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ABSTRACT- Significant advances in power system control 

design techniques that can take into consideration plants 

linearized around a number of operating conditions. Most of 

these techniques are based on eigenspectrum analysis which 

has numerous advantages. A wealth of applications of 

eigenstructure assignment are available in the literature and 

showed that new applications have been found and parametric 

solution of eigenspectrum assignment can be used successfully 

to design feedback controllers. The use of supplementary 

controller added to the automatic voltage regulator (AVR) is a 

practical effective way to supply additional positive damping 

to system oscillations via power system stabilizers. 

   The present paper utilizes eigenspectrum analysis in the 

practical design of proportional integral (PI) type power 

system stabilizers, in order to achieve good steady state as well 

as transient response characteristics. Eigenspectrum analysis 

is attractive since it takes into account freedom in determining 

feedback gains and provides the frequencies and the damping 

at each frequency for the entire system in a single calculation. 

Moreover sensitivity of eigenvalues and eigenvectors with 

respect to parameter variations are assessed so as to provide 

information to improve setting parameters for power system 

damping and stability, without ignoring the operating 

conditions. The results of eigenvalue/eigenvector sensitivity 

are tangible for analysis with a wide range of parameter 

variations and is presented through the right and left 

eigenvectors of the system matrix and also through Taylor 

series analysis.  

Keywords- Electrical power systems control, PI controller 

design, linear control systems, eigenvalues and eigenvectors  

assignment and sensitivities. 

   One of the principal tasks in power system analysis is to 

carry out small signal stability analysis to assess the power 

system under the specified operating conditions. Power 

system analysis is a fundamental issue in planning, design, 

and operating stages. Load changes and predicted load 

demand problems are treated through automatic gain 

controller (AGC) so as to maintain frequency at scheduled 

value (frequency control),  maintain the net power 

interchanges with neighboring control areas at their 

scheduled values (tie-line control), besides maintaining 

power allocation among the units in accordance with area 

dispatching needs. Low frequency   oscillations have 

harmful effects to the goals of maximum power transfer 

and optimal power system operation. A contemporary 

solution to this problem is the addition of power system 

stabilizer (PSS) to the automatic voltage regulator (AVR) 

on the generator [1-3] to enhance the damping of low 

frequency oscillations by providing positive damping to 

overcome the undamped electromechanical modes. A 

practical stabilizer has its input either a generator speed, 

terminal voltage frequency or electrical power. Its output is 

normally a signal to the reference input of the (AVR). 

Without loss of generality, (PSS) is one of the most cost-

effective methods for enhancing power system stability, 

adding supplementary control loops to the generator (AVR) 

is one of the most common ways of enhancing both steady-

state (small signal) stability related to small disturbance and 

transient (large signal) stability related to severe 

disturbance. The main idea of power system stabilization is 

to recognize that in the steady-state, that is when the speed 

deviation is nearly zero, the voltage controller should be 

driven by the voltage or state error only. Whereas in the 

transient state, the generator speed is not constant that’s 

why rotor swings and voltage or state error undergoes 

oscillations caused by the change in rotor angle. The 

application of high voltage direct current (HVDC) and 

flexible alternating current transmission system (FACTS) 

added new control measures to electrical power systems, 

and have increased power transmission capacity, enhanced 

control capability, and improved operating characteristics. 

Improper designed (PSS) can become the source of a 

variety of undesired oscillations. For historical, 

comprehensive review of electrical power system stability 

problems with classification, analysis, improvement, 

modeling, and existing solutions, reader can refer to [4].  

   Although several control structures have been proposed 

for (PSS) design, the initially proposed design methodology 

is the proportional integral (PI) that is still quite used in 

nowadays power systems [5]. Such a type of controllers 

effectively reduces the effect of constant disturbance in the 

input channel and parameter perturbation. A proposed 

design procedure for (PI) type controllers is presented in 

the present paper utilizing eigenspectrum assignment as a 

design tool. Since the right eigenvector gives the mode 

shape, i.e. the relative activity of the state variables when a 
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particular mode is excited, while the left eigenvector 

identifies the weights for the contribution of the activity to 

the mode. In the analysis and operation of power systems, 

one needs to assess the influence of some parameter 

variation that may be a source of oscillations and 

deteriorate the frequency and tie-line power regulation.  

    The paper is organized as follows; the PI controller 

design procedure is presented in section two followed by an 

illustrative example for a realistic power system [6]. 

Section three addresses the first order eigenvalue sensitivity 

to parameter perturbation in the linearized system matrix. 

