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Gaussian Process-based Predictor of Electric Power
Damage Caused by Typhoons in Japan Using
Artificial Bee Colony Algorithm

Tomohiro Hachino, Hitoshi Takata, Seiji Fukushima, and Yasutaka Igarashi

Abstract—Electric power systems in Japan have suffered from
natural disasters caused by typhoons repeatedly. The electric power
supply is sometimes cut off in wide areas for a long time by typhoons,
which brings an undesirable effect on society. To speedily restore
the electric power supply, it is necessary to predict the amount
of electric power damage accurately for an approaching typhoon.
This paper presents a method of predicting the amount of electric
power damage caused by typhoons for the Amami archipelago in
Japan using Gaussian process (GP) model. The relation between
the typhoon weather information and the electric power damage is
represented by the GP prior model and this model is trained by
the separable least-squares (I.S) approach combining the linear LS
method with artificial bee colony algorithm. The predicted amount of
damage is given by the predictive mean of the GP and its confidence
measure is evaluated by the predictive variance of the GP. Simulation
results based on actual data of typhoons that hit or came close to the
Amami archipelago are shown to illustrate the effectiveness of the
proposed predictor.

Keywords—Artificial bee colony algorithm, damage caused by
typhoon, electric power system, Gaussian process model, prediction.

I. INTRODUCTION

LECTRIC power systems in Japan have suffered from

natural disasters such as typhoons, rainstorms and earth-
quakes. Typhoons are defined as intense tropical cyclones that
have an extremely high wind speed when they are generated in
eastern Asia [1]. The risk management of damage caused by
typhoons has been studied for water floods [2], [3]. Damage
to electric power facilities caused by typhoons is one of the
most common meteorological disasters in Japan [4]-[6]. Once
electric power supply is cut off by typhoons, the social life is
paralyzed. To ensure the speedy restoration of electric power
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supply, one has to predict the amount of damage accurately
for an approaching typhoon so that the staffs and materials
necessary for restoration are appropriately arranged. Since
there are many islands in Japan, it is urgent to develop an
accurate prediction method for electric power damage. For
island areas such as the Amami archipelago in Japan, the staff
and materials necessary for restoration must be appropriately
prepared and sent there according to the predicted amounts of
damage before the arrival of the typhoon.

So far, a rough predictions based on experience have been
made in the field using the past typhoon weather information
and electric power damage. On the other hand, we have
developed two-stage predictors that consist of neural networks
and linear or second-order regression from the viewpoint of
nonlinear prediction [7]-[9]. However, these prediction meth-
ods need to use a large number of parameters to describe the
nonlinearity between the typhoon weather information and the
electric power damage. This is presently one of the drawbacks
of these predictors, because we can use only limited amounts
of training input (typhoon weather information) and output
(electric power damage) data. Moreover, confidence measures
for the predicted amount of damage cannot be obtained for
the two-stage predictors.

To overcome these problems, in this paper, we proposes
a novel prediction method using the Gaussian process (GP)
model trained by artificial bee colony (ABC) algorithm. The
GP model is a non-parametric model and fits naturally into
the Bayesian framework [10]-[12]. This model has recently
attracted much attention for system identification [13]-[15],
time series forecasting [16], [17], and predictive control [18].
The proposed GP-based predictor includes far fewer parame-
ters to describe the nonlinearity than the two-stage predictors.
The predicted amount of damage is given by the predictive
mean of the GP and its confidence measure is evaluated by
the predictive variance of the GP.

The parameters included in the GP model and the adjusting
parameters for quantification of the typhoon track have to
be properly trained based on the training input and output
data. Generally this training becomes nonlinear optimization
problem. In this paper, the separable least-squares (L.S) ap-
proach combining the linear .S method with ABC algorithm
is presented for this training. ABC algorithm is an optimization
algorithm inspired by an intelligent behavior of honeybee
swarms and has high potential for both global and local
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optimizations [19]. Many applications of ABC algorithm have
been also reported for vehicle routing problem [20] and
field excitation control problem of power system [21]. ABC
algorithm finds the best solution through search by the three
types of bees; the employed bees, the onlooker bees, and
the scout bees. This algorithm consists of only the basic
arithmetic operations and does not require complicated coding
and genetic operations such as crossovers and mutations of
genetic algorithm. Moreover, the performance of ABC algo-
rithm is better than or similar to those of other population-
based algorithms in spite of a few setting parameters [19], [22],
[23]. These advantages suggest that the use of ABC algorithm
increases efficiency when the GP-based predictor is trained.

