
 

 

  
Abstract—The paper presents an application of fuzzy logic 

techniques in inertial navigation systems performance improvement, 
providing to the navigation processor denoised acceleration and 
angular speed data. For this purpose, some redundant clusters of 
sensors are used to sense acceleration or angular speed in each axis of 
the inertial measurement unit. The fuzzy logic denoising procedure 
fuses the data in each redundant detection cluster, being based on the 
idea that each sensor from an axis (measuring acceleration or angular 
speed) has a weight established in a fuzzy logic manner as a function 
of the standard deviation of the last m samples acquired from it. 
Starting from this procedure some experimental tests were performed 
by using a bi-dimensional INS navigator with a redundant MEMS 
inertial measurement unit, and an integrated GPS/INS navigator as 
reference positioning system. Each redundant cluster in the tested 
INS detection unit contains six sensors, having its sensitivity axes 
parallel and oriented in the same sense. The results show an 
important reduction of the navigation solution errors in comparison 
with the non-redundant navigation solutions obtained by the 
processing of the data provided to the navigation algorithm by the 
sensors having the same index in the clusters (it results six non-
redundant INSs). 
 

Keywords—denoising, fuzzy logic data fusion, inertial navigator, 
redundant detection unit. 

I. INTRODUCTION 
HE great part of the positioning technologies for modern 
navigation systems have been available for over three 

decades. During this period, inertial-navigation system (INS) 
and global positioning system (GPS) have been widely applied 
in many of this navigation applications. On the other way, 
besides the aerospace applications, the last two decades shown 
an increasing trend in the use of positioning and navigation 

 
This work was supported by CNCSIS-UEFISCSU, project PN II-RU, No. 

1/28.07.2010, “High-precision strap-down inertial navigators, based on the 
connection and adaptive integration of the nano and micro inertial sensors in 
low cost networks, with a high degree of redundance”, code TE-102/2010.  

Teodor Lucian Grigorie is with the University of Craiova, Faculty of 
Electrical Engineering, Department of Electric, Energetic and Aerospace 
Engineering, 107 Decebal Blvd., 200440 Craiova, Dolj, Romania (phone: 
+40251436447; fax: +40251436447; e-mail: ltgrigorie@yahoo.com).  

Ruxandra Mihaela Botez is with the École de Technologie Supérieure, 
Montreal, 1100 Notre Dame West, H3C 1K3, Montreal, Quebec, Canada 
(ruxandra.botez@etsmtl.ca). 

technologies in land-vehicle applications ([1]-[3]).  
The practice with all of this applications shown that, 

unfortunately, navigation accuracy and integrity of GPS are 
negatively affected when the navigation is performed in signal-
degraded environments, when the satellite signals may get lost 
due to signal blockage ([4], [5]). With characteristics 
complementary to GPS, the INS has been widely adopted to 
assist GPS in a series of navigation systems, being able to 
address this problem and overcome the non-availability of 
GPS signals for a short period of time due to the inherent 
inertial sensors errors. Originally developed in the mid of 60s 
for Missile Guidance systems, INS has become an important 
component in military and scientific applications, at this time 
being standard equipment on most planes, ships, and 
submarines ([6]-[8]). 

Having as a first advantage its dead-reckoning 
characteristic, the INS raises through its ability to provide the 
velocity and position of the vehicle with abundant dynamic 
information, due to the high calculation rate, and excellent 
short term performance. The main deficiency of the INS 
resides in its great accuracy degradation over time, due mainly 
to the used sensors performances, situation in what it can 
benefits from external aiding such as GPS ([3], [9]). More than 
that, this deficiency is accentuated today because of the rapid 
intrusion of miniaturization technologies (MEMS and NEMS) 
in inertial sensors manufacturing industry. These new 
technologies widely produce low-size and low-cost sensors, 
but unfortunately, with low performances, affected by noises 
and unstable values of biases and scale factors ([2], [6], [10], 
[11]). As a consequence, the today development of low-cost, 
small-size and high-precision INS/GPS navigators, suitable for 
positioning purposes in GPS challenging environments, 
oriented the researches in the following directions ([1], [3], 
[9], [12]-[14]): 1) development of standalone accurate strap-
down miniaturized INS structures; 2) development of new 
INS/GPS data-fusion techniques incorporating artificial 
intelligence algorithms, in order to overcome the limitations in 
terms of model dependency, prior knowledge dependency, and 
linearization dependency. 