The sensitivity assessment helps to take account of the 

range of operating conditions and to deal with inter area 

oscillatory electromechanical modes.  Eigenvalues and 

eigenvectors, sensitivities were presented in terms of (i) 

right and left eigenvectors of the system matrix (ii) Taylor 

series expansion..    

    To present the design procedure, consider the linearized 

differential equation model of a continuous time 

controllable dynamical electrical power system governed 

by the state equations of the form: 

)( )(

)( )(  )( )(

txCty

twLtuBtxAtx

=

++=ɺ

    (1)                                                                                                                     

where )(tx nℜ∈  is the state vector , A
nn×ℜ∈  is a 

constant system matrix , B
nm×ℜ∈  is the constant control 

(input) matrix, C
nq×ℜ∈  is a constant measurement 

(output) matrix while L
nm×ℜ∈ is a constant disturbance 

matrix; in addition matrices B and C are of full rank (m, q) 

respectively. For a derivation of the most commonly used 

electric power system models, the interested reader can 

follow [4,7]. The control vector u(t)
mℜ∈ , y(t) is the 

output vector
qℜ∈ whereas w(t) is the load disturbance. 

    As power systems cannot operate satisfactorily without 

proper control, therefore to achieve the highest control 

strategy with least variability, a state error is defined as e(t) 

= x(t) – xr(t), where xr(t) is the reference state vector “which 

will be dropped later” as the deviation of state vector 

relative to its reference values. It should be mentioned that 

throughout this paper, the state vector xr(t) will be assumed 

to be a slowly varying quantity. 

It is frequently necessary to introduce integral as well as 

proportional feedback for all state variables of the power 

system in order to achieve an acceptable steady-state error 

with a desirable transient response. 

Let the control which derives the dynamical system (1) 

from initial state and assigning a prescribed set of complex 

conjugate eigenvalues be composed of two terms as: 

∫
∞

+=
0

)(  )( )( dttyKtxKtu IP
                                    (2) 

where
nm

PK ×ℜ∈  represents the proportional feedback 

gain matrix, while 
qm

IK ×ℜ∈  represents the integral part 

of the feedback gain matrix. Feedback gains KP and KI are 

to be designed based on eigenvalue assignment as a tool. 

Such a type of controllers represents the best possible 

trade-offs among robustness, stability, and performance 

criteria both in transient and steady-state [8]. It is logical to 

assume that a step change of load is often the case.In order 

to reject the effects of finite constant disturbance w(t), (1) is 

differentiated to get: 

)(  )(  )( tuBtzAtz ɺɺ +=  (3)                                                                                              

Where 
dt

dx
tz =)( . Defining an augmented state vector as  

[ ]TTT

a tytztx )()(  )( = where 
qn

a tx +ℜ∈  )( . 

Therefore, the augmented system representation becomes 

as: 

)(  )(  )( tuaBtaxaAtax ɺɺ +=     

)(  )( txCty aaa =   (4)                   

Where    

[ ]
n)(qqa

mq)(n

a

q)(nq)(n

a CC
B

B
C

A
A +×

×++×+

=







=








= 0  ,

0
  ,

0

0
                            

(5) 

    The objective is to design the nonunique feedback gain 

matrices KP and KI. 

As long as the pair (A, B) is controllable and to have 

complete control over the system dynamics, the following 

necessary and sufficient conditions must be satisfied for the 

existence of state feedback which are: 

(i) ),( min
0

 qmn
C

BA
rank +=





 

(ii) The pair (Aa, Ba) is a controllable pair [9]. 

    The properties of these conditions can be used to design 

the appropriate proportional and integral feedback gains. 

Once these conditions are satisfied, it is possible to design a 

proportional plus integral controller of the form (2) by 

assigning a set of self conjugate eigenvalues 

(electromechanical modes) for fast regulation coupled with 

system stability. Recalling that the real part represents 

oscillation damping whereas the imaginary part represents 

the frequency of oscillations. Differentiating (2) results in: 

II. PROPORTIONAL INTEGRAL (PI)  

CONTROLLER DESIGN METHODOLOGY 
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)(          )( taxaKxCIKzPKtu =+=ɺ   (6)                                                                                                 

where [ ] )(    qnm

IPa KKK +×ℜ∈=  

Substituting in (4)then the modified state equation can be 

expressed as: 

)( )   ( )( taxaKaBaAtax +=ɺ                                           (7)                                                                                                                  

         The resulting augmented system will consist of 

)()( qnqn +×+ dimensions and obtained as: 
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
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ɺ
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                          (8) 

