which primarily include neural 
networks[4], fuzzy logic-based approaches [6], and genetic 
algorithms [14], have yielded impressive results in dealing 
with GWL prediction.  

However, GWL time series contain both linear and 
nonlinear patterns. Many research efforts have indicated that 
prediction methods depend on the data patterns and there is 
no single best prediction method that can be applied to any 
data patterns. Therefore, combining different models can 
increase the chance of capturing different patterns in the data 
and improve the forecasting performance. This approach has 
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led to the rapid development of hybrid models based on 
popular methods. Wavelet transforms (WT), as a pre-
processing effective tool, can be combined with data driven 
models to constitute a hybrid model. Wavelet transform 
(WT) is a useful tool which splits up the time series into 
subseries containing different frequencies. The obtained 
subseries are very beneficial for increasing the prediction 
ability of a model by extracting effective information at 
various levels [2]. Recently, there has been an increasing 
interest in combination wavelet transform with artificial 
intelligence and time series models in groundwater modeling 
[1,8,10,12,18,17,22,21,]. [1] studied the prediction of 
fluctuation groundwater by a combination of wavelet 
transform and ANN models. They decomposed GWL and 
rainfall data by wavelet transform. Then, all efficient 
subseries of groundwater levels and rainfall were considered 
as inputs of the ANN model. The relative performance of the 
proposed coupled wavelet–neural network models (WA–
ANN) was compared to regular artificial neural network 
(ANN) models and autoregressive integrated moving average 
(SARIMA) models for monthly groundwater level 
forecasting. The results indicated the potential of WA–ANN 
models in forecasting groundwater levels. [22] compared 
WA-SVR with ANN, SVR and autoregressive integrated 
moving average model (SARIMA) to show that the WA-
SVR yielded better accuracy. [21] applied Wavelet-Support 
Vector Regression (W-SVR) forecasting monthly 
groundwater level fluctuations observed in three shallow 
unconfined coastal aquifers in the southwestern part of 
Karnataka adjoining the Arabian Sea. To assess the accuracy 
efficiency of the model, The Sequential Minimal 
Optimization Algorithm-based SVR model was also used in 
the same data sets. The comparison was made with different 
statistical indices. Results demonstrated that WP–SVR 
model outperforms the classic SVR model in predicting 
GWL at all the three well locations. [12] predicted GWL for 
lead times of 1, 2 and 3 months for 3 observation wells in the 
Ejina Basin using the wavelet-artificial neural network (WA-
ANN) and wavelet-support vector regression (WA-SVR). 
Results showed that WA-ANN and WA-SVR have better 
performance than ANN and SVR models. WA-SVR yielded 
better results than WA-ANN model for 1, 2 and 3-month 
lead times. 

It is obvious from the related literature that in the hybrid 
models were a single data driven that directly were 
constructed from the de-noising data of GWL. As wavelet 
analysis was applied to decompose the historical data of 
GWL into different sub series and each component was 
predicted by using the statistical models or artificial 
intelligence (AI) models and predicted components were 
summed to predict GWL. To date, no work has reported the 
capability of combination three methods include wavelet 
transform, SARIMA, and MLP for GWL forecasting. This 
provided an impetus for the current research. However, for 
the first time, this research is applied a new technique to 
predict groundwater level by wavelet transform as an 
effective tool to remove the useless information in a time 
series, the SARIMA model to forecast linear relationships, 
and the Multilayer Perceptron model (MLP) to handle 
nonlinear patterns. In this model, the historical data are first 
decomposed the original data into an approximate part 
associated with seasonal component (low frequency) and 
some detailed part associated with random component (high 
frequencies) via a wavelet transform. The SARIMA model is 

established by the seasonal signal and the MLP model using 
the low-frequency signal to forecast. Finally, the GWL is 
forecasted by combining the prediction values of SARIMA 
and MLP. Finally, the performance of WDCM model is 
compared with the SARIMA, MLP, and W-SARIMA and 
W-MLP combined model, which were established using the 
de-noising data. 

