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Abstract—The analysis of nuclear (power) plant (N(P)P) 

neutron flux (NF) signals is imperative for ensuring safe 

and optimal1 on-line N(P)P operation. Rather than the 

NF signals per se, it is the NF signal perturbations that 

are of interest, as the latter provide precise information 

concerning the instantaneous (relative) changes in N(P)P 

operation/status. In this piece of research, general 

regression artificial neural networks (GRNNs) are 

implemented for monitoring and concurrently 

identifying (detecting, classifying and localizing) both 

N(P)P deviations from steady-state operation and 

neutron detector (ND) malfunctions, in a timely, reliable 

and maximally efficient manner. The proposed approach 

accomplishes modularity and flexibility of operation by 

employing (a) raw NF signals as its source of 

information and (b) complementary NF signal encodings 

– derived from pertinent ND configurations – of the 

problem space. The use of GRNNs is found most 

satisfactory for the present monitoring/operation and 

malfunction detection/localization task, combining (i) 

low computational (time as well as space) complexity 

during GRNN training and testing, implemented by the 

straightforward optimization of the spread (σ) 

parameter and single-pass training/testing, with (ii) 

transparency of construction and (iii) accuracy and 

consistency in the identification of the cause(s) behind 

deviating-from-normal N(P)P behaviour, (iv) partial 

only GRNN retraining following modification of the 

training set. It is envisaged that appropriately combining 

the responses derived from different GRNNs shall 

further improve both the accuracy and the sensitivity of 

deviation/malfunction detection. 

Keywords—general regression artificial neural network 

(GRNN), polynomial (PA) approximation, semi-parametric spline 

(SPS), nuclear (power) plant (N(P)P), neutron detector (ND), 

                                                           
1 expressed in terms of minimal fuel use for maximal energy production 

neutron flux (NF), neutron noise, normal/deviating operation, 

instrumentation malfunctioning, cross-validation (CV) 

I. INTRODUCTION  

Nuclear (power) plant (N(P)P) [1] construction is based 

on considerably detailed, complex models which relate 

modes of N(P)P operation to macroscopic cross-sections. 

Determining/predicting/monitoring N(P)P operation 

requires the formulation of the neutron flux (NF) 

perturbations/fluctuations 2  of NF signals, which is 

implemented – as a rule – via pertinent and minutely 

detailed models created by experts prior to (and as a guide 

for) N(P)P construction. Although such models accurately 

express the underlying physical phenomena and processes, 

their derivation is highly complex, as is their understanding 

and subsequent application.  

It is, thus, advantageous to use expert opinion for 

building a simplified, yet sufficiently detailed, model of the 

N(P)P of interest based on a comprehensive set of data 

which relates the observed/captured NF perturbations to 

macroscopic cross-sections [2]. The resulting simulations 

constitute pertinent abstractions of the underlying processes, 

where the outputs can be directly related to the location and 

characteristics of the driving perturbation(s). It is customary 

to use the derived simulated signals 3  for defining and 

expressing the modes of operation of the N(P)P of interest 

as well as for investigating (detecting, identifying and 

rectifying) the N(P)P problems that may arise during 

operation; special emphasis is placed on N(P)P regime 

transitions and on situations where the in- and/or ex-core 

instrumentation is scarce. 

                                                           
2 caused mainly by (i) two-phase (liquid/gas) coolant flow as well as (ii) 

perturbations of physical processes 
3 as well as those derived from the formulae/models created during N(P)P 

design preparation/formulation 
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(a)

(b) 

Fig. 1 The original INDET1, INDET2 and INDET3 signals (a), 
and the pairwise differences of the same signals following their 
(independent) scaling (b). 

The focus of this research is upon non-parametrically 

(rather than analytically) inverting the reactor transfer 

function for recovering the processes that are responsible for 

the observed fluctuations, thus enabling (i) the detection of 

deviating-from-normal NF signals and (ii) the identification 

of the cause(s) behind such operation. By utilizing the 

minimum (a) number of neutron detector (ND) signals and 

(b) signal length, the proposed methodology is rendered (A) 

modular, (B) implementable in a maximally (time and 

space) computationally efficient manner and (C) capable of 

producing timely and – at the same time – reliable decisions 

on signal validity as well as on the identity/cause4 of the 

observed deviations from expected operation.  