This paper is organized as follows. In Sect. II, the problem
is formulated. In Sect. III, the quantification technique for
the typhoon track is given. In Sect. IV, the GP prior model
for prediction is derived. In Sect. V, the training algorithm
of the GP prior model is presented using the separable L.S
approach. In Sect. VI, the estimation method of the typhoon
weather data used for prediction is described. In Sect. VII, the
prediction of the electric power damage is carried out from
the GP posterior distribution. In Sect. VIII, the performance
of the proposed prediction method is demonstrated through
numerical simulation using actual data of damage for the
Amami archipelago in Japan. Finally some conclusions are
remarked in Sect. IX.

II. STATEMENT OF THE PROBLEM

The objective area for prediction is taken to be the Amami
archipelago in Japan. This archipelago is located at about
latitude 27.83°N and longitude 128.08°E.

The input of the predictor is the typhoon weather informa-

tion:
It (D
where x; is the typhoon track and x5 [m/s] is the maximum
instantaneous wind speed. The output from the predictor is the
amount of electric power damage y, such as the power failure
circuit. It is possible to choose other weather information as
the input, but it increases the scale of the predictor. Therefore,
we choose only the typhoon track and the maximum instan-
taneous wind speed that affect the amount of electric power
damage greatly.

It is assumed that we collect the typhoon weather data
released from the Meteorological Agency:

X = [:13(1),:13(2), e 7m(N)]T
z(7) = [21(7), z2(5)]"
and the corresponding actual data of the amount of electric
power damage:

T = [z1, 2o

@)

y=[y1),y2), -, y(N)]" 3)

where N is the number of the typhoons that hit or came close
to the Amami archipelago in the past.

The purpose of this paper is to construct a prediction
system that can predict the amount of electric power damage
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Fig. 1 Quantification of the typhoon track

with its confidence measure from the weather data of a new
approaching typhoon.

III. QUANTIFICATION OF TYPHOON TRACK

The typhoon track strongly correlates with the amount of
electric power damage. In order to input the typhoon track
into the predictor, we have to quantify it as a numerical
value. In general, in the Northern Hemisphere, the wind force
in the east side of the typhoon is stronger than that in the
west side of the typhoon. This wind characteristic suggests
that the typhoon via the west side of the Amami archipelago
probably causes more damage than the typhoon via the east
side of the Amami archipelago. Moreover, since the typhoon
is likely to stay around the Amami archipelago for a long time,
the electric power system may frequently suffer from major
damage. Therefore, we have to consider the wind characteristic
and the stagnancy of the typhoon when the typhoon track
is quantified. First, the centers of the typhoon are plotted
every hour in the range from latitude 26°N to 31°N. Then,
a Gaussian function is arranged on the Amami archipelago as
shown in Fig. 1. The numerical value of the typhoon track
is calculated by summing the altitude values of the arranged
function corresponding to the plotted centers as follows:

n
Ir1y = E 25
j=1

Zj = eXp{—

(Traj — Cra)®> + (Troj — Cro + @)? }
/82
4)
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where T 4; is the latitude of the typhoon center, Tro; is
the longitude of the typhoon center, Cr 4 is the latitude of
the Amami archipelago, C'o is the longitude of the Amami
archipelago, @ > 0 is the bias for the typhoon center, [ is
the width of the Gaussian function, and n is the number of
the plotted centers of the typhoon. Note that the value of the
typhoon track becomes large in the case that the typhoon stays
around the Amami archipelago for a long time. The bias « is
introduced to take the wind characteristic of the typhoon into
consideration. A way of determining the adjusting parameter
vector @, = [a, 8] suboptimally will be discussed in Sect.
V.

IV. GP PRIOR MODEL FOR PREDICTION

Assume that the relation between the typhoon weather
information @ and the amount of electric power damage y
is described as

y=flz)+e &)

where f(-) is a function which is assumed to be stationary
and smooth. € is assumed to be a zero-mean Gaussian noise
with variance 2. The assumption of smoothness means that
the amounts of electric power damage have a high correlation
and becomes similar values for the typhoon weather data that
are close to each other. The determination of the standard
deviation o, will be discussed in Sect. V.

