
 

  
Abstract—Global warming impacts the water cycle not only by 

changing regional precipitation and temperatures and their temporal 
variability, but consequently also by affecting soil moisture 
dynamics, which is a crucial condition of crop production. 
Adaptation strategies, such as improved water management or 
development of the more efficient irrigation systems, will be 
important tools in limiting the adverse effects of expected climate 
changes. The characteristics of a water regime for such decision 
making can be obtained by the mathematical modeling of the soil 
water regime. This modeling depends on the knowledge of the input 
data which are necessary for the numerical simulations. The aim of 
this paper is to contribute to solving this data acquisition task by 
using a data-driven methodology, namely support vector machines 
(SVMs). It is used for acquiring of the important inputs in such a 
modeling – namely ground water levels. The results of the paper 
confirm that in the soil moisture modeling, influence of the limited 
data availability which naturally exists in the context of the climate 
change impact studies, has an acceptable influence on the final 
precision and could be substituted by described data modelling 
approach. This paper emphasizes the usefulness of the proposed 
symbiosis of the data-driven and physically-based types of modeling. 
 

Keywords—climate change, data generation, soil water 
modelling, support vector machines. 

I. INTRODUCTION 
GRICULTURE is considered to be one of the most 
exposed sectors with respect to the effects of climate 

change. The higher temperatures expected can reduce crop 
yields, and changes in the distribution of precipitation 
complicate water management and may increase the likelihood 
of crop failure. Global warming impacts the water cycle not 
only by changing regional precipitation and temperature levels 
and their temporal variability, but also by affecting soil 
moisture dynamics, which are a crucial condition of crop 
production. Adaptation strategies, such as improved water 
management or the development of more efficient irrigation 
systems, will be important in limiting the adverse effects of  
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changes to climates. The characteristics of a water regime for 
such decision making can be obtained by the mathematical 
modeling of the soil water regime. Various models could be 
used for such a study. The GLOBAL [1], MOVOREP [2] or 
HYDRUS-ET [3] mathematical models are among some of 
the most frequently used tools. However, the most common 
and most widely used model in Slovakia is the GLOBAL 
mathematical model, which is also used for the simulation of 
the soil water regime in this paper.  

The above-mentioned types of models are based on 
knowledge of the governing physical laws, their mathematical 
representation, and the resulting equation’s system 
algorithmization. In addition to understanding the physical 
processes, this modeling crucially depends on the availability 
of the input data needed for the numerical simulations. This 
study is concerned with the data acquisition for soil moisture 
modeling in the context of climate change impact studies. 
Some of the data necessary for modeling water transport in 
soil, e.g., temperatures or precipitation, could be derived from 
climate change scenarios for this purpose. A stochastic 
weather generator is one possible tool for climate change 
downscaling, which produces a time series of weather data for 
a location based on the statistical characteristics of the 
observed weather at that location and the selected climate 
change scenario. The generator produces consistent series of 
meteorological variables, such as precipitation, temperature, 
humidity, wind, sunshine, etc.  

Various studies have been performed to examine the 
influence of other phenomena, namely, water table 
fluctuations in soil moisture modeling, [4] – [10]. Fluctuations 
in water table depths have important impacts on hydrological, 
agricultural, and environmental issues. The soil water modeler 
must therefore also deal with the task of how to obtain a time 
series with water table values which is consistent with other 
data, e.g., the mentioned meteorological data. A number of 
numerical models, which are usually governed by the 
Boussinesq equation, have been developed for this task [11] – 
[18]. However, such physically-based models require an 
explicit understanding of the complicated physical processes 
and relationships and a great amount of the meteorological, 
hydrological, and geological data of the study area as inputs 
[19-20]. Spatially and temporally variable aquifer parameters 
and boundary and initial conditions should be known if one 
wants to perform numeric simulations. While such modeling 
constitutes a powerful tool, it also presents the formidable 
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challenge of overcoming parameter uncertainty, which, to 
date, has not been especially satisfactorily resolved for 
groundwater problems, with the consequence of producing 
model prediction errors or even disabling the possibility of 
using this modeling approach [21].  

