
 

  
Abstract—This paper deals with an application of data-driven 

ensemble methods while solving an important hydrology task - short-
term flow predictions. Flood warnings several days in advance could 
provide civil protection authorities and the public with the necessary 
preparation time and could reduce the socio-economic impacts of 
flooding. The authors have focused on the application of an ensemble 
learning methodology for flow predictions, with the aim of refining 
the precision of the results of such modelling. Moreover, the authors 
demonstrate the usefulness of various steps in the data mining 
process, which are formalised in the so-called CRISP-DM process. 
They emphasize that all these steps are equally important in the 
modelling process and not merely in the final data-driven 
computations. The authors demonstrate selected methods for data 
pre-processing in the field of hydrology. A comparison of the 
ensemble modelling approach with a single model application reveals 
the advantage of the proposed ensemble approach. The paper 
describes river flow predictions in the Kysuca River watershed in 
Slovakia. The results from both approaches are evaluated with the 
help of the hydrological data which were observed in this region. An 
evaluation of the proposed methods shows their usefulness in river 
flow predictions.  
 

Keywords—data mining, ensemble models, river flow prediction  

I. INTRODUCTION 
HIS study deals with the application of data-driven 

modelling and data mining in hydrology. Data mining is 
an information extraction activity, the goal of which is to 
discover the hidden knowledge contained in (usually large) 
databases. Because hydrology is a very data-intensive activity, 
data mining has attracted increased interest in recent years [1], 
[2]. Various data mining tasks or tools can be used in the 
domain of hydrology, e.g., classification, regression, 
clustering, etc. When a data scientist is dealing with one of 
these tasks, he should go through some common process for 
the application of these tasks, which consists of various steps; 
it is usually possible to speak about six phases, which were 
established as the so-called CRISP-DM process (Cross 
Industry Standard Process for Data Mining) [3]. CRISP-DM 
consists of the following six phases, which are intended to be 
as a cyclical process (see Fig. 1). 

“The problem understanding” is the first and most 
important phase. “The problem understanding” includes  
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determining the objectives, assessing the situation, 
determining the data mining goals, and producing the project 
plan.  

“The data understanding” phase contains a collection of the 
initial data into various formats, e.g., tables, the description of 
the data, e.g., by various statistics or graphs, the exploration of 
the data, the verification of the data’s quality, etc. 

“The data preparation” is a phase where construction of 
the datasets to be used in the modelling is accomplished. This 
phase includes selection of the data; in cases of using 
numerical data, this phase could include the selection of useful 
rows and columns (variables) from any available databases. 
The first process is the so-called sampling, while the second 
one is the feature or variable selection. These are followed by 
constructing new variables on the basis of the known ones,  
cleaning the data, making decisions about dealing with any 
missing data and, finally, constructing various data sets – e.g., 
for training, testing or validation purposes, and formatting 
these data into the form required by the software to be used. 

“The modelling phase” includes the selection of a 
modelling technique, the selection of the methods for the 
proper tuning of these methods, and building the models 
which are able to address the modelling aims. In the past it 
was usual to search for a model optimized in some way, e.g., 
to find the “best” model. Nowadays, it is accepted in the 
hydrology modelling community that there is no one best 
model which is superior under all circumstances [4]. In the 
following study an ensemble methodology is applied to 
streamflow predictions. An efficient ensemble should be 
composed of predictors that are not only sufficiently accurate, 
but are also dissimilar, in the sense that the predictor errors 
occur in different regions of the input space [5]-[7]. 
Obviously, combining several identical models results in no 
gain. The diversity of the individual basic learners which form 
the ensemble in this study is achieved through the application 
of different learning algorithms. Each of these algorithms 
provides a different means for traversing the error surface; 
therefore, using the different training algorithms yields models 
that generalize differently, since they achieve different global 
and local minima and therefore produce different predictions 
[8], [9]. 

“The evaluation phase” thoroughly evaluates the model’s 
outputs and ascertains if it properly achieves the objectives. 
The proper measures of the modelling quality should be 
selected. These includes an evaluation of the results, the 
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review process, and the determination of the next steps (back 
to the objectives or stepping forward to deployment as was 
said and as is described in Fig. 1; it is a cyclical process).  

“The deployment phase” tries to use this approach for 
practical usage. It includes the establishment of some plan for 
deployment, monitoring and maintenance, and it is customary 
to produce a final report in which the data mining project is 
described and reviewed. 