Let the function value vector corresponding to the typhoon
weather data given by (2) be

f=1f@@), f(z(2), -, fl@)] (6)

Then this function value vector f is represented by GP
regression. The GP is a Gaussian random function and is
completely described by its mean function and covariance
function. We can regard it as a collection of random variables
with a joint multivariable Gaussian distribution. Therefore, the
function value vector f can be represented by the GP as

where m (X)) is the N-dimensional mean function vector and
(X, X) is the N-dimensional covariance matrix evaluated
at all pairs of the training input data. Equation (7) means that
f has a Gaussian distribution with the mean function vector
m(X) and the covariance matrix (X, X).

In this paper, the mean function m(x) is expressed by the
first-order polynomial, i.e., a linear combination of the input
variable:

m(x) = 20,

®)

where & = [z7,1] and 0,, = [0n1,0m2,0m3]" is the
unknown weighting parameter vector for the mean function.
Thus, the mean function vector m (X)) is described as follows:

= [m(z m(x —,m(x T
m(X)—[_( (1)), m(x(2)),- -, m(x(N))] ©
= X6,
where X = [X,e] and e = [1,1,---,1]T is the N-

dimensional vector of ones.
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The covariance matrix 3(X, X)) is constructed as

E11 E12 E1N
E21 E22 E2N

52X, X)=| . . (10)
ENl EN2 ENN

where the element X, cov(f(xz(p), f(x(q)))
s(xz(p),x(q)) is a function of x(p) and x(q). The follow-
ing Gaussian kernel is utilized as the covariance function

s(z(p), z(q)):

s(2(p), 2()) = o exp (

| z(p) —x(q) I
- o > (11)

where || - || denotes the Euclidean norm. Equation (11) means
that the covariance of the function values depends only on the
distance between the inputs x(p) and x(q). A high correlation
between the function values occurs for inputs that are close to
each other. The overall variance of the random function can be
controlled by varying o,, and the characteristics length scale
of the process can be changed by varying /.

As the amount of electric power damage y is a noisy
observation, we can derive the following GP prior regression
from (7):

where
KX, X)=X(X,X) +U%IN

Iy : N x N identity matrix (13

and 0, = [0,0,0,]"T is called the hyperparameter vector. In
the following, K (X, X) is written as K for simplicity.

V. TRAINING BY ABC ALGORITHM

A. Separable LS Approach

The accuracy of the prediction greatly depends on the
unknown parameter vectors, i.e., the weighting parameter
vector @, of the mean function, the hyperparameter vector 6,
of the covariance function, and the adjusting parameter vector
0, of the quantification of the typhoon track. Therefore, the
parameter vector 8 = [0,607,60]" has to be determined
suboptimally. This training is carried out by minimizing the
negative log marginal likelihood of the typhoon weather data
and the actual amount of electric power damage:

J —logp(y| X, 0)

1 1

3 981K+ 5y —m(X0)) K~
x(y —m(X)) + 5 log(27)

1 1 _ _

5 log |K| + 5 (y - X0,)" K™ (y - X0p)
N

+5 log(27) (14)

As the cost function J generally has multiple local min-
ima, this training becomes a nonlinear optimization problem.
However, we can separate the linear optimization part and
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the nonlinear optimization part for this problem. Note that
if the candidates for the hyperparameter vector 8, and adjust-
ing parameter vector @, are given, the weighting parameter
vector 6, can be estimated by the linear .S method putting
0J/00,, = 0:

0, =(XTK'X)"'XTK 'y (15)
However, even if 8, is known, the optimization with respect to
0. and 0, is a complicated nonlinear problem and might suffer
from the local minima problem. Therefore, in this paper, we
combine the linear LS method with ABC algorithm to deter-
mine the unknown parameter vector 6. Only @ = [07,0)]" =
[0y, 0, 0n,a, B]T is represented with the positions of the food
sources and is searched for by ABC algorithm.