The purpose of this paper is to contribute to solving the task 
of obtaining data about groundwater levels in the context of 
climate change impact studies of a soil water regime by using 
a different approach, i.e., a data-driven methodology, namely 
support vector machines (SVMs). As was indicated in the 
previous paragraph, it seems unsuitable to apply the above-
mentioned physically-based modeling of a water table in the 
context of climate change studies, mainly because of the 
unavailability of the necessary data. On the other hand, data-
driven modeling could be preferable because of its lower data 
and knowledge demands. In some hydrology studies SVMs 
have already been successfully applied [23] but usually in the 
context of prediction tasks in which the present conditions are 
known, and the prediction is realized in not very distant time 
steps. In such a context, the predicted variable in a previous 
time step could be used as input, which is not possible for the 
extremely distant time horizons examined in climate change 
impact studies. For this reason the authors of this paper are 
dealing with predictions only on the basis of variables which 
are readily available from weather generators. This limitation 
could lower the degree of precision to some extent in 
comparison to when the known values of a predicted variable 
from previous time steps are used as predictors. The authors of 
this paper are investigating the task of estimating and 
evaluating this impact of the input data limitation in the 
generation of water table levels on the final modeling of the 
soil water moisture, which is accomplished by means of 
physically-based modeling (by the GLOBAL model).  

SVMs - a tool used in this study for generating water table 
levels consistent with other variables - were first developed to 
solve a classification problem and then were extended to 
regression problems [22], which is also accomplished in the 
present study. In a support vector regression algorithm, the 
input data are nonlinearly mapped into a higher dimensional 
feature space, in which the training data may exhibit linearity, 
so that a linear regression problem is solved in this feature 
space. Similarly as with the usual linear regression, the basic 
goal is to find a function that approximates the training points 
well by minimizing the prediction errors. The essential 
difference in SVM applications is that all the deviations 
smaller than a user-specified value are discarded. Also, when 
minimizing an error, the risk of over-fitting is reduced by 
simultaneously trying to maximize the flatness of the 
regression function. SVMs are gaining popularity due to these 
attractive features, which equip SVMs with a greater ability to 
generalize - the main goal in data-driven modeling. For these 
reasons SVMs have been applied to the prediction of various 
water resource variables. Asefa [23] and Khalil [24] used 
SVMs to capture the spatial distribution features of a 
groundwater´s surface and quality, respectively. Based on past 
measurements of soil moisture and meteorological data, Gill 
[25] predicted soil moisture using SVMs. More recently, Gill 

[26] compared the performance of an artificial neural network 
(ANN) and SVMs for predicting groundwater levels under 
conditions of incomplete data that were assumed to be 
randomly missing. Most researchers have showed that 
performance of SVMs is superior to various other methods, 
e.g., the well-known ANN methodology. 

One of the important emphases of this paper is to highlight 
the usefulness of the proposed symbiosis of the data-driven 
and physically-based types of modeling. The rest of the paper 
is organized as follows: in Section 2 the methodology used is 
described. Firstly, the physically-based modeling and the 
GLOBAL model’s basic principles, and then a brief 
description of the SVMs, which is used for input generation to 
the GLOBAL model, are given. In Section 3 a case study and 
description of the data are presented. Section 4 presents and 
explains the computational experiments and the results 
obtained. Finally, some conclusions about the possibility of 
input generation by SVMs for the purpose of soil moisture 
modeling by a physically-based model are drawn in Section 5. 