An application of the CRISP-DM process for a selected 
hydrology problem, i.e., short-term flow predictions, is 
presented in this paper. The structure of the paper’s chapters 
follows the structure of the CRISP-DM process for a better 
description of the data mining process and the utilization of its 
methods in hydrology in the following parts of the paper. The 
methods mentioned will be applied to the Kysuca River basin 
in northwest Slovakia. 
 

 
Fig. 1 CRISP-DM data mining process  

 

II.  PROBLEM UNDERSTANDING  
The watershed of the Kysuca River was chosen for this 

study. A so-called flood warning system, in which the flow 
predictions are extremely important, has been established here. 
This watershed falls within the Vah River basin, which is a 
sub-basin of the Danube River. This watershed is extremely 
sensitive from the point of view of floods. The reason for this 
is that it is characterized by very quick runoff (it is located in a 
mountainous area). It has an irregular fan-shaped 
configuration, as can be seen in Fig. 2. The Kysuca watershed 
has an area of almost 1000 km2. 

The “time of concentration” in the Kysuca River watershed 
is about 2-3 hours. The time of concentration is a concept used 
in hydrology to measure the response of a watershed to a rain 
event. It is defined as the time needed for water to flow from 
the most remote point in a watershed to the watershed outlet 
[4]. It is a function of the topography, geology, and land use 
within a watershed. We will use this characteristic later to 
specify the backward time lags, from which flows will be 
considered as inputs for the computation of the predicted 
flows.   

 

 
Fig. 2 Map of the area studied within the Kysuca River Basin 

 
Various time levels of flood predictions can be considered, 

for example, short-term predictions (usually hours) or long-
term predictions (days or weeks). In this paper we used data 
mining methods for short-term flood predictions. The river 
flow seven hours ahead of the downmost gauging station 
(Kysucke Nove Mesto) was chosen for the predictions. This 
time interval was selected on the basis of the idea that it is 
quite an adequate time for preparing the inhabitants of this 
area in the case of flood risk. 

III. DATA UNDERSTANDING  
In the study presented the above-mentioned hydrological 

system was represented and described by data from five 
measuring stations, the locations of which can be seen in Fig. 
2 (dots). Three of these stations are located on the Kysuca 
River itself (Turzovka - 6170, Cadca–Kysuca - 6180, and 
Kysucke Nove Mesto - 6200), and two of them are on left-
hand inflows to the Kysuca River (Zborov - 6190 and 
Ciernanka - 6179). The gauging stations record water levels, 
precipitation, and water and air temperatures. The flows are 
computed with the help of an appropriate rating curve for the 
transposition of the water level data into the flow data. The 
rating curve is a site-specific graphic or mathematical 
relationship between the water level (stage) and flow, and it is 
used to convert a water level record into a flow record. In this 
study only flows were used for the computations, because 
other data were erroneous or not suitable for this task. No 
precipitation was used, since, as can be seen in Fig. 2, the 
gauging stations do not reliably cover the whole watershed 
area; therefore, many significant storms could potentially not 
be registered by this gauging system. On the other hand, the 
flows naturally “register” every storm, because they are 
responses to them, so a higher degree of precision with respect 
to a description of the hydrological processes could be 
assumed in flow versus precipitation data. If a period ahead 
that is longer than seven hours would be chosen for the 
predictions, precipitation (and probably also predicted 
precipitation) should be used as inputs. 

The observation period from which the data was collected 
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spans an interval from 1.1.2007 to 31.12.2010. In this study 
the authors took the flows of the Kysuca River at the Kysucke 
Nove Mesto gauging station as the searched output and the 
rest of the data were considered as the inputs. The source data 
set included 5 columns (5 gauging stations) and about 35,000 
rows (days).  

During a certain period of time in January 2010, some of 
the gauging stations were corrupted, so this whole month was 
excluded from the data set. Also, other missing values were 
detected in the original data set; this problem will be 
addressed in the next step of the data mining process, which 
will be described in the following chapter.   

IV. DATA PREPARATION  
After the exploration of the data set, the year 2010 was 

chosen as the testing period. The other years were used for 
training the models. This decision was made, because the year 
2010 was the last year in the available dataset and also 
because in the year 2010, large flows occurred. In flood 
prediction it is more important to predict high flows correctly, 
so 2010 was a suitable year for the testing. That is the reason 
why the whole data set was divided into training and testing 
datasets, according to Table I. 