This contribution is organized as follows: Section II 

introduces the general framework of N(P)P monitoring as 

well as of signal anomaly/ND malfunction detection; 

Section III implements signal verification and prediction via 

both parametric polynomial approximation (PA) [3], semi-

parameric spline (SPS) [4] and non-parametric general 

regression artificial neural network (GRNN) [5] approaches 

on the datasets of [6-7] as well as on parts thereof 

systematically derived from 10-fold cross-validation (CV) 

[8], thereby establishing the validity and generalization 

properties of the three approximations on the problem at 

hand;  Section IV critically presents and compares the 

prediction/verification results of the datasets, with Section V 

summarizing the results and putting forward future research 

aims concerning N(P)P monitoring and diagnosis.  

II. N(P)P MONITORING – NDS, NEUTRON NOISE 

SIGNALS & PROBLEM FORMULATION  

A. Neutron Noise Signals - N(P)P Signal/Detector-Related 

Problems  

Neutron noise signals constitute the prevalent source of 

information for performing N(P)P system analysis and 

identification as well as real-time characterization of the 

N(P)P operation mode and status. Further to the pure 

neutron noise part – which is inherent in the neutron noise 

signal per se and crucial for system verification and on-line 

monitoring purposes – these signals may also encompass 

signal drifts and/or more systematic oscillations, which 

result from such – common, yet crucial – factors [2] as (a) 

core barrel beam mode, (b) cylindrical component shell 

mode, (c) cylindrical component mode, as well as (d) fuel 

assembly beam mode5, as well as other temporary and/or 

harder to define sources, thus effectuating – at times – a 

significant distortion/corruption of the neutron noise signal 

to be analyzed. It is important that the various source(s) of 

N(P)P signal corruption can be distinguished and 

characterized as:  

                                                           
4 herein confined to abnormal perturbations and/or malfunctioning neutron 

detector(s) (ND(s)) 
5 which are also characteristic (unique) to the specific N(P)P 

 (i) a fluctuation or distortion of the neutron noise signal 

(random or more systematic)6; 

(ii) malfunctioning of the ND per se, e.g. ND bias, 

intermittencies, consequently hindering correct signal 

capture in varying ways and to different degrees. 

The present aim is to accomplish swift and accurate 

monitoring, anomaly detection, localization as well as 

identification of diverging N(P)P operation while minimizing 

the computational complexity of signal processing and 

validation. To this end, the use of (i) the minimum number of 

ND signals collected for (ii) the shortest possible time-

window, is implemented.  

It is important to mention that, for longer time-windows 

and/or less stringent on-line operation requirements, moving-

window wavelets and wavelet multiresolution analysis [9] 

can be applied to the signals as an 

alternative/complementary, dependable as well as robust, 

frequency-based signal analysis tool (e.g. [10]).  

 

 

                                                           
6 yet excluding the noise that is inherent in the neutron noise signal per se, 

which is crucial for system identification and verification purposes 
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TABLE I. RELATIONSHIP BETWEEN CORRELATED ND 

SIGNALS INDET1, INDET2 AND INDET3 DEPENDING ON (A) 

SIGNAL CORRECTNESS AS WELL AS (B) CORRECT 

OPERATION OF THE NDS PER SE (DET1, DET2, DET3) ; 
ERRONEOUS SIGNALS AS WELL AS MALFUNCTIONING 

DETECTORS ARE MARKED BY ×. 

  

(a) 

 

(b) 

 

(c) 

Fig. 2 Examples of drift (a), fluctuations (b) and drift/ 
fluctuation combinations of as well as intermittencies (c) 
applied to the normalized signal INDET1 (blue signal at the 
bottom of each illustration). 