     There is a need to deal with various modes and 

frequencies that occur in such systems. The performance of 

the system can be examined by evaluating the eigenvalues 

for speed of response and stability; besides the eigenvectors 

for the distribution of eigenvalues within states thus 

achieving robustness and mode shaping for meeting 

performance specifications [10-13]. For some complex 

eigenvalue { })(,...,2,1 qnii +=λ and the 

corresponding (n + q) dimensional right eigenvector Vi that 

shapes the response, the following relation is satisfied: 

0

2

1
 =

−

−+













iv

iv

IiC

IBKIiPBKA

λ

λ
              (9)                                                                                                                                    

where the vector Vi is partioned to vi1

1×ℜ∈ n
 and 

vi2

1×ℜ∈ q
 according to the state z(t)

nℜ∈ and the output 

y(t) 
qℜ∈ . From which the lower portion of the 

eigenvector is obtained as: 

1

1

2   iii vCv −= λ  where i = 1,2,…,(n+q)        (10)                                                                                                                    

Manipulating (9), the compact form is obtained as: 

[ ] ( ) 0
   

 )(
1

1

1 =







+

− −
iIP

i

i
vCKK

v
BIA

λ
λ  (11)                                                                                               

In compact form, (11) can be expressed as: 

[ ] 0
1

 )( =− 





iw

iv
BIiA λ                                          (12)                                                                                                                                             

where the m-dimensional vector wi equals to 

( ) 1

1    iIP vCKK −+ λ  

    Inspecting (12) reveals that it represents (n) linear 

equations in (n + m) unknowns representing the associated 

vector. In order to satisfy (12), the vector 
TT

i

T

i wv ] ,[ 1  

must lie in the null space of the ))(( mnn +× matrix 

[ ]BIA i )( λ− which is of m-dimensional admissible 

space. This allows a free selection of (m) unknowns, those 

forming the vector wi, consequently this reflects the 

freedom in determining feedback gains, in order to get a 

solution for the upper vector vi1 of dimension (n). Iterating 

(12) for the prescribed set of (n + q) eigenvalues, the 

following expression is obtained: 

[ ] [ ] ( ) 




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==

+
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+
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1

11

1
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1)(11
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....
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qnqn

qn

IPqn vCvC

vv
KKwwwW

λλ

                    (13)    

     The right most matrix V is square of 

dimension )()( qnqn +×+ , as long as the eigenvalues 

are distinct and the matrix is nonsingular, hence the 

solution of (13) is guaranteed as: 

[ ]IP KKVW =−1           (14)                                                   

(Effectiveness of the proposed design procedure is 

summarized in the following steps where it is implemented 

using MATLAB control toolbox software package: 

• Consider (12), arbitrarily select the lower (m) 

elements forming the vector wi (except zeros), 

then construct ]....21[ qnwwwW +=   

• Apply the relation ( ) iwBIiAiv   
1

 1

−
−−= λ to 

get vi1, then calculate 1

1   ivC−λ as in (10) 

• Construct the (n + q) dimensional vector as 









= −

1

1

1

  ii

i

i
vC

v
V

λ
 

• Repeat for i = 1,2,…,(n + q) to get       

]....21[ qnVVVV +=  

• Apply (14) to get the gains KP and KI 

    Interestingly once vi1 is obtained, the next steps are easily 

obtained. Effectiveness of the proposed design is illustrated 

taking the advantage of MATLAB control system toolbox 

software package. A numerical example for a realistic 

power system extracted from [6] where the matrices are: 
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





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












=

−−

−

−

−

−−

−

−−

5.12021.50000

33.333.300000

0605.00000

00545.000045.0

00005.12021.5

000033.333.30

00060605.0

 A                                                     

(15) 

  

T

B 





=
5.12000000

00005.1200
                                 (16)                                                                                                                      





=

− 1111000

0001001
 C                                  (17)                                                                                                       

   The open loop system eigenvalues (electromechanical 

modes) are 

  )( 2843.13 ,2789.13,9386.0  ,4743.2  2479.1  ,8855.2  8312.0 −−−±−±− jj

   To illustrate the procedure, let the desired (n + q) = 9; 

such that the arbitrary eigenvalues be 

)( 13 ,.70  7.0,.80  3.0 ,.30  2.0 ,.472  14.0 −±−±−±−±− jjjj  

which are chosen to achieve various damping ratios and 

frequencies. 

   Applying the aforementioned steps, the proportional and 

integral feedback gains are obtained as: 





=

−−−

−−

3917.014219.02496.11121.13441.01521.0

0549.01114.00093.03501.08947.03013.03649.0
 pK





=
−

−

0817.01577.0

0303.0057.0
 IK   

    Expressions for eigenvalue/eigenvector sensitivity 

coefficients due to perturbation in system parameters have 

been given in various forms and from different points of 

view, whether numerical analysis, perturbation theory, and 

as  problem in linear system theory [14-15]. 