The trend in the development of standalone accurate strap-
down miniaturized INS structures is based on the improvement 
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of the quality of the inertial sensors or on the conception of 
new architectures and algorithms for sensors error estimation 
and compensation. It is very well known that the sensors noise  
is superimposed on the band 0-100 Hz of the navigation useful 
signal, which makes its filtering impossible ([10], [11], [15], 
[16]). Our identified way to perform the inertial sensors 
denoising is based on the elaboration of numerical algorithms, 
which fuse data from multiple sensors, grouped in redundant 
clusters in the same navigator, in order to provide a best 
estimate of the acceleration or angular speed signals. Based 
this consideration, we conceived a redundant architecture for 
the INS inertial measurement unit (IMU), considering, for 
each acceleration or angular speed component needed to be 
measured, a redundant cluster of inertial sensors having the 
sensitivity axes parallel and oriented in the same sense with the 
detection axis. 

The here presented work was developed in a research 
project concerning the development of high-precision strap-
down inertial navigators, based on the connection and adaptive 
integration of the nano and micro inertial sensors in low cost 
networks, with a high degree of redundance, financed by 
National Council for Scientific Research in Higher Education 
(CNCSIS) in Romania. 

The proposed method uses fuzzy logic techniques to fuse 
the data in each redundant detection cluster, establishing for 
each of the sensors in the cluster a calculus weight as a 
function of the standard deviation of the last m samples 
acquired from it. To validate experimentally the algorithm, 
some tests were performed by using a bi-dimensional INS 
navigator structure with a redundant MEMS IMU, and an 
integrated GPS/INS navigator as reference positioning system. 
The redundant IMU was developed with three detection 
clusters, two for accelerations in x and y axes, and another one 
for the angular speed in z axis; each redundant cluster in the 
tested INS detection unit contains six sensors (Fig. 1). Paper 
exposes: 1) Data fusion method; 2) INS strap-down navigator 
mechanization; 3) Experimental results of the tested structure. 
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Fig. 1 IMU structure relative to vehicle frame 

II. DATA FUSION METHOD 
In the following, we consider that each of the sensors 

redundant clusters in the IMU contains, in the general case, n 
collinear sensors. Denoting with xi (i=1÷n) the measurements 
of the x quantity provided by the n sensors, with the σi (i=1÷n) 
standard deviations, then the data fusion algorithm combines 
these estimates under a weighted mean form in order to obtain 
an xe estimate of the x quantity: 
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wi (i=1÷n) are the weights of the xi (i=1÷n) measurements. Our 
proposed methodology allows the dynamic establishment of 
the weights in a fuzzy logic manner, as a function of the 
standard deviation of the last m samples acquired from the 
sensors. In this way it is provided a degree of adaptability to 
the denoising mechanism. To develop a numerical structure 
able to calculate the sensors standard deviations at each time 
step, based on the last m acquired samples, a buffer should be 
used to have sensors data in repeated frames format. As a 
consequence, if m is the number of samples provided by each 
of the n sensors in one second, a FIFO (first in first out) buffer 
may be used to generate data frames of m consecutive samples; 
two consecutive frames are superposed with (m-1) samples 
([15]). For each data frame, the standard deviations of the 
independent measurements are calculated with the next 
equation: 
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where: xi(k) is the kth measurement from the ith sensor and 
corresponds to the kth data frame; σi(k) is the standard 
deviation of the measurement xi for the kth data frame and will 
be used in “data fusion” for the next data frame; )(kxi  is the 
arithmetic mean of the m samples acquired from the ith sensor 
in the kth data frame, 
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For each detection channel a fuzzy logic controller provides 
a weight ),1()( nikw fuzzy