 

B. Number and Location of Required/Used NDs 

For the purposes of efficiency and timeliness of 

response7, rather than using all the available ND signals in 

concert, the concurrent utilization of 3-tuples of ND signals 

is proposed for verifying signal correctness as well as for 

                                                           
7  the more detectors used, the more substantiated the decision, yet the 

higher the computational time/space complexity of the required analysis 

boosting collective ND performance.  

The rationale behind such a choice is that, although two 

NDs are not adequate for the task-at-hand8, three NDs can 

be used as a means of competently as well as confidently 

deriving signal validity, implemented by two pairwise – and, 

only if desired/required, also a three-tuple – tests. Further to 

the modularization and transparency of the decision-making 

process, both the robustness and the swiftness of the final 

decision are maximized in cases of erroneous/unexpected 

signals and/or of failing NDs. The concurrent use of three-

tuples of NDs further covers the far-from-infrequent 

situation of scarce in- and ex-core instrumentation, where 

strategically selected sets of three NDs are capable of 

reliably detecting and – furthermore – verifying the health-

status of the NDs, as well as of, subsequently, analyzing the 

information encoded in the neutron noise signals.  

Aiming at timeliness (on-line response) and efficiency of 

operation, the minimal signal length that guarantees 

confident signal verification is utilized. It is important that 

the collected signals from the selected NDs be highly 

correlated pairwise, so that – in case of signal corruption or 

component malfunction – the change (drop) in correlation 

between one or more pairs of signals can act as an early sign 

of decreasing agreement between these signals, which can 

be exploited directly for efficiently identifying the erroneous 

signal(s) and/or the malfunctioning ND(s). It is also possible 

to aggregate the decisions of different combinations of NDs 

(based, for instance, on signal correlation, ND location and 

distance)  for  reaching  a  consensus-driven  decision which  

                                                           
8 since – in case of disagreement between pairs of ND signals – it is not 

possible to establish which ND is misbehaving and/or receiving abnormal 

information 
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TABLE II. PA PEFORMANCE: DEVIATION BETWEEN ACTUAL 

AND PA-PREDICTED ND SIGNAL INDET2 FROM ND SIGNALS 

INDET1, INDET3 AND INDET&INDET3 DEPENDING ON (A) 

SIGNAL CORRECTNESS AS WELL AS (B) MALFUNCTIONING  

NDS PER SE (DET1, DET2, DET3); ENTIRE DATASET RESULTS 

(A-B). 

PA 

input(s) 

Indet1 to 

Indet2  

vs Indet2 

Indet3 to 

Indet2  

vs Indet2 

Indet1 and Indet3 

to Indet2 vs Indet2 

normal 2.4788e-16 2.1867e-16 5.0218e-17 

TS 0.0643 0.0644 0.0447  

TL 0.1287 0.1287 0.0894 

OS 7.1806e-08 7.1806e-08 4.9883e-08 

OL 1.7951e-07 1.7951e-07 1.2471e-07 

OT 0.0644 0.0644 0.0447 

MR 0.0156 0.0156 0.0111 

(a) 

PA 

input(s 

Indet1 to 

Indet2  

vs Indet2 

Indet3 to 

Indet2  

vs Indet2 

Indet1 and Indet3 

to Indet2 vs Indet2 

normal 2.4788e-16 2.1867e-16 5.0218e-15 

TS 3.3200e-04 2.3403e-05 0.0447 (Det1×) 

0.0196 (Det3×) 

0.0447(Det1,3×) 

TL 6.6402e-04 4.6807e-05 0.0894 

0.0393 

0.1287 

OS 3.7048e-11 2.6117e-12 4.9883e-08 

2.1917e-08 

7.1800e-08 

OL 9.2620e-11 6.5290e-12 1.2471e-07 

5.4793e-08 

1.7950e-07 

OT 3.3201e-05 2.3403e-06 0.0447 

0.0196 

0.0643 

MR 2.7793e-04 1.5908e-04 0.0111 

0.0045 
0.0156 

(b) 

takes into account each ND-derived decision, while – at the 

same time – also exploiting the confidence in, as well as the 

complementarity of, the individual decisions. 