B. Outline of ABC Algorithm

ABC algorithm is an optimization algorithm inspired by
the behavior of real honeybees [19]. In this algorithm, the
colony of artificial bees consists of the three groups of bees;
the employed bees, the onlooker bees, and the scout bees. The
roles of these groups are as follows:

1) Employed bees

The employed bees determine a food source within the
neighborhood of the food source in their memory. The size of
the employed bees is half of the colony size. Every employed
bee works on only one food source. Therefore, the number of
the employed bees is equal to the number of the food sources.
The employed bees evaluate the profitability of the food
sources such as the nectar amount, and share their information
with the onlooker bees in the hive. A employed bee that has
worked on abandoned food source is differentiated into a scout
bee.
2) Onlooker bees

The onlooker bees waiting in the hive select one food source
through the information obtained from the employed bees’
dances and search in the neighborhood of the selected food
source. This selection is implemented by the “roulette-wheel”
slots weighted in proportion to the profitability of the food
source. Therefore the onlooker bees are likely to search around
more profitable food sources. The size of the onlooker bees is
also half of the colony size.
3) Scout bees

The scout bee differentiated from the employed bee searches
a new food source randomly.

In the optimization problem, the positions of the food
sources correspond to the candidates of the solution and
the profitability of the food source shows the fitness value
that represents the goodness of the solution. The suboptimal
solution is obtained by repeating search by the employed,
onlooker, and scout bees.

C. Training of GP Prior Model

The proposed training algorithm by the separable LS ap-
proach is as follows:

192

step 1: Initialization
(1-1) Generate an initial population of N bees with random

positions of the food sources Q; (i = 1,2,---,N,) from
(16):
Qij = Qmin,j + rand[(), ].] - (Qmam,j — Qmin,j) (16)
(.7 = 1727"'75)

where N, denotes the size of the employed bees or onlooker
bees and (2;; is the jth element of the vector €. Qyin,; and
Qmae,; are the minimum and maximum values for €;;, re-
spectively. rand[0, 1] is uniformly distributed random number
with amplitude in the range [0, 1].

(1-2) Set the iteration counter [ to 1.

(1-3) Set the counter for abandonment ¢rial; to 0. The counter
trial; shows the number of times that the solution €2(; is not
improved by the employed and onlooker bees.

step 2: Quantification of the typhoon track
Quantify the typhoon track to the numerical value using
0, (i =1,2,---,N;) by the quantification technique given
in Sect. III.
step 3: Construction of the covariance matrix
Construct N candidates of the covariance matrix K[; using
0(3[1] (Z =1,2,--- 7Ns)'
step 4: Estimation of 0,,
Estimate N, candidates for 8,,; (i = 1,2,---, N) from
(15).
step 5: Fitness value calculation
Calculate the negative log marginal likelihood of the ty-
phoon weather data and the actual electric power damage:
1 1 - _
Ji(Q) = 5 log | K[| + 5(?! - X[i]em[i])TK[i]l

X(y — X(30mpi) + > log(2m) (17)

and the fitness value F;(€2(;)) = 1/J;(Qy).

step 6: Search by the employed bees
(6-1) Determine the new positions of the food sources V};; =
[193[1.], ﬂ;[i]]T around ;) for the employed bees from (18):
‘/;j = Qij + rcmd[—l, ].] - (Q,J — ij)
(.] = 1727""5)

where V;; is the jth element of the vector V; and k is a
random integer selected from {1,2,---, Ny}, where k # i.
(6-2) Quantify the typhoon track to the numerical value using
Gy (i =1,2,---, N;) by the quantification technique given
in Sect. III.

(6-3) Construct Ny candidates of the covariance matrix ICp;
using 9.5 (i =1,2,---, N;).

(6-4) Estimate N, candidates for 9,,; (i = 1,2,---,Ny)
from (15).

(6-5) Calculate the objective function value:

(18)

1 1 - _
Ji(Vy) = §1Og|’C[i]| + 5(?4— X 9mp) Ko

(1]

- N
x(y = X0 mp) + ) log(2m) (19)
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and the fitness value F;(Vy) = 1/.J;(V}y)-
(6-6) If FZ(QM) < FZ(Vv[l]), update Q[i], em[i] and FZ(Q[Z])
by Vi, ¥y and Fj(Vy;), respectively, and set trial; = 0.
Otherwise set trial; = trial; + 1. This procedure is called
“greedy selection”.