The basic input variables (the flows from all five measuring 
stations) are used for the purpose of short-term predictions. 
Besides the flows from the previous time step, the flows from 
time steps 1, 2, 3, 4, and 5 hours before the predicted flow 
were also used as inputs.  This is based partly on the 
mentioned time of concentration, which is, as was noted, a 
maximum of 3 hours in this watershed; more time steps (not 3, 
but 5) were taken, because it is important if there were higher 

flows in the previous hours, which would indicate that the 
watershed at that time would be more saturated with water. On 
the contrary, lower flows signalize a less-saturated watershed, 
e.g., different initial physical conditions in the watershed. 

 
Table I Statistics of the flows in the gauging stations after dividing 

the data 
FLOWS [m3.s-1] MAX. MIN. AVG. 

Q6200-1 
TRAIN. (2007-2009) 427.6 1.62 14.07 
TEST. (feb.- dec. 2010) 414.6 3.05 23.26 

Q6170-1 
TRAIN. (2007-2009) 120.1 0.05 2.96 
TEST. (feb.- dec. 2010) 135.3 0.15 5.38 

Q6179-1 
TRAIN. (2007-2009) 122.7 0.1 2.99 
TEST. (feb.- dec. 2010) 116.5 0.6 5.37 

Q6180-1 
TRAIN. (2007-2009) 329.4 0.43 7.14 
TEST. (feb.- dec. 2010) 281.7 0.6 13.31 

Q6190-1 
TRAIN. (2007-2009) 93.1 0.35 4.38 
TEST. (feb.- dec. 2010) 127.7 0.7 5.84 

 
One additional variable was constructed for each gauging 

station, which was the difference between the most recent and 
previous flows at this station. The reason for using this 
construction is to include some recently observed dynamics of 
the river flows into the input dataset. On the basis of the 
considerations just described, the final dataset has 30 features 
and 35,000 rows. It is a huge data set, and its reduction is 
desirable, because the computer modelling time could 
otherwise inappropriately increase. 

Eliminating the problem of the “missing values” that were 
found in the data was the next step in the data preparation 
phase of the CRISP-DM. The data values could be missing 

 
Fig. 3 Histogram of the flows in the Kysuce River – Kysucke Nove Mesto gauging station 

 

 

 
Fig. 3 Histogram of the flows in the Kysuce River – Kysucke Nove Mesto gauging station 
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because they were not measured, are unknown, were 
corrupted, etc. Data mining methods vary in the way they treat 
missing values. Typically, they omit any records containing 
missing values, replace any missing values with the mode or 
mean, or infer the missing values from the existing values. 
The imputation of the mentioned missing data in our case is 
accomplished by linear interpolation, because the character of 
the flow data allows this opportunity (this is hardly possible, 
e.g., with precipitation data). Incidentally, this treatment of 
missing data is also useful in contexts other than in data-
driven modelling, which is the theme of this paper, and many 
other and more sophisticated procedures are available for 
solving this task. 

The next operation in the data preparation should be 
sampling. As can be seen in Fig. 3, which contains a 
histogram of the predicted flows, there is a huge amount of 
relatively low flows, e.g., flows which indicate that nothing 
important was going on at the time of their measurement in the 
watershed. In such periods flows neither rise nor fall 
significantly, so the data in such periods are not very 
important for flood predictions. This led to the authors’ 
decision to filter out some of them, because of the mentioned 
computation time problems with large datasets. As can be seen 
in Fig. 3, high flows are somewhat rare. Because high flows 
are the most important data in flood predictions, we left all 
this rare and large flow data in the final training dataset. The 
filtered rules used for all the flows are in Table II.  

Table II Criteria used for the sampling 

Intervals of flows     
[m3.s-1] Samples in dataset [counts] 

Q < 15 200 
15 ≤ Q < 20 200 
20 ≤ Q  < 30 200 
30 ≤ Q < 50 300 

Q ≥50 ALL 
 

Although some features were highly correlated (the 
correlation coefficients for different features were in a range 
of 0.208 to 0.996), the authors decided not to remove any 
features from the data set on this basis, because in the case of 
Support Vector Machines (SVM) or the ensemble model 
learning schemes which were applied in this work, any 
correlation does not have a significant influence on the final 
degree of precision.  