C. Modes of N(P)P Operation and Deviations from 

Normal Operation – Problem Formulation 

In the following description and demonstration, three-

tuples of signals derived from SIMULATE-3K [6], named 

here INDET1 and/or INDET3 (collected by detectors D1 

and D3, respectively) are used for demonstrating the 

prediction of signals INDET2 (collected by detector D2). A 

set of three such signals is shown in Fig. 1(a), with Fig. 1(b) 

further demonstrating the pairwise relationships between 

these signals, derived by independently normalizing each 

signal in the [0.1 0.9] interval and subtracting one signal 

from the other; both the high-frequency fluctuations, which 

are largely due to the inherent – and most important in 

signal analysis and identification – noise in the neutron 

signals, and other kinds of fluctuations can be observed at 

different time-stamps and scales (frequencies). Despite their 

differences (Fig. 1(b)), these signals are highly correlated 

(with their pair-wise correlation coefficients ranging in [0.85 

0.99]), thus rendering the ensuing investigation a proof-of-

concept test.  

The three approximation/prediction methodologies 

(PAs, SPSs and GRNNs) are implemented in identical 

fashion for monitoring and concurrently identifying 

(detecting, classifying and localizing) both N(P)P deviations 

from steady-state operation and neutron detector (ND) 

malfunctions in a timely, reliable and maximally efficient 

manner and, subsequently compared. The procedure is 

described next for the {INDET1,INDET2} pair of input-

output neutron-noise signals, yet is directly transferable to 

the other two (one pair and one triplet of) signals employed 

for training each GRNN; during testing, INDET1/3/1&3(t’) 

is/are used for predicting INDET2(t’), t’≠t. The PA, SPS 

and GRNN methodologies are implemented, independently 

each, yet under identical conditions of data normalization 

and partitioning. 

The following tests involve the original signals, as well 

as their corrupted versions, which take on the form of: 

• Drifts, implemented by adding linear trends to the 

original signals; different amplitudes of the slope are 

used for investigating the capability of, as well as the 

“limit” on, successfully retrieving the original (trend-

free) signals.  A small and a large trend (TS an TL, 

respectively), from the trends used in the present tests, 

are shown in Fig. 2(a). 

• Fluctuations, simulated by adding sinusoidals to the 

original signals; as for the drift, different amplitudes 

and frequencies of the sinusoidals are tested, with a 

small and a large oscillation (OS an OL, respectively) 

of the same frequency appearing in Fig. 2(b). 

• Combinations of drifts and oscillations (OT, Fig. 2(c)).  

• Intermittencies (MR), where parts of the original 

signals are missing; simulating the real situation, these 

parts are substituted by the (local) mean value of the 

signal, overlaid with white noise of different 

amplitudes (Fig. 2(c)).  

The absolute minimal signal length is used for signal 

verification, namely the {INDET1(t), INDET2(t)}, 

{INDET3(t), INDET2(t)} and {[INDET1(t), INDET3(t)], 

INDET2(t)} input-output pairs of signals captured at times t 

are employed for setting up the proposed 

approximation/prediction methodologies 9 . During testing, 

signals INDET1(t’), INDET3(t’) or [INDET1(t’), 

INDET3(t’)], captured at time t’(≠t), are used for predicting 

INDET2(t’). It is important that, in case of malfunction, the 

change (drop) in correlation between one or more pairs of 

                                                           
9 this is rendered possible by the high correlation between the signal pairs; 

although longer records may well be needed for signals characterized by 

lower cross-correlation coefficients, record length should still be kept 

minimum so as to ensure low computational and time complexity of 

operation. 
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signals can (i) act as an early sign of decreasing agreement 

between them and (ii) be further exploited for identifying 

the erroneous signal(s) and/or the malfunctioning ND(s)10. It 

is also possible to aggregate the decisions of different 

combinations of NDs (based, for instance, on signal 

correlation, ND location and distance) for reaching a 

consensus-driven decision that takes into account each ND-

derived decision while further exploiting the confidence in, 

as well as the complementarity of, the individual decisions. 