II. METHODOLOGY 

A. Physically-based modelling of a soil water regime 
A simulation of a soil water regime was carried out using 

the GLOBAL mathematical model, which was developed at 
the Institute of Hydrology of the Slovak Academy of Sciences 
in Bratislava [1]. It is a mathematical simulation model of the 
movement of water in soil, which allows for the calculation of 
the distribution of the soil water potential and the soil moisture 
over time, based on the flow in the soil matrix. The model is 
based on a numerical solution of nonlinear partial differential 
equations of the movement of water in an unsaturated soil 
zone in the form [27]: 
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where:   
hw   is soil water potential [cm], 
z   - vertical coordination [cm],  
k(hw) - unsaturated soil hydraulic conductivity [cm.s-1], 
S(z,t) - root extraction rate [cm.s-1],   
C(hw) = ∂θ/∂hw  - specific  water capacity [cm-1], 
θ   - volumetric soil water content [cm3.cm-3], 
t   - time [s].  
The model calculates the characteristics in a daily step and 
provides an original method of calculating evapotranspiration 
and its components (transpiration, evapotranspiration). To 
enhance the accuracy of the modelling, a function 
characterizing the abstraction of water by plant roots is 
provided. The water retention curves are approximated by the 
Van Genuchten [28] method, and the k=f(hw) dependences are 
calculated according to Mualem’s theory [29]. The GLOBAL 
model also includes the water retention curve’s hysteresis. 

B. Generating inputs for modeling a soil water regime by 
SVMs 

A support vector machine (SVM) is a supervised learning 
method that produces input-output mapping functions from a 
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set of labeled training data [30]. Support vector machines are 
gaining popularity due to their many attractive features and 
promising empirical performance.  

In data-driven modeling a model is usually trained using a 
data set (x,y), where x is the predictor and y the modeled 
variable, by fine-tuning the model’s parameters so as to 
minimize an error function, which is a corresponding measure 
between the predicted and actual values of y. This type of 
objective function is based on the so-called empirical risk 
minimization principle, and a problem with its use is that it 
does not guarantee a small generalization error (i.e., an error 
on data other than that which was used in the training). To 
resolve this problem Vapnik [22] employs in SVM the concept 
of so-called structural risk minimization (SRM), described 
e.g., in [31]. The SRM principle defines a trade-off between 
the quality of the approximation of the given training data and 
the complexity of the approximating function. Less complex 
models tend to have a better generalization ability, which has 
been reported many times, e.g., while comparing SVM results 
with neural networks.  

Another basic idea behind SVMs is to project the input data 
by means of kernel functions into a higher dimensional space 
called the feature space, where a linear regression can be 
performed, although a nonlinear problem is initially to be 
solved (real world problems are usually nonlinear). The results 
of the regression are then mapped back to the original 
nonlinear input space.  

The next important concept in SVM methodology is to fully 
ignore small errors, while evaluating the precision of the 
modeling (by introducing the variable ε, which defines what 
the “small” error is). This makes the regression task dependent 
on a smaller number of inputs than were given in the original 
task, which makes the methodology much more 
computationally treatable. These crucial vectors of the inputs 
are called the support vectors.  

In an ε-SVM regression (as opposed to classification or 
clustering), the goal is to find a function f(x) that at most has 
an ε deviation from the actually obtained targets y for the 
training data:  

( ) bxwy +Φ= .                                 (2) 
Where y is the model output, x is the input mapped into a 

feature space, and w and b are the parameter vectors of the 
searched regression function. The goal of a regression 
algorithm is to fit a flat function to the data points. A smaller 
w means a smoother and less complex approximating 
function, which means that for the sake of a good generalizing 
solution, one seeks a small w. Thus, the regression problem 
can be written as a quadratic optimization problem: 
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where ξi, ξi* are slack variables that specify the upper and 

lower training errors, subject to an error tolerance ε (soft 

margin), and C is a positive constant that determines the 
degree of the penalization loss for the model’s output errors. 
In equation system (2), the objective function simultaneously 
minimizes both the empirical risk and the model’s complexity; 
the trade-off between these two goals is controlled by 
parameter C. In most cases the optimization problem (2) can 
be solved more easily in its dual formulation. Hence, a 
standard dualization method utilizing Lagrange multipliers is 
usually applied for the final formulation of the support vector 
regression problem. Various approaches to the quadratic 
optimization problem for solving this system could be used. 
The details are described in, e.g., [32]. 