After filtering out some rows from the data as described in 
the previous paragraph, a training data file reduced in size was 
obtained (3200 rows).  

Some data-driven models could not work with the numeric 
values of the original data, because the features are not from 
the same range of values. The normalization of the data is 
applied in such cases. Normalized data is scaled to fit in a 
specific range. Each column of the data (the flows from the 
gauging stations) except for the date are normalized. Each 
column has its minimum and maximum values, which are 
defined by the column’s range of values. If range [0, 1] is 
applied, the maximum flow at the gauging station is 

transformed to 1 and the minimum to the value 0; the other 
values are normalized by interpolation. 

V. MODELING 
Hydrological models can be categorized into various 

categories; one possible classification distinguishes 
physically-based models, conceptual models and data-driven 
models. Physically-based models solve exact physically 
governing equations such as the conservation of mass or 
momentum equations (differential equations), usually on the 
basis of spatially distributed inputs. So-called “conceptual” 
models can be viewed as a combination of mathematical 
operators, which describe the main features of an idealized 
hydrological cycle, and it is typical that some of the data they 
use are not based on real counterparts in nature, e.g., are not 
directly measurable (usually because of aggregating some 
processes, etc.). Data-driven models analyse and derive results 
only from the observed input (e.g., discharges, temperatures, 
rainfall) and output of a watershed (e.g., a flow); they do not 
use exact physical descriptions at all.  

Two approaches for flood prediction by data-driven 
modelling are used in this paper: a single model – support 
vector machines and an ensemble model, which consists of 
more single models. The results of both approaches are 
numerical predictions of the flows in the Kysucke Nove Mesto 
gauging station in cubic metres per second. Both methods are 
compared with the measured hydrological data of the flows 
observed.  

A.  Support vector machines (SVM)   
An SVM uses nonlinear mapping to transform the original 

training data into a higher dimension. The mapping of the 
original data into this new space is carried out with the help of 
so-called kernel functions. Within this new dimension, a linear 
model is constructed. The quality of the estimation of this 
model is measured by the ε-insensitive loss function, which 
ignores errors that are situated within a certain distance ε from 
the true value. As a consequence, an SVM find this model by 
using not all the input vectors (the data rows), but only the so-
called support vectors (“essential” training vectors), which 
strongly enhance the effectiveness of the algorithm.  

Parameter ε controls the width of the ε-insensitive zone, 
which is used to fit the training data. The value of ε can affect 
the number of support vectors used to construct the regression 
function. The larger ε is, the fewer support vectors are 
selected, which has an influence on a model’s degree of 
precision. On the other hand, a very small ε could lead to over-
fitting. 

Another useful feature of a SVM is the selection of a model 
by minimizing structural risk, which corresponds to finding a 
model which is as simple as possible and is best in terms of 
any empirical errors in the data. This compromise between 
empirical and structural minimization leads to the remarkable 
ability of a SVM to generalize. Parameter C determines the 
trade-off between the model’s complexity (flatness) and the 
degree to which deviations larger than ε are tolerated in the 
optimization of the regression function. For example, if C is 
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too large (infinity), then the objective is to minimize only the 
empirical risk, without regard to the complexity of the model 
in the optimization formulation. The mathematical details of 
this formulation are avoided here. They can be found in the 
literature, e.g., [5], [10]. The LIBSVM implementation of a 
SVM is described in [6]. 

B. Optimization of the SVM’s parameters  
The proper parameters of a SVM should be searched for in 

a particular task [11], [12]. The sequence of the practical steps 
while using the ε-SVR is as follows: selecting a suitable kernel 
and the appropriate kernel’s parameters, specifying the ε 
parameter, and specifying the capacity C.  

The radial basis function was chosen as the kernel function 
on a trial-and-error basis for which the parameter γ should be 
specified. A cross-validation methodology with ten folds was 
used for finding the mentioned parameters of the SVM model. 
This means that some generator of the possible parameter 
values is chosen – this could be a grid generator, which 
produces parameters in a grid manner with predefined steps, 
or an evolutionary generator, which proposes parameters on 
the basis of, e.g., genetic algorithms. The latter was used in 
this study. The task of cross-validation is to identify the best 
parameters solely on the basis of the training data. 