Table I shows a simplified scheme of the effect that 

erroneous (marked as ×) signals Indet1, Indet2 and Indet3 

and/or (ii) malfunctioning (also marked as ×) detectors Det1, 

Det2 and Det3 have on establishing (i) signal validity and 

(ii) ND (mal)functioning.  

III. ND SIGNAL PREPARATION FOR 

VERIFICATION/MONITORING/PREDICTION –          

IMPLEMENTED METHODOLOGIES 

A. Problems Tackled – Inherent Data  Errors, ND 

Malfunctions  

The three approaches use sets of identical – in terms of 

time of collection – input and output signals and are tested on 

identical parts of the dataset according to the use-all and 10-

fold CV and, subsequently, compared.   

Three distinct cases are investigated, namely (1) both 

input signals being correct and the ND(s) behaving normally; 

(2) the input signals being correct, yet – due to ND 

malfunction(s) – some, or all, of them being recorded 

erroneously; (3) (some, or all of) the signals per se being 

erroneous and the NDs operating normally. Furthermore, for 

the prediction of the INDET2 signal in the case where both 

the INDET1 and INDET3 signals are used, all the 

combinations of correct vs corrupted input signals and 

detectors operating as expected or malfunctioning (i.e. 

erroneously recording the signals) are examined. In the 

following, case (1) is reported and thoroughly analyzed. The 

results of case (2) are also reported but not further analyzed, 

as the effects of malfunctioning ND(s) cannot be sufficiently 

defined or confirmed by expert consultation; this is due to 

that fact that the effects depend on the ND per se, as well as 

on the kind and severity of malfunction, whereby expert 

judgment is necessary for confidently interpreting the 

recordings. In any case, it is assumed in the following that a 

distorted signal takes one the forms of the corrupted versions 

described in Section II.C. 

                                                           
10 it is also possible/of interest, and a topic of future research, to adjust the 

length of the time-window depending on the current cross-correlation value 

between the pairs of INDET1, INDET2 and INDET3 signals  

B. Prediction Methodologies  

Three prediction/function approximation methodologies, 

which cover the entire parametric through to non-parametric 

spectrum, are used, namely PA, SPS’s and non-parametric 

GRNN’s. 

While the parametric PA analytically determines the 

optimal polynomial coefficients such that the input variables 

approximate the output variable(s) by minimizing the 

distance (absolute or squared differences) between actual 

and predicted outputs, SPS’s employ a set of predefined 

forms which are, subsequently, appropriately combined in a 

piece-wise manner (i.e. locally over the independent 

variable of the problem space) so as to optimally 

approximate the output variable(s) from the input variables.  

The non-parametrically trained and operating GRNN, on 

the other hand, constitutes a two-layer artificial neural 

network architecture of straightforward as well as 

transparent construction, which makes use of a single 

parameter (σ, the spread). The GRNN implements (i) direct 

correspondence between its layers and problem elements/ 

characteristics, (ii) logic-based connectivity and automatic 

connectivity-based weight assignment, and (iii) single-epoch 

training for the creation of (iv) a non-parametric free-form, 

purely data-derived and σ-tuned optimal hypersurface that 

forms the separating hyperplane between pattern classes11. 

A single presentation of the training patterns is sufficient for 

setting the optimal form of a non-parametric curve such that 

correct outputs are returned to known inputs, as well as to 

novel inputs derived from the same pattern space. Due to the 

distance (σ-) dependent interaction between nodes for the 

formation of the GRNN output, the GRNN decisions are 

robust to noise.  

The nodes of the two GRNN layers represent: 

i. the input features (problem characteristics/ 

dimensions), with each feature being encoded in a 

single node of the lower layer of the GRNN; 

ii. the training patterns, with each pattern encoded in a 

single node of the upper layer of the GRNN; 

iii. the connections between nodes, which are only 

possible between nodes of different layers and, 

furthermore, limited between pairs of nodes (one 

node from each layer) which are related in a positive 

or negative manner, namely by whether the 

appearance of the input feature represented by the 

connected node of the lower layer is promoted or 

                                                           
11 the value of σ determines the range of influence of each training pattern, 

and consequently the shape of the GRNN approximating hyperspace in 
terms of desired continuity of the separating hyperplanes; the smaller (vs 

larger) the value of σ, the more localized yet significant the influence of 

each training pattern on the separating hypersurface and, thus, the more 

detailed, specific/faithful to local detail (vs general) the interpolation 

between neighbouring training patterns 
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TABLE III. SPS PEFORMANCE: DEVIATION BETWEEN ACTUAL 