II. METHODOLOGY 

A. Case study 

The Urmeih plain is a coastal aquifer located at the east 
of Urmeih Lake, Iran which lies between the eastern 
longitude of 44°, 20′ and 45°, 20′ and northern latitude of 
37°, 05′ and 38°, 05′ (Fig. 1). Urmeih Lake is a large natural 
reservoir, which provides water requirements for different 
uses such as agricultural, industrial, and domestic. The total 
length of coastline is around 3000 m. It is influenced under 
the sub-tropical marine monsoon climate. This plain covers 
an area of about 248.34 km2 and mean annual temperature 
and precipitation in the area are 16 °C and 304 mm, 
respectively. In this aquifer, groundwater flows from areas of 
a high hydraulic head in the west to the areas of a low 
hydraulic head in the east. To monitor the GWL, 55 
observation wells were installed in the Urmeih aquifer. In 
this study, for providing the wavelet de-noising- based 
combined model (WDCM) to predict groundwater level at 
observation well was used (Well 1, in Fig. 1). Groundwater 
level data used in the current study cover 16 years data (192 
monthly levels) between 2000 and 2016. The data set from 
2000–2011 is used for model establishment, and the data set 
from 2012–2016 is used for predicting the dynamic change. 
Descriptive statistics for groundwater level at the observation 
well is shown in Table 1. 

TABLE I.  THE DESCRIPTIVE STATISTICS FOR OBSERVATION WELL. 

Number 
of Data 

Table Column Head 

Mean Max Min StD 

192 1281.92 1284.24 1279.3 1.16 

 
Fig. 1. The location of the study area and the spatial distributions of 
observation well  

B. Dicrete Wavelet Transform (DWT) 

The wavelet transform is the popular tool of the Fourier 
Transform because of its multi resolution in time and 
frequency domain. The function ψt presents a mother 
wavelet, which has shock characteristics and diminishes to 
zero quickly [5,23,13]. Wavelet functions decompose the 
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time series into subseries with various frequency domains, 
and then considers each subseries with a resolution 
corresponding to its frequencies thus dominating the 
deficiencies of Fourier transform. In employing Discrete 
Wavelet Transform (DWT), a finite number of shifts and 
scale levels are considered. The wavelet coefficients are 
calculated using DWT and the simplest and most impressive 
approach, where scales (a) and shift (τ) are chosen on basis 
of the powers of 2, called dyadic scales and shifts 5,13]. 
DWT functions are usually presented by 

ܽ ൌ ܽ଴
௝				߬ ൌ ݇ܽ଴

௝߬଴																ܽ଴ ൐ 0 

	߬଴ ∈ ܴ, ∀݆, ݇ ൌ 0,1,2,3, … ,݉ ∈ ܼ   (1) 

߮௝,௞ሺݐሻ ൌ ܽ଴
ି௝

ଶൗ ߮ ൬
௧ି௞௔బ

ೕఛబ

௔బ
ೕ ൰ ൌ ܽ଴

ି௝
ଶൗ ߮ሺܽݐ଴

ି௝ െ ݇߬଴ሻ (2) 

 The most common selection is ܽ଴ ൌ 2,߬଴ ൌ 1, and then 
the DWT becomes binary. For a discrete GWL time series 
LL(t), in which LL(t) happens at a discrete integer time step 
t, the dyadic discrete wavelet transformation can be defined 
as: 

W୤ሺj, kሻ ൌ ∑ LLሺtሻ2
ି୨

ଶൗ φ୨,୩ୣ୸ ሺ2ି୨t െ kሻ   (3) 

Here, ௙ܹሺ݆, ݇ሻ shows the specifications of the lake level 
time series in scale (a or j) and time domain (τ or k). When 
either a or j is small, the frequency resolution diminishes, but 
the time domain increases. When either a or j is large, the 
frequency resolution increases, but the time domain 
diminishes (Wang and Ding 2003). The input signal can be 
built using the equation: 