The cross-validation tests the precision of a model on part 
of the training data. The training data were divided into 10 
parts. Nine different parts were used ten times for the training 
of the ten SVM models, and in every case the unused tenth 
part was used for the validation (always a different 
combination of the nine parts plus one). The precision of these 
ten SVM models was averaged into a single precision 
coefficient for the given setting of the parameters in the 
particular iteration in which they were searched for. This 
precision was expressed by the Nash-Suttcliffe coefficient. 
The use of cross-validation in the optimization process 
improves the selection of the parameters in comparison with 
other methods, e.g., a method based only on a single division 
of the training data in the training and validation group, as the 
resulting model is more likely to be objective and stable with 
regard to the degree of precision for the various data not used 
in the training process. 

Each parameter was searched in the optimization process in 
a range established on the basis of the authors´ experience and 
information from the SVM literature. 

C. Ensemble models  
The authors of the paper wanted to answer the question as 

to whether improvements in performance are obtained by 
ensemble modeling of river flow predictions in comparison 
with each of the ensemble members’ performances, in a case 
where these members are already powerful algorithms with 
good performances. In the usual ensemble approach many 
learners (e.g., classification and regression trees) are combined 
in an attempt to produce a strong learner.  

The authors of this  article are aware of some degree of 
subjectivity in the choice of the strong algorithms which were 
included in the proposed ensemble, but some supporting 

information in the data mining community exists [7], [12]. A 
grid search combined with a repeated cross-validation 
methodology was used for finding the parameters of all the 
models included in the ensemble. In this approach a set of 
each model’s parameters from a predetermined grid is sent to 
the parameter-evaluating algorithm. Basically, a 2-times-
repeated 5-fold cross validation was used. The data set was 
divided into 5 subsets, and the training-testing-evaluation was 
repeated 5 times. Each time, one of the 5 subsets is used as the 
test set, and the other 4 subsets are put together to form a 
training set. Then the average error across all 5 trials is 
computed, and the case with the lowest errors determines the 
combination of the SVM parameters in an actual repetition. 
These parameters were used to train the final model. The 
division of the data into five subsets was repeated differently 
two times. This repeated k-fold cross-validation is the main 
reason for the necessity to accomplish sampling of the data 
(e.g., data reduction) as mentioned in the data preparation 
section of this paper, because each basic algorithm runs many 
times in such a strategy. A brief description of the selected 
algorithms follows. 

Generalized linear model with elastic-net (glmnet) 
A generalized linear model is fitted in this case with an 

elastic-net penalty. In a solved flows prediction task the 
multiple-linear regression is a linear model. The algorithm 
uses a cyclical coordinate descent in a path-wise fashion, as 
described in [13]. An elastic-net is a sort of regularization 
technique, the aim of which is to obtain as simple a model as 
possible, while keeping its degree of precision on an 
appropriate level. The application of the regularization leads to 
models with better generalizations, e.g., predictions on the 
basis of data which were not used to train the model. An 
elastic-net penalty function has two roles: controlling the 
“sparseness” of the solution (the number of coefficients that 
are non-zero) and controlling the magnitude of the non-zero 
coefficients (“shrinkage”). In this work the original software 
provided by the authors of this method was used with its 
default settings [14]. 

Gradient boosting machines (GBM) 
Gradient boosting machines (GBM) are one of the most 

powerful and popular boosting methods. A GBM involves 
fitting a series of trees, with each successive tree being fit to a 
resampled training set that is weighted according to the 
accuracy of the previously fitted tree. The original training 
data is resampled several times, and the combined series of 
trees forms a single predictive model. GBMs train many 
models, and each new model gradually minimizes the loss 
function of the whole system using a gradient descent method, 
e.g., it builds the model in a stage-wise fashion. The 
coefficients are fitted incrementally, one at every step. The 
algorithm may be found in [15]. The GBM model for the 
analysis of flows reported here was fit using the gbm package 
in R [16]. A GBM performs shrinkage implicitly: the 
coefficients are “shrunk” with a Lasso-type penalty with the 
shrinkage controlled by υ, which was set in this work to 0.01. 
This fact is understood to be one of the key reasons for the 
superior performance of the algorithm. The total number of 
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trees to fit is equal to 700 in this work, and this parameter was 
found by a grid search. Also, the maximum depth of the 
variable interactions was found by a grid search with up to 10-
way interactions. 