III. AREA OF STUDY AND DATA DESCRIPTION 
The proposed methodology was applied to the “Poiplie” 

region in Slovakia in the Ipeľ River basin, which is in the 
southern part of Slovakia (Fig. 1).  This area has a typical flat 
relief of a lowland river floodplain, with an average slope of 
the terrain of around 1º. The prevailing soils in the 
investigated area are fluvisols and regosols, and the soil types 
are heavy and medium heavy soils, namely clay-loam, clay 
soils, loam and loam-sandy soils [30]. 

 
Fig. 1 Location of Poiplie in Slovakia 

 
From the point of view of climatic conditions, the Poiplie 

area has a warm and dry climate with mild winters. The 
average annual air temperature is around 9.6 °C and 
approximately 16.5 °C during the growing season. The trend 
in the air temperatures is shown in Fig. 2, where a slight 
increase in air temperatures during the period 1977-2010 is 
clearly seen, which could be considered as a possible 
expression of climate change. 

 
Fig. 2 Average annual and growing season temperatures in the area 

investigated during the period 1977-2010 
 

The area investigated is relatively dry; the amount of annual 
precipitation is around 600 mm. The maximum precipitation 
usually occurs in the summer months, especially in June, 
which is due to the influence of the tidal marine polar air from 
the Atlantic to the European hinterland. Another peak is 
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usually in November, which can be explained by the influence 
of Mediterranean Adriatic disorders. Fig. 3 shows the 
increasing trend of the annual precipitation totals and 
precipitation totals during the growing season for the years 
1977-2010. 

 
Fig. 3 Annual precipitation totals and precipitation totals during the 

growing season for the period 1977-2010 
 

The Ipeľ River springs in central Slovakia in the Slovenské 
Rudohorie mountains. It flows south to the Hungarian border, 
and then southwest, west and again south along the border 
until it flows into the Danube near Szob, with an average 
annual flow of 21 m3.s-1. The annual water level on the Ipeľ 
River near the location where the modeling using GLOBAL 
was accomplished for the period 1989-2010 is shown in Fig. 
4. 

 
Fig. 4 Course of the average annual water levels on the Ipeľ River at 
the SHI Vyškovce above the Ipeľ station for the period 1989-2010 

 
The groundwater resources in the area are supplemented by 
atmospheric precipitation, and fluctuations in the level are 
caused by fluctuations in the water level of the Ipeľ River. The 
trend in the groundwater levels at the Šahy station is shown in 
Fig. 5. An evaluation of the fluctuations in the groundwater 
level is shown in Fig. 6. 

 
Fig. 5 Course of the average annual groundwater levels at the Šahy 

station for the period 1968-2010  

 
Fig. 6 Statistical evaluation of the groundwater level data and its 

fluctuations during a year 
 
The input data used in the simulation of the soil water regime 
by the GLOBAL mathematical model is as follows: The upper 
boundary condition between the soil surface and the 
atmosphere was defined by meteorological data: the 
precipitation totals Z [mm], the average temperatures T [˚C], 
the totals of the duration of sunshine S [hours], the average 
atmospheric water vapor pressure p [hPa], and the average 
wind speed vv [m.s-1] for each day of the modeled period. The 
bottom boundary condition was the position of the 
groundwater level [cm] below the surface level. Because of 
the aim of this study, the measured groundwater levels were 
used in the first case, and the groundwater levels calculated 
with the SVM methodology were used in the second case. The 
soil in the model was characterized by its water retention 
curve (WRC) and saturated hydraulic conductivity. For this 
purpose soil samples from the Poiplie area were collected and 
evaluated in a laboratory. The points of the drainage branch of 
the WRC were calculated using pedotransfer functions. These 
points were further approximated by function according to 
Van Genuchten [28]. These functions or, rather, its parameters 
α and n, are other inputs of the GLOBAL model. The soil 
profile was divided into 3 layers. The soil parameters which 
were finally used as the inputs into the GLOBAL model are 
shown in Table 1. For the purposes of this analysis, 0-50 and 
0-100 cm soil layers below the surface level were used. 
 