LLሺtሻ ൌ ∑ W୤ሺj, kሻφ୨,୩ሺtሻ୨,୩∈୸                                 (4) 
In Eq. (4), ௙ܹሺ݆, ݇ሻ applies down-sampling to calculate 

an approximation coefficient ሺܽூሻ at decomposition level I 
with a low pass filter ܮሺ߮௝,௞ሺݐሻሻ  , and detail 
coefficientsሺ݀ଵ, ݀ଶ, ݀ଷ, … , ݀ூሻ at various levels 1, 2, . . ., I 
with a high pass filterܪሺ߮௝,௞ሺݐሻሻ. ܽூ	presents identity of the 
time series and ݀ଵ, ݀ଶ, ݀ଷ, … , ݀ூ  show the detailed 
information of the time series such as jump, period, break 
and so on. However, the coefficient ሺܽூሻ  and ሺ݀ூሻ  cannot be 
directly summed to generate the time series as they are 
produced by down-sampling and are only half the length of 
the time series. So, it is indispensable to reconstruct the 
approximations ሺܽூሻ and details ሺ݀ூሻ before summing them 
[23]. Then the time series can be explained as: 

 

LLሺtሻ ൌ a୍L ቀφ୨,୩ሺtሻቁ ൅ ∑ d୍Hሺφ୨,୩ሺtሻሻ୍ୀଵ    (5) 
LLሺtሻ ൌ a୍ ൅ ∑ d୍୍ୀଵ     (6) 

 

C. SARIMA Model 

An SARIMA model can be explained as ARIMA (p, d, 
q) (P, D, Q)s, where (p, d, q) is the nonseasonal part of the 
model and (P, D, Q)s is the seasonal part of the model in 
which p is the order of non-seasonal auto-regression, d is the 
number of regular differencing, q is the order of non-
seasonal MA, P is the order of seasonal auto-regression, D is 
the number of seasonal differencing, Q is the order of 
seasonal MA, and s is the length of season [19]. 

D. Multilayer perceptron (MLP) 

ANN models are powerful non-linear modeling approaches 
that work by imitating how the human brain functions. ANN 
is able to create a complex network mapping between input 

and output variables that has the ability to estimate non-
linear functions. Multilayer Perceptron (MLP) one of the 
most widely used ANNs [15]. The MLP is composed of one 
input layer, one output layer and at least one hidden 
layer[16]. The MLP can be expressed as follows: 

y୧ ൌ fሺ∑ w୨୧x୧
୒
୧ୀଵ ൅ b୨ሻ                           (7) 

where x୧ and N denote the ith nodal value and the number of 
nodes, respectively, in the previous layer; f and y୨, b୨ are the 
jth nodal value, the bias of the jth node and the activation 
function, respectively, in the current layer; and w୨୧  is a 
weight connecting x୧ and y୨. A number of studies have found 
that one hidden layer is sufficient for the ANN model to 
estimate complex non-linear functions for hydrological 
data[4]. Initial results of our study also indicated that one 
hidden layer was adequate to approximate the relationship 
between groundwater level and the different components of 
the hydrologic cycle. Determining the size of the hidden 
nodes is an important part of the MLP and it is often done 
using a trial and error approach although guidelines on how 
to best determine the size of the hidden nodes have also been 
proposed. number of hidden nodes was proved to learn Ni 
samples with a negligibly small error is identified as 
follows[11]:  

ܰு ൌ 2ඥሺܰ௢ ൅ 2ሻܰ௜    (8) 
ܰு denotes the maximum size of hidden nodes 

and 	ܰ௜ and 	ܰ௢  are the size of input and output nodes, 
respectively. In this study, the optimal size of hidden nodes 
was specified based on a trial and error approach, where the 
size of the hidden nodes was modified from one to	ܰு. The 
Levenberg–Marquardt (LM) algorithm, one of the most 
efficient and fast algorithms in MLP, was used for training 
[11]. 