Support vector machines (SVM) 
The authors developed the ε-SVM model by: 1) selecting a 

radial basis kernel by a trial-and-error approach and then this 
kernel’s parameter sigma = 0.0005, which was found by a grid 
search; 2) specifying the ε parameter to be equal to 0.1 (the 
usually recommended value); and 3) specifying the capacity C 
= 10.5 by a grid search. 

Differential Evolution 
The differential evolution (DE) was first proposed by Storn 

and Price [17] in 1997, as a generic metaheuristic for the 
optimization of nonlinear and non-differentiable continuous 
space functions, and it has proven to be very robust and 
competitive with respect to other evolutionary algorithms. At 
the heart of its success lies a very simple differential operator, 
whereby a trial solution vector is generated by mutating a 
random target vector by some multiple of the difference vector 
between two other random population members. For the three 
distinct random indices i, j and k, this has the form 

  𝑦𝑖 = 𝑥𝑖 + 𝑓 × (𝑥𝑖 − 𝑥𝑘) (1) 
where xi is the target vector, yi is the trial vector, and 𝑓 is a 

constant factor in the range [0, 2] which controls the 
amplification of differential variations, typically taken as 0.5. 
If the trial vector has a better objective function value, then it 
replaces its parent vector. Storn and Price also included a 
crossover operator between the trial vector and the target 
vector in order to improve the convergence. 

VI. EVALUATION 
The process of assessing the performance of a hydrologic 

model involves making some estimates of the “closeness” of 
the simulated behaviour of the model to the observations (in 
our case, the stream flow). An objective assessment requires 
the use of a mathematical estimate of the error between the 
simulated and observed hydrological variable.  

The following evaluation measures have been used to 
compare the performance of the model, where N is the number 
of observations, Oi is the actual data, and Pi is the predicted 
value(s): 

The Nash-Sutcliffe efficiency (NSE) is a standardised 
statistical ratio defining the relative magnitude of the 
variability of the residuals compared with the dispersion of the 
measured data. The NSE ranges from -∞ up to and including 
1, where NSE = 1 means a perfect agreement between the 
measured and simulated data. 

 𝐸 = 1 − ∑ (𝑂𝑖−𝑃𝑖)2𝑁
𝑖=1
∑ (𝑂𝑖−𝑂�)2𝑁
𝑖=1

 (2) 

The Pearson correlation coefficient (r) describes the level of 
collinearity between the simulated and measured data. The 
correlation coefficient takes values within a range of -1 to 1, 
and it is a measure of the linear relation between the observed 
and simulated data. If r = 0, there is no relation. If r = 1 or -1, 
there is a perfect positive or negative linear relation. Although 

it is frequently used for the assessment of models, its 
suitability must be verified (e.g., by a visual inspection of the 
graphed results), because it does not catch multiplicative or 
lagged differences between the modelled and measured data. It 
has the following form: 

 r = ∑ (Oi−O�)(Pi−P�)N
i=1

�∑ (Oi−O�)2N
i=1 �∑ (Pi−P�)2N

i=1

  (3) 

The last criterion for comparisons is the overall outflow, 
which in our case represents the overall outflow from the 
Kysucke Nove Mesto gauging station in the tested season 
from 1.2.2010 to 31.12.2010. This criterion describes the 
balance of the model, i.e., the overestimated or the 
underestimated trend of the overall prediction of the model in 
comparison with the observed data. 

A. Single model - SVM  
A single model based on the SVM with optimalised 

parameters and the reduced training dataset achieved a 
correlation coefficient with a value of 0.922 and a Nash-
Sutcliffe efficiency with a value of 0.894, which confirms a 
very highly precise solution of this state-of-the-art regression 
algorithm. The overall outflow underestimated the measured 
outflow by 48 million m3. The overall simulated outflow with 
regard to the SVM model represents a deviation of 7.13% 
from the measured outflow. 