i =  as a function of the measured 
standard deviation σi(k) of the m consecutive samples provided 
by the sensor in the kth data frame. Therefore, the input of the 
controller is the standard deviation and the output is the sensor 
weight. To have the sum of all sensors weights in the detection 
array equal with 1, these are recalculated with the relations: 
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Finally, at the time tk+1 the xe estimate of x is 
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By resuming the previous statements, the data fusion 
architecture for the proposed algorithm can be organised as in 
Fig. 2. The chosen fuzzy logic controllers are by the “P” type, 
implementing some rules that creates a proportional 
dependence between the quality of the sensors signals and the 
associated weights that means an inverse proportionality 
between the calculated standard deviations and sensors 
associated weights. The structure of fuzzy controllers realized 
in Matlab/Simulink is presented in Fig. 3. 
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Fig. 2 Data fusion algorithm architecture

The membership functions for the fuzzification process 
were considered uniform distributed from 0 to 10, while for 
output were considered uniform distributed from 0 to 1. Both, 
input and output, where assigned with 9 membership functions 
by Gaussian type, distributed in the universes of discourse as 
in Fig. 4. 

The associated fuzzification rules are: 1) If (std-dev is mf1) 
then (weight is mf9); 2) If (std-dev is mf2) then (weight is 
mf8); 3) If (std-dev is mf3) then (weight is mf7); 4) If (std-dev 
is mf4) then (weight is mf6); 5) If (std-dev is mf5) then 
(weight is mf5); 6) If (std-dev is mf6) then (weight is mf4); 7) 
If (std-dev is mf7) then (weight is mf3); 8) If (std-dev is mf8) 
then (weight is mf2); 9) If (std-dev is mf9) then (weight is 
mf1). 

w_control

(mamdani)

9 rules

std_dev (9) weight (9)
System w_control: 1 inputs, 1 outputs, 9 rules  

Fig. 3 Matlab/Simulink structure of fuzzy controllers 
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Fig. 4 mf for input and output 

For the fuzzification process, the MAX-MIN inference 
method is used, while for defuzzification the centroid method 
is implied. 

Based on our experimentally developed IMU architecture, 
with six sensors in each detection cluster, the equivalent 
Matlab/Simulink implementation of the data fusion algorithm 
in Fig. 5 is obtained. The block “Fuzzy-logic data fusion”, in 
the right hand side of the figure, is obtained by grouping the 
model in the left hand side. Its inputs are the data obtained 

from the six sensors in the cluster “Si” (measurements xi, 
i=1÷6), while its outputs are: fusion signal “S_f” (xe estimate), 
sensors’ assigned weights “w1-w6” (wi, i=1÷6), standard 
deviation of the fusion signal “Std_f” (standard deviation of 
the xe estimate), standard deviations of the data obtained from 
the six sensors “Std1-Std6” (standard deviations of the xi 
(i=1÷6) measurements).  

III. INS STRAP-DOWN NAVIGATOR MECHANIZATION 
An IMU operating after the proposed method provide 

estimates of two accelerations and one angular speed through 
the processing of the signals obtained from two accelerometric 
and one gyrometric clusters. 

Each of the three detection clusters contains six collinear 
sensors, providing independent estimates of the same 
acceleration or angular speed applied on respective axis. 
According to the mechanics principles applied in inertial 
navigation mechanisms, to find the position of a vehicle the 
general equation of navigation should be solved, relative to the 
navigation frame ([4], [8], [10], [11], [16]). 