 
Fig. 2. A configuration of the Multilayer Perceptron (MLP) neural 
network model 

E. The wavelet de-noising- based combined model 
(WDCM) 

The WDCM model utilizes a wavelet transform to a 
hybrid model. This hybrid model consists of SARIMA and 
MLP. Firstly, the original GWL time series is decomposed 
into a low-frequency component (A) and a high frequency 
component (D) by the wavelet decomposition. Then, the 
SARIMA is used to capture the linear pattern and seasonal 
pattern of the GWL time series. After that, the MLP is 
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primarily used to capture the non-linear pattern of the GWL 
time series. Finally, the forecasting values of the original 
GWL time series are calculated by combining the results of 
the SARIMA model and the MLP model. For establishing 
DWT and MLP modeling, MATLAB software was applied 
and for SARIMA modeling, MINITAB software was used. 

III. RESULT 

In this paper, the new WDCM hybrid model was applied 
for the first time to forecast monthly GWL. The WDCM 
model utilizes a wavelet transform to a hybrid model. This 
hybrid model consists of SARIMA and MLP. The 
performance of WDCM model was compared with the 
SARIMA, MLP, and WSARIMA and WMLP combined 
model, which were established using the de-noising data. 
Groundwater level data used in the current study cover 16 
years data (192 monthly levels) between 2000 and 2016 in 
Urmieh aquifer, Iran. The observation values of GWL data 
set from 2000–2011 were used to establish and the GWL 
data set from 2012–2016 is used for validation.  In the first 
step, the original GWL time series was decomposed into a 
low-frequency component (A) and a high frequency 
component (D) by the wavelet decomposition. The 
component of D represents the main features of the chaotic 
and stochastic components, and the component of A is often 
called the periodic and seasonal components. The idea of this 
step is to separate the random disturbance (nonlinear pattern) 
from the seasonal characteristics (linear pattern). The 
monthly groundwater level data were decomposed using 
Daubechies (db4) mother wavelet. DWT breaks up original 
time series into two subseries containing a detail component 
and one approximation component. The decomposition 
process of db4 is shown in Fig. 3 which includes the original 
groundwater signals (GWL), the approximation coefficients 
at level 1 (A1), and the detail coefficients at level 1 (Dl). The 
A1 is a smoothed version of the original series. Each 
component plays a particular role in time series and follows a 
special pattern about the original time series. For this reason, 
each two components (A1 and D1) were applied as inputs to 
the SSARIMA and MLP models, respectively. It is important 
in model development that the full data split to training and 
test data as a requirement to avoid incorporating future 
information[12]. Hence, the wavelet decomposition process 
was applied on each partition (i.e., training and testing) 
independently. It should be emphasized that if the full dataset 
(i.e., training and testing) is decomposed, then future data 
(that is not available to the modeler) could be used in the 
calculation of wavelet coefficients and lead to introduce bias 
into the forecasts [5]. In the second step, the SARIMA was 
primarily used to capture the linear pattern and seasonal 
pattern of the GWL time series. Then, the MLP was 
primarily used to capture the non-linear pattern of the GWL 
time series. Finally, the forecasting values of the original 
GWL time series were calculated by combining the predicted 
values of the SARIMA model with the predicted values of 
the MLP model.  In SARIMA model, the autocorrelation 
function (ACF) and the partial autocorrelation function 
(PACF) of the groundwater data were extracted. Then, 
parameters (p,d,q, P, D, Q) was defined considering the 
cutout and continuity features in the plot of ACF and PACF. 
In the MLP model, the weights were adapted using LM 
learning algorithm, the tansigmoid transfer function was used 
for the hidden nodes and the size of the hidden nodes was 
identified using a trial and error approach. The best structure 
and the R, RMSE, MAE, and NSE statistics of the optimal 

WDCM model in training and testing were given in Table 2. 
The comparison of calculated values of A1, D1, and GWL 
using the WDCM model with the actual values is shown in 
Fig. 4.  