AND SPS-PREDICTED ND SIGNAL INDET2 FROM ND SIGNALS 

INDET1, INDET3 AND INDET1&INDET3 DEPENDING ON (A) 

SIGNAL CORRECTNESS AS WELL AS (B) MALFUNCTIONING  

NDS PER SE (DET1, DET2, DET3); ); ENTIRE DATASET RESULTS 

(A-B). 

SPS 

input(s) 

Indet1 to 

Indet2  

vs Indet2 

Indet3 to 

Indet2  

vs Indet2 

Indet1 and 

Indet3 to Indet2 

vs Indet2 

normal 1.3256e-16 1.0652e-16 3.3348e-17 

TS 0.0538 0.0517 0.0489 

TL 0.1108 0.1200 0.1087 

OS 3.6290e-09 3.6302e-09 9.9736e-10 

OL 0.9532e-07 0.9532e-07 0.6580e-08 

OT 0.0604 0.0611 0.0406 

MR 0.0153 0.0154 0.0103 

(a) 

SPS 

input(s) 

Indet1 to 

Indet2  

vs Indet2 

Indet3 to 

Indet2  

vs Indet2 

Indet1 and 

Indet3 to 

Indet2 vs 

Indet2 

normal 1.3256e-15 1.0652e-15 3.3348e-15 

TS 8.3092e-04 8.2499e-04 0.0506 
0.0467 

0.0506 

TL 7.8407e-05 5.6649e-06 0.1278 
0.0709 

0.1684 

OS 3.4520e-11 5.71383e-12 8.8106e-07 

7.3301e-08 
9.0054e-07 

OL 8.2620e-11 6.5290e-12 1.9738e-07 

6.7390e-08 
2.3261e-07 

OT 3.9201e-05 2.3403e-05 0.0168 

0.0150 
0.0190 

MR 1.4322e-04 5.6301e-04 0.0232 

0.0059 

0.0288 

(b) 

TABLE IV. GRNN PEFORMANCE: DEVIATION BETWEEN 

ACTUAL AND GRNN-PREDICTED ND SIGNAL INDET2 FROM 

ND SIGNALS INDET1, INDET3 AND INDET1&INDET3 

DEPENDING ON (A) SIGNAL CORRECTNESS AS WELL AS (B) 
MALFUNCTIONING  NDS PER SE (DET1, DET2, DET3); ); 10FCV 

RESULTS (A-B). 

GRNN 

input(s) 

Indet1 to 

Indet2  

vs Indet2 

Indet3 to 

Indet2  

vs Indet2 

Indet1 and 

Indet3 to Indet2 

vs Indet2 

normal 3.6792e-02 3.6793e-02 5.9950-03 

TS 0.0055 0.0057 0.0049 

TL 0.0709 0.0073 0.0055 

OS 5.6290e-10 5.8592e-10 3.7951e-11 

OL 0.9532e-07 0.1263e-07 0.e-08 

OT 0.0064 0.0067 0.0059 

MR 0.0097 0.0076 0.0054 

(a) 

GRNN 

input(s) 