Table 1  Physical and hydro-physical characteristics of the soil used 
in the simulation (θs - water content at saturation, θr - residual soil 
water content, K - saturated hydraulic conductivity, ρd - reduced bulk 
density, α, n - Van Genuchtens parameters of WRC) 
 
The input parameters characterizing the vegetation cover 
include the leaf area index (LAI), the evaporating surface 

roughness, the albedo of the evaporating surface, and the root 
zone depth. The vegetation cover of soft mead with a 
predominance of poplars, which prevail in the investigated 
area, was considered within the simulation. 
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IV. RESULTS 
While dealing with an evaluation of the impact of climate 

change on a soil water regime, scientists are logically 
confronted with a lack of input data. The same is true in the 
case of soil water regime modeling and the required data about 
the future positions of the groundwater levels. The authors of 
the paper recommend a methodology to obtain these data 
using support vector machines (SVMs). The groundwater 
levels are calculated on the basis of the air temperature, 
precipitation amount and supposed similarity of the future 
water regime (water level fluctuations) in the Ipeľ River up to 
the present. The groundwater levels calculated using the SVM 
methodology are used as the lower boundary condition for the 
simulation of the soil water regime by the GLOBAL model; 
later in this chapter those computations are compared with the 
computations for the measured groundwater levels during the 
testing period. 

The aim of this work is to evaluate the consequences of 
applying the SVM methodology to computing groundwater 
levels which should be inputs in the subsequent modeling of a 
soil water regime. For this purpose the authors evaluated the 
final precision of the modeling in the known (present) 
conditions, so a computation of the water regime in distant 
horizons, e.g., 2050 or 2100, as is usual in climate change 
impact studies, is not provided here. The aim of this study is to 
verify this possibility. For this reason the soil water storage 
was calculated: 1) using the measured groundwater levels, and 
was compared with 2) the modeling, which uses the values of 
the groundwater levels calculated by the SVM methodology. 
Through their analyses of the GLOBAL modeling results, the 
authors will demonstrate the sensitivity of the GLOBAL 
model to the precision of the groundwater level specification, 
e.g., its impact on the final precision of the soil water storage 
modeling. As has already been mentioned in the data 
description part, an important characteristic of applying an 
SVM to groundwater level predictions in climate change 
studies, which is also incorporated in this verification, is the 
data limitation. Therefore, only data which could be obtained 
from weather generators could be used. 

The years 2000-2010 were chosen as the testing period. The 
other years were used for training the SVM (or GLOBAL 
model, respectively). The basic meteorological variables serve 
as the input (the temperatures and precipitation from the 
nearby Dudince measurement station). These variables are 
available from weather generators (or by other means), when 
the expected climate change study will be resolved. Because 
the groundwater levels for the purposes of this study were 
available in weekly time steps, the meteorological variables 
(precipitation and temperatures) were also summed 
respectively averaged to also have these values in the weekly 
time step. In addition to the values of these variables from the 
previous time step, their previous values from eight weeks 
before the predicted groundwater level were also used. This 
relatively long history was included in the inputs because the 
groundwater levels from the previous time step could not be 
used in the context of climate change studies as was 
hereinbefore explained. This meteorological history should 