 
Fig. 3. The de-composition process of the original GWL data  

TABLE II.  THE BEST STRUCTURE AND PERFORMANCE OF MODELS 
FOR GWL FORECASTING 

 

The results of Table 2 and Fig. 4 clearly show that the 
WDCM model can capture the nonstationary and highly 
noisy features of the GWL data very well. The R, RMSE, 
MAE and NSE values indicate that the WDCM model yields 
a satisfactory performance and a high forecasting accuracy.  

verify the WDCM method, the performance of this model 
was compared with the SARIMA, MLP, and combined 
model which were established using the de-noising data (W-
SARIMA and W-MLP). The comparisons of GWL values 
forecast using SARIMA, MLP, W-SARIMA, and W-MLP 
with the WDCM model are shown in Table 3. 

With respect to R, RMSE and NSE criteria, it was 
concluded that the WDCM model has better performance 
than others models and can more accurately describe the 
GWL time series. It can be observed from the statistical 
results in Table 3 that the MLP model was found to 
outperform SARIMA. MLP model has higher R and smaller 
RMSE than SARIMA model. Comparison of the MLP and 
W-MLP indicated that DWT has had a high impact on 
improving the MLP model performance, so that the RMSE 
and NSE criteria in the W-MLP in compare with MLP model 
improve 28% and 57%, respectively. While, in SARIMA the 
RMSE and NSE criteria improve 4% and 5%, respectively. It 
is observed a worth note that there are more stochastic and 
nonlinear pattern in GWL data, so the SARIMA and W-
SARIMA models were not able properly to predict this time 
series. 

 

R RMSE MAE NSE R RMSE MAE NSE

A1 SARIMA (2,1,1)(1,1,1)12 0.99 0.14 0.10 0.98 0.98 0.24 0.18 0.96

D1 MLP (1,3,1) 0.51 0.15 0.11 0.25 0.63 0.22 0.15 0.36

(SARIMA+MLP) 0.91 0.45 0.38 0.81 0.85 0.71 0.54 0.71WDCM

De-noiseMethod Training Step Testing StepStructureModel

DWT
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Fig. 4. The comparison of training and testing steps for the WDCM 
model 

TABLE III.  THE RESULTS OF SARIMA, MLP, W-SARIMA, W-MLP , 
AND WDCM MODELS  

 

IV. CONCLUSIONS 

The moving average methods, such as SARIMA model, 
are capable to predict the time series containing the trend and 

seasonal variation and are a sophisticated method in time 
series that have linear characteristic. AI methods, such as 
MLP, are as an effective method in time series with 
nonlinear characteristic. In the other hand, in GWL time 
series contain both linear and nonlinear patterns, combining 
different models can increase the chance of capturing 
different patterns and improve the forecasting performance. 
In previous studies, combined models have been established 
with the de-composition data for GWL prediction. In this 
paper, for the first time, the wavelet de-noising- based 
combined model (WDCM) was applied for GWL 
forecasting. The WDCM model utilizes a wavelet transform 
to a hybrid model that DWT separate the original data into an 
approximate part (A1) associated with linear pattern and a 
detailed part (D1) associated with high frequencies, the 
SARIMA model to forecast linear relationships, and the 
Multilayer Perceptron model (MLP) to handle nonlinear 
patterns. Then, the GWL was forecasted by combining the 
prediction values of SARIMA and MLP. Finally, the 
performance of WDCM model was compared with the 
SARIMA, MLP, and W-SARIMA and W-MLP combined 
model, which were established using the de-noising data. 
Results showed that the WDCM could lead to a considerably 
increased accuracy of GWL modeling.  
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