The search by the employed bees is depicted in Fig. 2.

step 7: Search by the onlooker bees
(7-1) Choose one position of the food source for each onlooker
bee from Q) (i = 1,2,---,N,) through “roulette-wheel”
slots weighted in proportion to the fitness value of the em-
ployed bee. Namely each onlooker bee selects one position of
the food source with probability of F;(€2;))/ E;V:sl Fp(p))-
(7-2) Calculate the new positions of the food sources Vi
corresponding to the selected positions €2; from (18).
(7-3) Quantify the typhoon track to the numerical value using
Gy (i =1,2,---, N) by the quantification technique given
in Sect. III.
(7-4) Construct Ny candidates of the covariance matrix ICp;
using Jop) (i =1,2,--+, Ny).
(7-5) Estimate N candidates for 9,,; (i
from (15).
(7-6) Calculate the fitness value F;(Vy;) = 1/J;(V};) from
(19).
(7-7) Carry out the greedy selection with the same way of step
6 (6-6).

The search by the onlooker bees is depicted in Fig. 3.

1727"'7Ns)

step 8: Search by the scout bees

If the counter for abandonment trial; is greater or equal
to the prespecified number limit, carry out the following
procedure.

(8-1) Differentiate the corresponding employed bee into the
scout bee and generate the new position of the food source
Qy;) for the scout bee randomly from (16).

(8-2) Quantify the typhoon track to the numerical value using
the corresponding @,; by the quantification technique given
in Sect. III.

(8-3) Construct the covariance matrix K|; using the corre-
sponding 6.[;-

(8-4) Estimate 6,,; from (15).

(8-5) Calculate the fitness value F;(2;)) = 1/J;(Q;) from
(17).

This step means that if the solution is not improved limit
times through search by the employed and onlooker bees, the
corresponding employed bee gives up to search around his
food source and transforms himself to the scout bee to search
around randomly selected food source. Since the number limit
is usually set to be the product of the employed bee size and
the dimension of the search space [19], this number is taken
to be limit = Ng x 5 in this paper.

The search by the scout bees is depicted in Fig. 4.
step 9: Repetition

Set the iteration counter to | =+ 1 and go to step 6 until
the prespecified iteration number /4.

Finally, at the termination of this algorithm when [ = lmaz»

the suboptimal Q= [0?, ég T and the corresponding @, are
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Fig. 4 Search by the scout bees

determined by the best position of the food source.

VI. ESTIMATION OF TYPHOON WEATHER DATA FOR
PREDICTION

For island areas such as the Amami archipelago, the amount
of electric power damage caused by typhoon is appropriately
predicted and the staff and materials necessary for restoration
are dispatched to the isolated islands just before ships and
airplanes are canceled. In this paper, when the typhoon arrives
at latitude 23°N, the prediction of the electric power damage
is started. The reason why this timing is chosen to carry out
the prediction is that it takes about 24 hours on average for
typhoons to reach the Amami archipelago after they reach
latitude 23°N and we can only just arrange the staff and
materials necessary for restoration in the Amami archipelago
in the meantime. In the following, the time when the typhoon
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arrives at latitude 23°N is referred to as the implementation
time.

In order to carry out the prediction at the implementation
time, the typhoon weather data @, = [Z1.,72.]" at the time
when it comes close to the Amami archipelago are necessary.
The typhoon weather data are estimated using the predic-
tive typhoon weather data announced by the Meteorological
Agency.

First, assuming that the typhoon will pass through the cen-
ters of the probability circles in the track forecast announced
by the Meteorological Agency, we estimate the numerical
value z1, of the typhoon track by the quantification technique
mentioned in Sect. IIl. Since the centers of the probability
circles in the track forecast are usually given every 12 hours by
the Meteorological Agency, the centers every hour are plotted
by interpolation after two centers of probability circles are
linked by a straight line, then the numerical value z;, of the
typhoon track is evaluated by (4).

The maximum instantaneous wind speed xs, is estimated
from the following second-order polynomial:

T2« = Qg + a1u1 + a2uUs + azuius + a4u% + a;,u%

_ e (20)

where z = [1,u1,us, uyus, u?, u3]T09 = [ao,a1,as,as,
aq, as]T, w1 1s the maximum wind speed at the implementation
time, and wus is the predictive closest distance between the
typhoon center and the Amami archipelago. The unknown
parameter vector 1} is estimated by the linear L.S method
based on the past data of the maximum instantaneous wind
speed at the Amami archipelago, the maximum wind speed at
the implementation time, and the predictive closest distance
between the typhoon center and the Amami archipelago.