Indet1 to 

Indet2  

vs Indet2 

Indet3 to 

Indet2  

vs Indet2 

Indet1 and 

Indet3 to 

Indet2 vs 

Indet2 

normal 3.6792e-02 3.6793e-02 5.9950-03 

TS 8.9425e-04 8.2494e-04 0.3179 

0.0155 

0.0376 

TL 8.4722e-05 8.1506e-06 0.3378 

0.2309 
0.1195 

OS 1.4520e-10 3.7383e-11 4.38523-06 

7.6053e-07 
7.1800e-07 

OL 9.2620e-11 7.5295e-11 2.2471e-07 

1.4793e-08 

3.5824e-07 

OT 7.3201e-05 5.7205e-06 0.1238 

0.1160 

0.1903 

MR 8.9463e-03 6.9962e-03 0.0278 

0.0089 

0.0315 

(b) 

suppressed/opposed, respectively, in the training 

pattern represented by the connected  node of the 

upper layer; 

iv. the connection weights, which are determined 

independently for each node of the upper layer; the 

magnitude of each non-zero connection emanating 

from a given node of the upper layer is the same 

towards all the connected nodes of the lower layer, 

determined as the inverse of the total number of non-

zero connections that the node of the upper layer has 

with the nodes of the lower layer12, with the +/-sign 

of the connection depending on whether the pair of 

connected (upper and lower-layer) nodes expresses a 

positive (reciprocal, reinforcing) or negative 

(opposing) relationship, respectively. 

It is important that, in case of changes in the problem 

set-up and/or characteristics/data, which are expressed as 

pattern additions to/deletions from the dataset: 

                                                           
12 i.e. the weights of all the connections emanating from a given node of the 

upper layer have the same absolute value  

• a new node of the upper layer can added for each novel 

pattern, with the weights set in the same manner as for 

the original training patterns;  

• GRNN nodes of the upper layer corresponding to 

training patterns which are no longer valid/needed can be 

directly deleted, together with the connections (and, thus, 

also the weights) emanating from these nodes; 

where, in both cases, the approximating hyperplane is 

automatically adjusted. 

For more information on GRNN training, testing and 

characteristics, the interested reader is referred to [5]. 

 
 

IV. N(P)P MONITORING –

VERIFICATION/MONITORING/PREDICTION –          

IMPLEMENTED METHODOLOGIES 

The following tests make use of (I) normal signals as well as 

of (II) signals which have been corrupted in the manner 

described in Section II.B, representing signal perturbations 

per se (shown in Tables II-IV(a)) as well as the GRNN 

nodes of the upper layer corresponding to training patterns 

which are no longer valid/needed can be directly deleted, 
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together with the connections (and, thus, also the weights) 

emanating from these nodes; 

where, in both cases, the approximating hyperplane is 

automatically adjusted. 

For more information on GRNN training, testing and 

characteristics, the interested reader is referred to [5]. 
 

V. N(P)P MONITORING –

VERIFICATION/MONITORING/PREDICTION –          

IMPLEMENTED METHODOLOGIES 

The following tests make use of (I) normal signals as 

well as of (II) signals which have been corrupted in the 

manner described in Section II.B, representing signal 

perturbations per se (shown in Tables II-IV(a)) as well as 

signal distortions caused by erroneous capture due to ND 

malfunctioning (shown in Tables II-IV(b)) for PA, SOS and 

GRNNs, respectively. In order to standardize GRNN 

operation, as well as guarantee its operation on novel data, 

rather than setting the optimal value of the spread (σ) 

parameter independently for each GRNN, all tests and 

cross-validation schemes have been performed using the 

value of σ=0.05. Such a choice represents minimal 

interpolation (confined to clearly confined “neighborhoods” 

of very similar patterns) and has been implemented for this 

problem in order to establish the focused – yet otherwise 

moderate and graded – interaction of training patterns for 

shaping the GRNN response. Small σ values overall, and the 

specific value of 0.05, in particular, has been found to 

consistently provide valid (though not always optimal) 

prediction results as well as to agree with the findings of 

Table I. 

Table II exposes the accuracy of PA in predicting the 

INDET2 signal in a time-step-wise manner. The first line of 

Table II(A) provides the baseline of normal operation, thus 

highlighting the increased sensitivity of PA to the presence 

of trends (larger deviations from normal are observed for 

TL, TS and OT), with the MR situation not significantly 

affecting signal predictions. Oscillations, at least of the scale 

tested here, are significantly different to normal operation, 

but less degrading than either trends or missing signals, 

implying a certain robustness to such periodic-(shaped) 

signals.  Table II(B) further confirms these findings, which 

imply that periodically malfunctioning NDs are less 

sensitive than those demonstrating signal drift, i.e. more 

liable to late detection of a fluctuating (rather than to a 

gradual) deterioration in their detection ability.  