compensate for this lack of such an important and usual 
predictant in time series modeling. One additional variable 
was constructed from the average monthly values of the water 
levels in the nearby gauging station on the Ipeľ River. When a 
certain row of data belongs to a week in some month, the 
average value of the particular month’s water level in the Ipeľ 
is added, as this additional variable should represent the 
typical Ipeľ River’s influence on the groundwater in that time 
in the area. The averages are computed from the data in the 
training period; the same values are used in the testing period. 
It is presumed that there is no significant change in the water 
level regime in the Ipeľ between the training and testing 
periods and also that it would not change in the period of years 
which would be investigated for climate change impacts. Of 
course, this is a simplification, and this feature of the proposed 
modeling could be improved in future studies. On the basis of 
the considerations just described, the final dataset has 18 
features and 1,760 rows. It is not a very huge data set and is 
suitable for the proposed SVM modeling (from a practical 
point of view, perhaps the most serious problem with SVMs is 
the high algorithmic complexity and extensive memory 
requirements of the required quadratic programming in large-
scale tasks). 

The estimation of the practical steps of the SVM regression 
are as follows: 1) selecting a suitable kernel and the 
appropriate kernel’s parameter; 2) specifying the ε (tube 
parameter in Equation (3)); and 3) specifying the capacity C 
(Equation 3).  

The radial basis function was chosen as the kernel function 
on a trial and error basis: 

( ) ( ) 0,2exp, * 〉−−= γγ jiji xxxxK            (4) 

The parameter γ of this kernel function, the tube size ε for 
the ε-insensitive loss function, and the parameter C should be 
found, which the crucial step is when SVMs are applied to a 
particular task [33]. A genetic algorithms (GA) heuristic 
search combined with a cross-validation methodology in its 
fitness function was used for finding the mentioned 
parameters. In this approach a set of SVM parameters 
generated by the genetic algorithms is sent to the parameter-
evaluating algorithm. Basically, a k-fold cross validation was 
used. The data set was divided into k subsets, and the training-
testing-evaluation was repeated k times. Each time, one of the 
k subsets is used as the test set, and the other k-1 subsets are 
put together to form a training set. Then the average error 
across all the k trials is computed, which is the SVM 
parameter’s combination (called the “chromosome” in GA 
terminology) “fitness” in the context of the genetic algorithms. 

In contrast to the usual approach, the cross-validation used 
in this study does not randomly split the data, but partitions 
defined in advance were used. This was motivated by the 
cyclic (sinusoidal) character of the groundwater level 
fluctuations (Fig. 6). The authors have divided the training set 
in that manner, so that every partition contains the data for one 
calendar year. This ensures that this typical seasonal 
fluctuation is included in each cross validation test set. Better 
results were obtained by this strategy in comparison with the 
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standard approach in which the folds are formed randomly 
(verified by trial and error).  

The authors do not document the following finding in the 
paper, but they realized that when searching of the parameters 
by genetic algorithm is used, better results were obtained in 
comparison with a standard grid search in which the possible 
values of the parameters are de facto predefined. The reason 
for this is that the search space in this case is a typical example 
of so-called equifinality. This means that there is not a unique 
optimal parameter set for which Beven [34] in the field of 
hydrological modeling introduced the term “equifinality”; this 
means the existence of multiple parameter sets, which are all 
acceptable, albeit not equivalent. In this situation a genetic 
algorithm is capable of finding one of these regions containing 
the “optimal solution” and then scans it more thoroughly, and 
thus finds a better solution because the search is not limited by 
grid settings. On the other hand, some mechanisms for 
avoiding overtraining and over-fitting were implemented - the 
maximum number of generations of the GA was set to 20 and 
the population size to 15 chromosomes, which is not abundant. 
Moreover, the GA is terminated if three subsequent 
generations without any improvement occurs. 

The testing results of modeling the groundwater levels by 
SVM are in Fig. 7. The correlation coefficient was 0.721 and 
the mean absolute error 26.2. As a consequence of the data 
limitation, this degree of precision is not very high, but the 
question is what impact such a degree of accuracy has on the 
final soil water storage modeling. 