VII. PREDICTION BY GP POSTERIOR DISTRIBUTION

Let the amount of electric power damage corresponding to
the estimated typhoon weather data x, = [ml*,mg*]T in the
Amami archipelago be y,. Then, we can get the joint Gaussian
distribution of y and y, under the GP prior as

HE
V([ e | (s, sommnon )

m(xy)
where (X, z.) = X7 (z., X) is the N-dimensional covari-
ance vector evaluated at all pairs of the training input X and
the new input x,. From the formula for conditioning a joint
Gaussian distribution [24], the posterior distribution for g, is
obtained as

2D

Yx | Xayam* NN(@*,&E) (22)

where g, is the predictive mean and 62 is the predictive
variance, which are given as follows:

s = m(z,) + B(x., X) K~ (y — m(X)) (23)
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~2

62 = 5(xu, ) — B(x0, X) K'E(X, ) + 02 (24)

U« is the predicted amount of electric power damage by the
typhoon and 2 is utilized as the confidence measure of the
predicted amount of damage.

VIII. SIMULATIONS

We predict the amount of electric power damage using the
actual data of 18 typhoons that hit or came close to the Amami
archipelago from 1996 to 2009. These 18 typhoon data are
divided into 17 typhoon data for training and 1 typhoon datum
for prediction. Namely, we can predict the amount of electric
power damage with 18 combinations of training and prediction
data. The amount of electric power damage is taken to be the
number of the power failure circuits. The setting parameters
of ABC algorithm are chosen as follows:

(i) employed bee size Ny, = 50 (50% of the colony size)

(i) maximum iteration number [,;,,, = 100

The prediction result obtained by the proposed method is
shown in Fig. 5. In this figure, the circles show the true number
of the power failure circuits, the squares show the predicted
number of the power failure circuits, and the shaded areas
give the double standard deviation confidence interval (95.5%
confidence region). The actual damages of 15 typhoons are
included in the double standard deviation confidence interval.
The probability that the actual damages are included in the
double standard deviation confidence interval is 83.3%, which
is quite close to the expected value 95.5%. This indicates that
the proposed method yields quite reasonable confidence region
of the predicted amount of damage.

For comparison, the two-stage prediction method [8] is ap-
plied to this prediction problem. The prediction result obtained
by the two-stage prediction method is shown in Fig. 6. The
average error rate:

T
E =2 [y-(k) = 5 (k)|/y. (k) (25)
k=1

is calculated for the proposed method and the two-stage
prediction method, where y. (k) is the actual damage, i.e., the
true number of the power failure circuits, and . (k) is the
predicted number of the power failure circuits. As a result,
the average error rate is 0.506 for the proposed method and
0.665 for the two-stage prediction method. The average error
rate of the proposed method is 23.9% smaller than that of
the two-stage prediction method. Therefore, we conclude that
the accuracy of the propose method is superior to that of the
conventional two-stage prediction method.

It should be noted that any confidence measures of the
predicted amount of damage could not be obtained in the
two-stage prediction method. On the other hand, the proposed
method can give not only the predicted values but also the
confidence regions of the predicted values. Therefore, in effect,
we can utilize the upper value of the confidence region
Ysmaz = Ux+20, as the predicted value of the worst case. This
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method)

suggests that the proposed method can reduce the possibility
that the staff and materials necessary for restoration are lacking
in the Amami archipelago. This is also one of the advantages
of the proposed method.

IX. CONCLUSIONS

In this paper a novel prediction method for the electric
power damage caused by typhoon has been proposed using
the GP model. The separable L.S approach combining the
linear LS method with ABC algorithm is presented for training
the GP prior model. Since ABC algorithm has a few set-
ting parameters, the proposed training algorithm is efficient
for construction of the prediction system. Simulation results
show that the proposed prediction method yields accurate
predicted amount of damage and reasonable confidence region.
Examination of another weather data that affect electric power
damage is one of the future works.
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