For our application, having in mind the need to navigate in 
horizontal plane, the kinematic acceleration a

  equals the 
specific force vector f



 (the accelerometers outputs) because 
the accelerometers outputs are not influenced by gravitation: 

 ;
d
d v

t
vaf
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

×ω+==  (6) 

v
 , ω

  - vehicle absolute speed, and absolute angular speed. 
To solve this equation it should be written in equivalent 

scalar form, relative to the vehicle frame, when we can 
evaluate a part of the variables based on the attached sensors, 
i.e. the accelerometers and gyros outputs. The equation 
solution provides the values of the vehicle absolute speed 
components relative to the axes of the vehicle frame. 
Therefore, the evaluation of the vehicle position and speed 
relative to the navigation frame requires an intermediary 
calculation step related to the speed components change from 
vehicle frame (eq. (6) solution) to navigation frame. To 
perform this step, the relative position of the two frame should 
be evaluated, i.e. the vehicle attitude. 
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Fig. 5 Matlab/Simulink implementation of the data fusion algorithm

The proposed to be solved navigation problem conducts to 
the choosing of North-East-Down (NED - Oxlylzl) local 
horizontal frame as navigation frame. Adequate to the defined  
navigation frame, the next configuration is considered for the 
vehicle frame (SV - Oxvyvzv): Oxv axis along the vehicle’ 
longitudinal axis, in front, Ozv axis under the normal at Oxv, in 
the vehicle’ longitudinal plane, downward, and Oyv axis in the 
right hand side of the vehicle, perpendicular to the Oxvzv 
plane. Therefore, based on our positioning aim (horizontal-
plane positioning), only the axes x and y are considered for the 
evaluation of the vehicle position and speed, while the vehicle 
attitude is characterized by the yaw angle, i.e. the rotation 
around the vertical axis z. Denoting with ωzv the component of 
the angular speed ω along the z axis of the vehicle frame (the 
gyro reading), the yaw angle ψ results by its numerical 
integration as follows: 

 .d
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where ψ0 is the initial yaw angle value. Relative to the vehicle 
frame, eq. (6) equates the following scalar relations: 
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fxv, fyv are the components of the specific force f in SV frame 
(accelerometric readings), and vxv, vyv - components of the 
speed v in SV frame. An easiest step of integration for eq. (8) 
leads to the values of the components vxv, vyv, which are further 
transformed in NED frame by using a particular coordinate 
change, rotation around the z axis, based only on the evaluated 
yaw angle: 
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Based on the initial values xl0 and yl0 of the vehicle coordinates 
in North and East directions, the vehicle horizontal positioning 
is finally performed by using the equations: 
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Implementing in Matlab/Simulink the navigator equations, 
the model in Fig. 6 is obtained. 

 
Fig. 6 Matlab/Simulink implementation of the navigation algorithm 

To have driven distances, in North and East directions, in 
terms of latitude and longitude coordinates, the “Flat Earth to 
LLA” Matlab/Simulink block, making this conversion, is used 
in the model. The block “Horizontal plane navigator” in the 
right hand side of the figure results through the grouping of the 
model in the left hand side.  Its inputs are the inertial 
measurements (accelerations in SV along the x and y axes, and 
angular speed in SV along the z axis), while its outputs are the 
yaw angle, the vehicle’ position and speed relative to the 
navigation frame (in North and East directions), and the 
latitude and longitude coordinates.  

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS 
To test experimentally the proposed methodology, were 

used a redundant MEMS IMU (Inertial Measurement Unit), 
with three detection clusters (two accelerometric clusters and 
one gyrometric cluster) containing six sensors each, and an 
integrated GPS/INS navigator as reference positioning system. 
Both equipment were boarded on a test car, and operated in 
the same time. 
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The data acquired from the MEMS IMU sensors and the 
solution of navigation provided by the integrated GPS/INS 
navigator were further used to validate the proposed 
methodology for the positioning monitoring improvement by 
using fuzzy logic data fusion for denoising of inertial sensors. 