 
Fig.7 Comparison of the measured and computed groundwater 

levels in the period 2001-2010 
 
In the next step modeling carried out by the GLOBAL model 
was accomplished and evaluated by a correlation analysis. In 
this second stage the authors compared the soil water storages 
1) simulated when using as input the measured groundwater 
levels with the soil water storage and 2) simulated using the 
groundwater levels calculated by the SVM methodology. The 
results of this analysis are shown in Table 2. The correlation 
coefficients reached high levels, which mean that between the 
evaluated parameters is a high degree of commitment. 
 
 
 

Table 2  Correlation of GLOBAL results produced by modelling with 
the measured GWL and computed by SVM 

year 0-50 cm  
soil layer  

0-100 cm  
soil layer  

2001 0.87 0.71 
2002 0.99 0.84 
2003 0.97 0.98 
2004 0.99 0.94 
2005 0.89 0.79 
2006 0.99 0.99 
2007 0.99 0.99 
2008 0.99 0.99 
2009 0.81 0.92 
2010 0.49 0.47 

Average 0.93 0.86 
 
As an illustration, the development of the soil water storage 
during the year 2007 is shown in Fig. 8 and 9, when the 
correlation coefficient had one of the highest values in each 
case of the evaluation (R=0.99). From the figures it can be 
seen that the soil water storage computations are very similar 
in the cases with the measured and computed groundwater 
levels. There are minimal differences in the 0-50 cm soil layer 
and in the 0-100 cm soil layer; there are some insignificant 
differences during the growing season. 

 
Fig. 8 Daily soil water storage in the 0-50 cm soil layer below the 

surface level for the year 2007 
 

 
Fig. 9 Daily soil water storage in the 0-100 cm soil layer below the 

surface level for the year 2007 

V. CONCLUSIONS 
Predictions of soil moisture have drawn great interest from 

researchers, because soil moisture plays an important role in 
water resources planning and management. This parameter is 
important in research on climate, hydrology, agriculture, and 
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forestry. This is also an important research issue in climate 
change impact studies. Different methods and models have 
been applied for predictions of soil water storage. They can be 
sorted into various categories; one possible classification 
distinguishes physically-based models and data-driven 
models. Physically-based models resolve exact physically 
justified governing equations. Data-driven models analyze and 
derive results only from observed inputs and outputs. This 
study has demonstrated the predictive value of a hybrid 
approach which involves both methods - SVM and GLOBAL 
- and underlines the usefulness of the proposed symbiosis of 
the data-driven and physically-based types of modeling.  

In this paper the authors are evaluating the consequences of 
groundwater level (GWL) specifications on the subsequent 
modeling of a soil water regime, when these groundwater 
levels are obtained by support vector machines. Soil water 
storage was simulated by GLOBAL - a physically-based 
model - comparing cases, when the measured GWL and 
computed ones by the SVM methodology are taken as input. 
The results of this analysis are shown in Table 2. The accuracy 
of the final prediction of soil moisture between computations 
with measured versus computed GWL is very satisfactory; in 
the 0-100 cm soil layer there is a little less precision than in 
the 0-50 cm soil layer. This is caused due to the greater depth 
of the soil profile; consequently there are more complicated 
nonlinear relationships and probably a greater influence of the 
groundwater level from a neighbouring location. The GWLs 
are simulated by SVM because such data is rarely available in 
climate change impact studies, but this study successfully 
tested this approach.  

Further studies are recommended, especially using more 
data for the prediction of the water flows of rivers in the area 
investigated or water levels in significant water bodies, which 
could have a significant influence on groundwater and could 
be taken as additional inputs. Nevertheless, the proposed 
methodology does show an acceptable degree of precision and 
could be an option in climate change impact studies. It is also 
desirable to evaluate the production of some other variables 
which are also not outputs of weather generators or to 
compare this approach with existing methodologies. 
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