SPS operation has been found clearly superior to that of 

PA, demonstrating the advantages of the more degrees of 

freedom allowed by the specific piece-wise constructed 

methodology over PA. Furthermore, the GRNN approach 

has been found clearly superior to both PA and SPS 

approaches, by demonstrating 

o perfect recall of the entire dataset, not only for the 

selected (0.05) but, for most values of the σ parameter 

when the entire dataset is used for training, as well as 

o a level of prediction accuracy during testing that is at 

least comparable (and, in most cases, superior) to the 

level of approximation accuracy accomplished by the 

other methodologies (PA and SPS) when using the 

entire dataset for training/parameter setting.  

VI. CONCLUSIONS 

The on-line analysis of neutron flux (NF) signals – 

which are collected at nuclear (power) plants N(P)Ps for 

purposes such as monitoring, analysis, regime identification, 

transient as well as anomaly detection and isolation  – is 

required for the safe as well as efficient operation of any 

N(P)P. NF perturbations are crucial, and have been used 

since the installation of the earlier N(P)Ps,  for providing 

precise information concerning the instantaneous (relative) 

changes in N(P)P operation/status, and are customarily used 

for monitoring and, concurrently, identifying (detecting, 

classifying and localizing) (i) N(P)P deviations from steady-

state operation and (ii) neutron detector (ND) malfunctions.  

In this piece of research, a range of parametric, semi-

parametric and non-parametric methodologies has been put 

forward and implemented for detecting and localizing 

deviations from steady-state (or otherwise scheduled) 

operation, as well as for identifying ND malfunctions. 

Aiming at robustness, modularity as well as low 

computational complexity, rather than using all the available 

ND signals in concert, it is proposed here to use 3-tuples of 

ND signals, thus simplifying the decision-making process as 

well as increasing the robustness of the final decision by 

collecting the decisions of 3-tuples of NDs and subsequently 

aggregating them for reaching a consensus-driven decision 

that takes into account each decision as well as the 

complementarity of the individual decisions. 

The proposed approach accomplishes modularity and 

flexibility of operation by employing (a) raw NF signals as 

its source of information and (b) complementary NF signal 

encodings – derived from pertinent ND configurations – of 

the problem space. The use of GRNNs has been found most 

satisfactory for the present monitoring/operation and 

malfunction detection/localization task, combining  

(i)    low computational (time as well as space) complexity 

during GRNN training and testing, which is 

implemented by single-pass training/testing and the 

straightforward optimization of the (spread, σ) 

parameter, with 

(ii)    simplicity and transparency of construction and  
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(iii)  superior accuracy in the identification of the cause(s) 

behind deviations from normal/scheduled N(P)P 

operation.  

The non-parametric nature of the proposed GRNN 

allows the development of a tailor-made data-driven (rather 

than a more rigid system based on a specific N(P)P type of 

or, even, unit of a given) monitoring system, which can – 

furthermore – be directly adapted and, subsequently, applied 

to a large variety of data/scenarios (either simulated via 

models or coming from actual measurements) as well as 

reactors of diverse types for concurrently maximizing N(P)P 

safety and productivity.  

The proposed methodology is further amenable to on-

line changes in the dataset used for training, with as many 

GRNN upper-layer node insertions/deletions13 performed as 

there are added/removed input-output patterns of detector 

signals, thus rendering the process custom-made to the 

current mode (and characteristics) of operation in an on-line 

manner.  

Additionally, the use of concurrent (rather than 

isolated/independent) inputs has been found to boost GRNN 

recall as well as prediction accuracy, as has the combination 

of the individual GRNN responses. The latter point, namely 

the aggregation of complementary GRNN responses (as 

derived from different NDs and NF signals, and perhaps 

even different time-lags, especially for periodic events such 

as oscillations) in order to further improve the accuracy and 

sensitivity of detection, constitutes the subject of future 

research. 
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