The validation model, developed in Matlab/Simulink, is 
shown in Fig. 7. It includes: 1) three “Fuzzy-logic data fusion” 
blocks, used to fuse the acquired data in each of the three 
detection clusters; and 2) seven “Horizontal plane navigator” 
blocks, one of them used to process the filtered data provided 
by the three fusion blocks, and six of them used to process the 
data provided by the sensors having the same index in the 

three detection clusters (resulted one redundant INS and six 
non-redundant INSs). 

The acquired data from the MEMS IMU is presented in Fig. 
8 for the accelerometers in the x axis, in Fig. 9 for the 
accelerometers in the y axis, and in Fig. 10 for the gyros in z 
axis of the SV reference frame. The last graphical 
characteristic in each of the three figures represents the data 
fusion obtained signal for each of the three detection clusters. 

The navigation solutions and associated errors for redundant 
INS with fuzzy logic data fusion, and for all of the six non-
redundant INSs are presented in Fig. 11 to Fig.  17. The errors 
are calculated relative to the reference solution. 

 
Fig. 7 Matlab/Simulink validation model
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Fig. 8 Acquired data from the accelerometers in the x axis 
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Fig. 9 Acquired data from the accelerometers in the y axis 
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Fig. 10 Acquired data from the gyros in the z axis 

The shown navigation solution components and errors are: 
the covered distances in the North direction (Fig. 11), the 
covered distances in East direction (Fig. 12), the yaw angles 
values (Fig. 13), the speed values in the North direction (Fig. 
14), the speed values in the East direction (Fig. 15), the 
vehicle Latitude coordinates (Fig. 16), and the vehicle 
Longitude coordinates (Fig. 17). The trajectories of the vehicle 
in horizontal plane is presented in the left hand side of the Fig. 
18 (Latitude versus Longitude), while the deviations from the 
reference trajectory calculated by redundant INS and the six 
non-redundant INSs are exposed in the right hand side of 
Fig.18 (Latitude errors versus Longitude errors). 
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Fig. 12 East positions and errors 
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Fig. 13 Yaw angle values and errors 
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Fig. 14 North speed and errors 

The evolution in time of the vehicle, estimated by the 
redundant system and by the six non-redundant INSs is shown 

in Fig. 19 (Latitude vs. Longitude vs. time), while the 
deviations from the reference trajectory in time are exposed in 
Fig. 20 (Latitude errors vs. Longitude errors vs. time). 

Evaluating the absolute maximum values of the navigation 
solution errors in all of the seven tested navigators, the values 
in Table I were obtained. The blue values assign the best cases 
(minimum values of these errors), while the red ones assign the 
worst cases (maximum values of these errors). 

It can be easily observed that the best cases are associated to 
the redundant INS, excepting two situations corresponding to 
the green values (East position and Longitude position); 
should be mentioned that the two green values are very close 
to the blue values in East and Longitude components, found 
for INS6. 
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Fig. 15 East speed and errors 
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Fig. 16 Latitude coordinates and errors 
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Fig. 17 Longitude coordinates and errors 
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Fig. 18 Trajectories of the vehicle in horizontal plane and 

deviations from the reference trajectory
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Table I. Errors analysis 

Abs. max error INS1 INS2 INS3 INS4 INS5 INS6 Fusion Mean value Mean/Fus
. Max/Fus. Min/Fus

. 
North [m] 634.5045 931.0303 581.5833 433.7669 891.0633 220.4880 69.2359 615.4061 8.8885 13.4472 3.1845 
East [m] 91.3747 100.4168 42.2389 122.9860 111.9274 21.9566 24.5774 81.8167 3.3289 5.0040 0.8933 

V-North [m/s] 13.1621 19.1634 12.0308 12.4389 18.5365 7.0859 2.3972 13.7362 5.7302 7.9942 2.9559 
V-East [m/s] 6.6277 3.9710 2.0468 10.2027 8.4689 2.3690 1.7420 5.6143 3.2229 5.8569 1.1749 