The influence of certain component’s parameters such as 

governor, turbine, load frequency time constant should be 

investigated in power system analysis, design, and 

operation in order to achieve an adequate and satisfactory 

performance. Badly designed and/or improper parameters 

selection may be a source of oscillations and can deteriorate 

the frequency and the tie line power regulation process. The 

linearized system state matrix A
nn×ℜ∈ contains several 

parameters, thus the eigenvalues iλ ’s are also functions of 

these parameters, consequently the right and left 

eigenvectors will vary since the components of the right 

eigenvector measure the relative activity of each state 

variable in the i-th mode, while components of the left 

eigenvector weight the initial conditions in the i-th mode 

[14]. Variation of the eigenvalues ( iλ ’s) with respect to 

parameter represent the influence of parameter variation on 

power system stability. 

First Order Eigenvalue Sensitivity: 

Method (i)  

    Let the system matrix A be an )( nn× matrix [akl] 

(a,k=1,2,…,n) with distinct eigenvalues ( )nii ,...,2,1 =λ  

that are also functions of those parameters.       

The corresponding linearly independent right eigenvectors 

vi’s )1( ×n satisfy the relation  

            iii vvA   λ=           (18)                                                     

and the corresponding linearly independent left 

eigenvectors ui’s )1( ×n satisfy the relation 

iii uuA   λ=′                                                         (19)                                           

The right-left eigenvectors satisfy the relation  

ijijji vuuv δ=′=′   (i,j=1,2,...,n)                          (20)                                                    

where ijδ is the Kronecker delta. If the element akl is 

perturbed due to changes in system parameters, 

differentiating (18) with respect to element akl yields: 

kl

i
ii

kl

i

kl

i
i

kl a

v
v

aa

v
Av

a

A

∂

∂
+

∂

∂
=

∂

∂
+

∂
∂

  λ
λ

              (21) 

                                                                                             

(Premultiplying by iu ′ (noting that 1 =ii vu , and all 

elements of 
kla

A

∂
∂

are zeros except for the element in the k-

th row and l-th column which is equal to one) reduces (21) 

to the set of scalar equations 

l
i

k
i

kl

i vu
a

 =
∂

∂λ
(i,j,k=1,2,...,n)                                    (22)                                                  

    where
k
iu is the k-th element of the left eigenvector ui 

while
l
iv is the l-th element of the right eigenvector vi. 

Equation (22) describes the first order eigenvalue 

sensitivity coefficients which relate changes in the i-th 

eigenvalue of the system matrix A to changes in the 

element akl. Combining the coefficients for (i,j,k =1,2,...,n), 

a set of n eigenvalue sensitivity matrices are obtained as: 

 

III. EIGENVALUES/EIGENVECTORS  

FIRST ORDER SENSITIVITIES 
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T

ii

kl

i
i VU

a
S  =









∂
∂

=
λ

                                        (23) 

which are of unit rank, and therefore singular. The 

sensitivity matrices have interesting properties which are 

useful in both theoretical work and in checking numerical 

calculations. Accordingly, the first order estimates of the 

eigenvalue iλ where the element akl is perturbed as 

kl
kl

i
ii a

a
 ˆ

∂

∂
+=

λ
λλ (i=1,2,...,n)                           (24)                               

The calculation procedure of the first order eigenvalue 

sensitivity is summarized as: 

• Calculate the eigenvalue iλ , and the 

corresponding right and left 

eigenvectors ( )ii uv ′,  from (18) and (19) 

respectively then realize their orthogonality. 

• Calculate 
kla

A

∂
∂

, then 
l
i

k
i

kl

i vu
a

 =
∂

∂λ
 

• The perturbed eigenvalue of the element akl is 

obtained as iλ̂ due to perturbation
klaδ  

kl
l
i

k
iii avu    ˆ δλλ += where the deviation 

from the nominal value is kl
l
i

k
i avu    δ   (i,j,k 

=1,2,...,n).                                                                                            

Method (ii) [7] Instead of dealing with the right and left 

eigenvectors of the system matrix, consider Taylor series 

expansion, assuming the parameter akl changes 

to ( )klkl ∆aa + , the corresponding change in the i-th 

eigenvalue is from ( )kli aλ to ( ) klkli ∆aa +λ . Taylor 

expansion of ( ) klkli ∆aa +λ at akl is obtained as: 