 
Table III Evaluation of the single model - SVM by r, NSE and overall 

outflow 
 SVM Measured data 
NSE 0.894  
r 0.922  
Overall outflow [m3] 625.106 673.106 

 

B. Ensemble model 
The ensemble model is proposed to have the following 

structure: 

 Pensemblet =  ∑ βin
i=1 ∗ Pit, (4) 

where βi are the weights of the models of which the ensemble 
consists, and 𝑃𝑖𝑡 are the predictions by these models in time t. 
In this study 7-hour ahead flow predictions by ensemble 
modeling are evaluated, the flows of which are computed n 
times for each hour, where n is the number of models. The 
weights of every model in the ensemble are proposed to be 
found by the differential evolution methodology, which was 
described in the previous section. The utilization of the 
differential evolutions for this task follows in the next 
paragraphs. 

The problem solved should be defined by the objective 
function, which is proposed in this paper to have the following 
form: 

 Of = 1 − �1 − ∑ (Oi−Pi)2
N
i=1
∑ (Oi−O�)2N
i=1

� + |1 −∑ βin
i=1 | (4) 

 0 ≤ βi ≤ 1, (5) 
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where Oi are the observed flows, N is the number of such data, 
and 𝑂�  is their average value. The component in the rounded 
parentheses is the Nash-Sutcliffe efficiency (NSE), which is 
used here because it is one of the most commonly used 
statistics in hydrology. The last component of the objective 
function (absolute value) forces the sum of the ensemble 
members weights βi to be equal to 1. This objective function is 
proposed to be minimized. In the case of an ideal model, the 
value of the objective function is zero. 

The ensemble modelling involves an evaluation of each of 
the three single models in the training phase (Table IV). Then 
the differential evolution algorithm task was to find the best 
weights of the individual models on the basis of the objective 
function discussed. The GLMnet was excluded from the 
ensemble by the zero weight. The ensemble model confirms 
the assumption of the higher degree of accuracy in the training 
phase achieved by the combination of more models.  
 

Table IV Evaluation of the computations in the training phase by r 
and NSE and the final values of the model weights in the ensembles 

Model Weights NSE r 
GBM 0.3793 0.942 0.971 
SVM 0.6207 0.950 0.975 
GLMnet 0 0.903 0.950 
ENSEMBLE  0.954 0.977 
 

The ensemble model, including the GBM and SVM models 
in the testing phase, confirmed the results from the training 
phase, as seen in Table V. 
 
Table V Evaluation of the computations in the testing phase by r and 

NSE and the values of the model weights in the ensemble 

Model Weights NSE r 

GBM 0.3793 0.906 0.951 

SVM 0.6207 0.894 0.922 

GLMnet 0.0000 0.889 0.921 

ENSEMBLE  0.911 0.955 
 

The Nash-Sutcliffe efficiency with a value of 0.911 and a 
correlation coefficient with a value of 0.955 confirms the 
ensemble model as the best solution. The predicted overall 
outflow of 663 million m3 in comparison with the measured 
outflow of 673 million m3 is underestimated by 10 million m3. 
The overall simulated outflow with regard to the SVM model 
represents a deviation of 1.49 % from the measured outflow.  

VII. CONCLUSION 
This paper generally describes the possibilities for and 

suitability of the application of data mining methods in 
hydrology. In the application part it deals with predicting 
flows in the Kysuca River basin in Slovakia. The CRISP-DM 
process is described and applied in the first part. Papers on 
data mining often focus on the statistical and machine learning 
algorithms used to make predictions, classifications, etc. Real-
world data miners, however, spend most of their time 

preparing and cleaning the data.  That is the reason why the 
authors decided to devote more space to these parts of the data 
mining process in this paper and have emphasized the 
importance of these procedures.  

Two types of data-driven modelling are compared, i.e., a 
single data-driven model and an ensemble model. To make the 
comparisons fair, a state-of-the-art support vector machine 
model was selected as the single model. In accordance with 
the expectations, the flows predicted by this model for 7 hours 
ahead were computed with a very good degree of accuracy. 
But in the following experiment, when the SVM model was 
used as a part of the ensemble model together with other 
single models, an even higher degree of accuracy was 
achieved than when the single algorithm was used. On this 
basis the application of the proposed ensemble methodology 
could be recommended as a promising alternative for flow 
predictions in flood warning systems. 

According to the so-called “no free lunch” theorem, it is 
never clear in advance which machine learning algorithm suits 
best for a particular task. For this reason it is usually necessary 
to try more algorithms. Instead of selecting and using only the 
best algorithm, it is better to compose an ensemble prediction, 
which, as has been shown in this paper, is relatively easy to 
accomplish when tuned algorithms are already available. 
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