Latitude [deg] 57.101∙10-4 83.786∙10-4 52.338∙10-4 39.036∙10-4 80.190∙10-4 19.842∙10-4 6.230∙10-4 55.382∙10-4 8.8885 13.4472 3.1849 
Longitude [deg] 11.457∙10-4 12.591∙10-4 5.296∙10-4 15.420∙10-4 14.034∙10-4 2.753∙10-4 3.081∙10-4 10.258∙10-4 3.3289 5.0040 0.8935 

Yaw [deg] 15.6123 22.2271 18.7895 31.1004 24.9227 19.4310 6.4500 22.0138 3.4130 4.8217 2.4205 
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Fig. 19 The evolution in time of the vehicle 
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Fig. 20 The deviations from the reference trajectory in time 

Table I presents also the mean values for these errors in 
each channel of the navigation solution (North position, East 
position, North speed, East speed, Latitude, Longitude, Yaw 
angle) and the next ratios: 1) ratio between the mean values of 
the absolute maximal values of the errors, and the absolute 
maximal values of the errors corresponding to the fusion case; 
2) ratio between the maximal values of the absolute maximal 
values of the errors, and the absolute maximal values of the 
errors corresponding to the fusion case; 3) ratio between the 
minimum values of the absolute maximal values of the errors, 
and the absolute maximal values of the errors corresponding to 
the fusion case. 

Starting from the comparative graphical results, correlated 
with the numerical values presented in Table I, we can 
conclude an important positioning precision improvement by 
using the proposed data fusion methodology for inertial 
sensors. It is shown an important reduction of the navigation 

solution errors in comparison with the non-redundant 
navigation solutions obtained by the processing of the data 
provided to the navigation algorithm by the sensors having the 
same index in the clusters (it results six non-redundant INSs).  

The numerical values prove a reduction of the medium level 
of the absolute maximal values of the errors of about 8.8 times 
in the North position channel, 3.3 times in East position 
channel, 5.7 times in North speed channel, 3.2 times in East 
speed channel, and 3.4 times in attitude channel (yaw angle). It 
should be mentioned that no previous calibration procedure 
was applied to the inertial sensors connected in the redundant 
MEMS IMU; the sensors biases are uncompensated. The 
absolute maximal values of errors, after 100 s of positioning 
with the redundant IND based fuzzy logic data fusion, are: 
69.23 m in North position, 27.57 m in East position, 2.39 m/s 
in North speed, 1.74 m/s in East speed, 6.230∙10-4 deg in 
Latitude, 3.081∙10-4 deg in Longitude, and 6.45 deg in Yaw 
angle. 

The best configuration for the non-redundant INSs is for the 
6th sensor in the detection clusters, the results for this one and 
for the proposed configuration being very close in the East 
position channel, corresponding also to the Longitude position 
channel. At the level of the other channels are noted also 
performance improvements brought by proposed redundant 
configuration: reduction of 3.18 times of the North position 
absolute maximal values of errors, reduction of 2.95 times of 
the North speed absolute maximal values of errors, reduction 
of 1.17 times of the East speed absolute maximal values of 
errors, reduction of 3.18 times of the Latitude absolute 
maximal values of errors, and reduction of 2.42 times of the 
yaw angle absolute maximal values of errors. 

The worst configurations for the non-redundant INSs are for 
the 2nd, respectively 4th, sensor in the detection clusters. For 
INS2 are obtained the worst values for the absolute maximal 
values of errors in North position channel (931.03 m), in North 
speed channel (19.16 m/s), respectively in the Latitude 
position channel (83.78∙10-4 deg). For INS4 are obtained the 
worst values for the absolute maximal values of errors in East 
position channel (122.98 m), in East speed channel (10.2 m/s), 
in the Longitude channel (15.42∙10-4 deg), respectively in the 
yaw angle channel (31.04 deg). 
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