( ) ( ) .....
)()(

)( 
2

2

2

+
∂

∂
+

∂

∂
+=+ kl

akl

kli
kl

akl

kli
kliklkli ∆a

a

a
∆a

a

a
a∆aa

klkl

λλ
λλ

                           (25)                       

since kl∆a is very small, the change can be approximated 

as:  

( ) kl

akl

kli
klikl

akl

kli
kliklkli ∆a

a

a
)(aλ∆a

a

a
a∆aa

klkl

∂

∂
=−

∂

∂
+=+

)()(
)( 

λλ
λλ                                            

(26)                        

The calculation procedure is summarized as: 

• Set (akl) to the state matrix [ ]klaA =   

• Calculate the eigenvalue )( kli aλ , and the 

corresponding right and left eigenvectors ( )ii uv ′,  

from (18) and (19) respectively. 

• Evaluate 

klakla

A

∂
∂

 which is all zeros except for 

the element akl which is equal to one. 

• The first order eigenvalue sensitivity is 

i

akl

T
i

kl

i v
a

A
u

a
kl

∂
∂

=
∂

∂λ
 

First Order Eigenvalue Sensitivity: 

Let the (right and left) eigenvector  changes due to 

perturbation of the element akl of the system matrix A,  (21) 

reduces to 

( ) i
kl

i
kl

i

kl

i
i v

a

A
v

aa

v
IA

∂
∂

−
∂

∂
=

∂

∂
−

λ
λ     (27) 

Consequently, (19) can be written as jjj uAu ′=′   λ , by 

partial differentiation with respect to akl reduces 

to ( )
kl

jj
kl

j

j
kl

j

a

A
uu

a
IA

a

u

∂
∂

′−′
∂

∂
=−

∂

′∂ λ
λ (28) 

Since both iλ and jλ are eigenvalues of the system matrix 

A, (27) and (28) cannot be solved for the eigenvectors 

sensitivity coefficients
kl

i

a

v

∂

∂
, 

kl

T
j

a

u

∂

∂
. Therefore 

premultiplying (27) by )( iju j ≠′ and (28) is post 

multiplied by )( ijvi ≠ , then 

( ) ),...,2,1,(       njjivu
a

v
u l

i
k
j

kl

i
jij =≠−=
∂

∂
′− λλ

    (29)                                                   and 

( ) ),...,2,1,(       njjivuv
a

u
l
i

k
jjii

kl

j =≠−=−
∂

′∂
λλ                                                         

(30). Premultiplying (29) by )( ijv j ≠  and post multiply 

(30) by iu ′ , one gets:          
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and      ( ) i
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   These last two equations can be written compactly 

introducing the )( nn× matrix H as: 

[ ]
ji

ijkl
ij

vu
hH

λλ −

′
==

 
                          (33)                                                              

(33)   

 Therefore (31) and (32) can be rewritten as: 

j
kl
ji

kl

i
j vh

a

v
S   =

∂

∂
′                                            (34)                                                                                                                    

i
kl
jii

kl

j
uhS

a

u
′−=′

∂

′∂
                                   (35)                                                                                             

Since the eigenvectors of the matrices A and A′ are 

linearly independent due to the assumption of distinct 

eigenvalues, the needed vectors 
kl

i

a

v

∂

∂
and 

kl

j

a

u

∂

′∂
give the 

required expression for the first order eigenvector 

sensitivity coefficients.   The derived coefficients can be 

used in the proposed PI controller design via an arbitrary 

selection of the vector wi as in (13) then calculating the 

vector vi1 as in (12). The entire )( qn + eigenvector 









−

1
1

1

  ii

i

vC

v

λ  (i=1, 2,...,n+q) can now be formed. The 

arbitrary selection process can be achieved such that the 

eigenvectors are as insensitive as possible to changes.  

    Eigenspectrum assignment is one of the central problems 

in control system design. Different versions of feedback 

were considered as a means for response shaping and 

ensuring stability for power systems. Eigenspectrum 

analysis is attractive since it provides the frequencies and 

the damping at each frequency for the entire system in a 

single calculation. A commonly used version for power 

system stabilizers is presented; namely proportional plus 

integral (PI) has been designed based on eigenspectrum 

assignment as an effective tool. An illustrative numerical 

example for the application of typical power system is 

presented. Moreover, in order to investigate and assess the 

influence of element perturbation of the linearized system 

matrix on eigenvalues and eigenvectors, first order 

sensitivities were presented in terms of (i) right and left 

eigenvectors of the system matrix (ii) Taylor series 

expansion. The sensitivity assessment helps to take account 

of the range of operating conditions and to deal with inter 

area oscillatory electromechanical modes.    
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